首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Neubauer  H Sauer  G Valet 《Blut》1987,55(5):433-445
Human bone marrow cells from 20 patients as well as the permanent human B-cell lines RPMI 1788, Raji, Daudi, T-cell lines Molt, CEM, Jurkat and the promyelocytic line HL 60 were assayed by means of a newly developed in vitro flow cytometric cytostatic drug assay. The cells were exposed to cytosine-arabinoside, L-asparaginase, daunorubicin, prednisone or vincristine. Surviving cells were stained after an incubation period of 2 to 7 days with esterase and pH-indicator dye ADB (1,4-diacetoxy-2,3-dicyanobenzene), dead cells with DNA-dye PI (propidium iodide). Dose-response curves were established using percent surviving cells. It was possible to evaluate bone marrow samples from 16 out of 20 patients. Seven samples were leukemic (acute myeloid leukemia (AML) n = 6, Non-Hodgkin's Lymphoma (NHL) n = 1). Nine samples were from patients either in complete remission or with benign diseases. Daunorubicin and cytosine-arabinoside were cytotoxic in both groups, whereas vincristine was effective mainly in the leukemic group (p less than 0.05). There was significant heterogeneity in the reactivity of AML-marrow cells from different patients to different drugs. The cell lines exhibited different patterns of sensitivity. Vincristine arrested cells in G2/M-phase, cytosine-arabinoside caused an increase of cells in the S-phase.  相似文献   

2.
Intracellular pH (pHi) plays an important role in anticancer drug accumulation in cancer cells. Resistant cells often express membrane P-glycoprotein responsible for active drug extrusion and participating in increased pHi. In the present paper, we report on the influence of Na+/H+-exchanger inhibitor, 5'-(N,N-dimethyl)-amiloride (AMI), on the cytotoxic effects of doxorubicin (DOXO) and vincristine (VCR) in the parental CEM, and resistant CEM/DNR and CEM/VCR cell lines. The obtained results revealed a potentiating effect of AMI to both anticancer drugs in parental CEM line. However, AMI did not significantly potentiate the effect of DOXO or VCR in resistant CEM cell lines. We conclude, that inhibition of Na+/H+-exchanger by AMI is not sufficient for reversal of drug resistance in the tested CEM/DNR and CEM/VCR cell lines and the possible change in pHi does not affect the mechanisms of cell resistance.  相似文献   

3.
Detection of adenovirus DNA in human tonsillar T cells in the absence of active virus replication suggests that T cells may be a site of latency or of attenuated virus replication in persistently infected individuals. The lytic replication cycle of Ad5 in permissive epithelial cells (A549) was compared to the behavior of Ad5 in four human T-cell lines, Jurkat, HuT78, CEM, and KE37. All four T-cell lines expressed the integrin coreceptors for Ad2 and Ad5, but only Jurkat and HuT78 express detectable surface levels of the coxsackie adenovirus receptor (CAR). Jurkat and HuT78 cells supported full lytic replication of Ad5, albeit at a level approximately 10% of that of A549, while CAR-transduced CEM and KE37 cells (CEM-CARhi and KE37-CARhi, respectively) produced no detectable virus following infection. All four T-cell lines bind and internalize fluorescently labeled virus. In A549, Jurkat, and HuT78 cells, viral proteins were detected in 95% of cells. In contrast, only a small subpopulation of CEM-CARhi and KE37-CARhi cells contained detectable viral proteins. Interestingly, Jurkat and HuT78 cells synthesize four to six times more copies of viral DNA per cell than did A549 cells, indicating that these cells produce infectious virions with much lower efficiency than A549. Similarly, CEM-CARhi and KE37-CARhi cells, which produce no detectable infectious virus, synthesize three times more viral genomes per cell than A549. The observed blocks to adenovirus gene expression and replication in all four human T-cell lines may contribute to the maintenance of naturally occurring persistent adenovirus infections in human T cells.  相似文献   

