首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
We have investigated the structure of oocyte and somatic 5S ribosomal RNA and of 5S RNA encoding genes in Xenopus tropicalis. The sequences of the two 5S RNA families differ in four positions, but only one of these substitutions, a C to U transition in position 79 within the internal control region of the corresponding 5S RNA encoding genes, is a distinguishing characteristic of all Xenopus somatic and oocyte 5S RNAs characterized to date, including those from Xenopus laevis and Xenopus borealis. 5S RNA genes in Xenopus tropicalis are organized in clusters of multiple repeats of a 264 base pair unit; the structural and functional organization of the Xenopus tropicalis oocyte 5S gene is similar to the somatic but distinct from the oocyte 5S DNA in Xenopus laevis and Xenopus borealis. A comparative sequence analysis reveals the presence of a strictly conserved pentamer motif AAAGT in the 5'-flanking region of Xenopus 5S genes which we demonstrate in a separate communication to serve as a binding signal for an upstream stimulatory factor.  相似文献   

3.
In situ hybridization of 5S RNA and cRNA transcribed in vitro from Xenopus laevis 5S DNA shows that 5S DNA is localized at or near the telomere region of the long arm of many, if not all, of the X. laevis chromosomes. No 5S DNA is detected near the nucleolus organizer in the normal X. laevis chromosome complement, but in a X. laevis kidney cell line, 5S DNA is found at the distal end of the secondary constriction. The arrangement of 5S DNA in several types of interphase nuclei is described. — During the pairing stages of meiosis the telomeres of most or perhaps all of the chromosomes become closely associated so that the regions containing 5S DNA form a single cluster. This close association might be either a cause or a result of the presence of the similar sequences of 5S DNA on many telomeres. It suggests that the uniformity of 5S sequences on non-homologous chromosomes might be maintained by crossing-over between the chromosomes.  相似文献   

4.
5.
6.
7.
The genes which code for the 5S ribosomal RNA in the newt, Notophthalmus viridescens have been cloned and analyzed. Two types of repeating unit were detected: a major type consisting of a 120 bp coding region with a 111 bp spacer, and a minor type composed of a coding region, a pseudogene, and a 113 bp spacer. The pseudogene is a 36 bp segment which corresponds to the 3' terminal third of the 5S RNA gene, and is situated immediately 3' to the gene, being separated from it by 2 bp. Two recombinant plasmids were obtained in which the major and minor units were arranged in an interspersed pattern.  相似文献   

8.
9.
F Cutruzzolá  F Loreni  I Bozzoni 《Gene》1986,49(3):371-376
The sequence analysis of the L1 ribosomal protein (r-protein) gene of Xenopus laevis has revealed a strong homology in four out of the nine introns of the gene; this homology region spans 60 nucleotides (nt) with 80% homology [Loreni et al., EMBO J. 4 (1985) 3483-3488]. We have extended our analysis to X. tropicalis, a species which is closely related to X. laevis. Partial sequencing of the isolated L1 gene has revealed that these 60-nt homology regions are also present in at least two introns of the X. tropicalis L1 gene. Computer analysis has revealed that perfect nt sequence complementarity exists between 13 nt of this intron region and the 28S ribosomal RNA in a region which is conserved in all eukaryotes, suggesting a possible base-pairing interaction between these two sequences.  相似文献   

10.
11.
12.
We studied the pathway of 5S RNA during oogenesis in Xenopus laevis from its storage in the cytoplasm to accumulation in the nucleus, the sequence requirements for the 5S RNA to follow that pathway, and the 5S RNA-protein interactions that occur during the mobilization of stored 5S RNA for assembly into ribosomes. In situ hybridization to sections of oocytes indicates that 5S RNA first becomes associated with the amplified nucleoli during vitellogenesis when the nucleoli are activity synthesizing ribosomal RNA and assembling ribosomes. When labeled 5S RNA is microinjected into the cytoplasm of stage V oocytes, it migrates into the nucleus, whether microinjected naked or complexed with the protein TFIIIA as a 7S RNP storage particle. During vitellogenesis, a nonribosome bound pool of 5S RNA complexed with ribosomal protein L5 (5S RNPs) is formed, which is present throughout the remainder of oogenesis. Immunoprecipitation assays on homogenates of microinjected oocytes showed that labeled 5S RNA can become complexed either with L5 or with TFIIIA. Nucleotides 11 through 108 of the 5S RNA molecule provide the necessary sequence and conformational information required for the formation of immunologically detectable complexes with TFIIIA or L5 and for nuclear accumulation. Furthermore, labeled 5S RNA from microinjected 7S RNPs can subsequently become associated with L5. Such labeled 5S RNA is found in both 5S RNPs and 7S RNPs in the cytoplasm, but only in 5S RNPs in the nucleus of microinjected oocytes. These data suggest that during oogenesis a major pathway for incorporation of 5S RNA into nascent ribosomes involves the migration of 5S RNA from the nucleus to the cytoplasm for storage in an RNP complex with TFIIIA, exchange of that protein association for binding with ribosomal protein L5, and a return to the nucleus for incorporation into ribosomes as they are being assembled in the amplified nucleoli.  相似文献   

13.
The precise molecular composition of the Xenopus laevis TFIIIA-5S ribosomal RNA complex (7S particle) has been established from small angle neutron and dynamic light scattering. The molecular weight of the particle was found to be 95,700 +/- 10,000 and 86,700 +/- 9000 daltons from these two methods respectively. The observed match point of 54.4% D2O obtained from contrast variation experiments indicates a 1:1 molar ratio. It is concluded that only a single molecule of TFIIIA, a zinc-finger protein, and of 5S RNA are present in this complex. At high neutron scattering contrast radius of gyration of 42.3 +/- 2 A was found for the 7S particle. In addition a diffusion coefficient of 4.4 x 10(-11) [m2 s-1] and a sedimentation coefficient of 6.2S were determined. The hydrodynamic radius obtained for the 7S particle is 48 +/- 5 A. A simple elongated cylindrical model with dimensions of 140 A length and 59 A diameter is compatible with the neutron results. A globular model can be excluded by the shallow nature of the neutron scattering curves. It is proposed that the observed difference of 15 A in length between the 7S particle and isolated 5S RNA most likely indicates that part(s) of the protein protrudes from the end(s) of the RNA molecule. There is no biochemical evidence for any gross alteration in 5S RNA conformation upon binding to TFIIIA.  相似文献   

14.
15.
K E Joho  M K Darby  E T Crawford  D D Brown 《Cell》1990,61(2):293-300
A 5S RNA binding protein (p43) in Xenopus is a major constituent of oocytes and comprises part of a 42S ribonucleoprotein storage particle. We have cloned and sequenced p43 cDNA from X. laevis and X. borealis as well as the cDNA for X. borealis TFIIIA. Like TFIIIA, p43 has nine zinc fingers, seven of which are exactly the same size as their counterparts in TFIIIA. Amino acid homology between the two proteins is restricted mainly to conserved residues characteristic of zinc fingers. In contrast to TFIIIA, which binds specifically to both 5S RNA and 5S RNA genes, p43 binds exclusively to 5S RNA.  相似文献   

16.
We have developed a modification of in situ hybridization at the electron microscope level that permits simultaneous detection of at least two sequences. Probes are labelled with either biotin or AAF and detected with two distinct sizes of colloidal gold. This protocol has been applied to map the positions of Xenopus laevis oocyte-type 5S genes relative to ribosomal precursor genes in several independently derived cell lines. The results for the line TRXO, which expresses some oocyte 5S RNA, indicate that this inappropriate expression is not due to translocation from telomeric sites into the nucleolus organizer, as previously hypothesized. In addition we found that four other Xenopus cell lines, none of which express these genes, also contain distinct 5S oocyte translocations. These results suggest that an alteration in chromosome position is insufficient to result in gene activation and that sequences which are telomeric-proximal are exceptionally prone to translocation.  相似文献   

17.
Sequences for 5S RNA from somatic cells and oocytes of Xenopus mulleri are presented. Comparison with sequences previously given for Xenopus laevis indicates that the somatic 5S RNA genes of each species are more closely related to each other than either is to its own set of oocyte genes, suggesting that somatic and oocyte genes within each species are evolving independently. However, detailed analysis of sequence variants in each species suggests that there is a mechanism which allows occasional genetic exchanges between somatic and oocyte-specific genes. Possible genetic mechanisms which allow such an exchange are discussed.  相似文献   

18.
T T?nnesen 《Cytobiologie》1978,16(3):451-479
In the present communication a characterization of the 5 S rRNA genes and the tRNA genes of Tetrahymena pyriformis has been performed. The number of 5 S rRNA and tRNA genes in the macromolecular DNA has been established. Furthermore no sequence homology is observed for these genes. The number of both types of genes does not change significantly under starvation conditions. The genomic organization of the 5 S rRNA and tRNA genes has been investigated. From in vivo replication studies it is concluded, that replication of both 5 S rRNA and tRNA genes takes place throughout the whole S-period.  相似文献   

19.
We discovered that gene clusters of 45S ribosomal RNA in Xenopus hybrid frogs are maternally imprinted, similar to X chromosome inactivation in marsupial females. Paternal expression was partly restored after chemical inhibition of histone deacetylation during larval stages. This provides a new spectacular example of epigenetic silencing and first evidence of genomic imprinting in amphibians.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号