4.
The viral infectivity factor gene vif of human immunodeficiency virus type 1 has been shown to affect the infectivity but not the production of virus particles. In this study, the effect of vif in the context of the HXB2 virus on virus replication in several CD4+ T-cell lines was investigated. vif was found to be required for replication in the CD4+ T-cell lines CEM and H9 as well as in peripheral blood T lymphocytes. vif was not required for replication in the SupT1, C8166, and Jurkat T-cell lines. The infectivity of vif-defective viruses depended on the cell type in which the virus was produced. In CEM cells, vif was required for production of virus capable of initiating infection in all cell lines studied. vif-defective virus produced by SupT1, C8166, and Jurkat cells and the monkey cell line COS-1 could initiate infection in multiple cell lines, including CEM and H9. These results suggest that vif can compensate for cellular factors required for production of infectious virus particles that are present in some cell lines such as SupT1, C8166, and Jurkat but are absent in others such as CEM and H9 as well as peripheral blood T lymphocytes. The effect of vif was not altered by deletion of the carboxyl terminus of gp41, a proposed target for vif (B. Guy, M. Geist, K. Dott, D. Spehner, M.-P. Kieny, and J.-P. Lecocq, J. Virol. 65:1325-1331, 1991). These studies demonstrate that vif enhances viral infectivity during virus production and also suggest that vif is likely to be important for natural infections.  相似文献   

5.
Cells that acquire multidrug resistance (MDR) are characterized by a decreased accumulation of a variety of drugs. In addition, sequestration of drugs in intracellular vesicles has often been associated with MDR. However, the nature and role of intracellular vesicles in MDR are unclear. We addressed the relationship between MDR and vesicular anthracycline accumulation in the erythroleukemia cell line K562 and a drug-resistant counterpart K562/ADR that overexpresses P-glycoprotein. We used four anthracyclines (all of which are P-glycoprotein substrates): daunorubicin and idarubicin, which have good affinity for DNA and as weak bases can accumulate inside acidic compartments; hydroxyrubicin, which binds to DNA but is uncharged at physiological or acidic pH and thus cannot accumulate in acidic compartments; and WP900, an enantiomer of daunorubicin, which is a weak DNA binder but has the same pKa and lipophilicity as daunorubicin. The intrinsic fluorescence of anthracyclines allowed us to use macro- and micro-spectrofluorescence, flow cytometry, and confocal microscopy to characterize their nuclear or intravesicular accumulation in living cells. We found that vesicular accumulation of daunorubicin, WP900 and idarubicin, containing a basic 3'-amine was predominantly restricted to lysosomes in both cell lines, that pH regulation of acidic compartments was not defective in human K562 cells, and that vesicular drug accumulation was much more pronounced in the parental tumor cell line than in the multidrug-resistant cells. These results indicate that vesicular anthracycline sequestration does not contribute to the diminished sensitivity to anthracyclines in multidrug-resistant K562 cells.  相似文献   

6.
We have previously characterized the effects of 2,6-diisopropylphenyl–docosahexaenoamide (DIP–DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP–DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP–DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP–DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP–DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP–DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP–DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.  相似文献   

7.
Cirsiliol and AA861, specific arachidonate 5-lipoxygenase inhibitors, showed potent antiproliferative effects on human leukemic cell lines K562, Molt4B and HL60. On the other hand, HeLa cells were not affected by these drugs. In the inhibitor treated and growth retarded leukemia cells, the rates of synthesis of DNA, RNA and protein were markedly decreased. These results suggested that arachidonate 5-lipoxygenase or leukotrienes would play essential roles in cellular functions of leukemic cells.  相似文献   

8.
Summary Pokeweed mitogen (PWM) and ricin are both lectins derived from plant seeds. They are glycoproteins and share the ability to agglutinate a variety of animal cells including erythrocytes. The effect of these two lectins on protein synthesis was studied in four longterm lymphoblastoid lines (8866 and GM1531, which are B cell lines; and CCRF/CEM and MOLT 4, which are T-cell lines). Ricin (50 μg/ml) completely inhibited protein synthesis by 2 hr in both B-cell and T-cell lines as measured by the uptake to [3H]leucine. The PWM appeared more specific and at a concentration of 500 μg/ml inhibited protein synthesis only in B-cell lines (8866 and GM 1531). This effect was maximal at 5 hr. To investigate the reason for the differential effect of PWM on T and B cells,125I-labeled PWM was incubated with 8866, MOLT 4, and CCRF/CEM to see if a significant difference in binding to B cells and T cells could be demonstrated. It does not appear that the differential effect on T and B cells is due to a difference in the amount of PWM bound. On the other hand it is possible that the B cells may bind some toxic subcomponent of the PWM preparation that the T cells do not bind because of a difference in composition or arrangement of cell surface glycoproteins.  相似文献   

9.
10.
The sequestration of drugs away from cellular target sites into cytoplasmic organelles of multidrug-resistant (MDR) cancer cells has been recently shown to be a cause for ineffective drug therapy. This process is poorly understood despite the fact that it has been observed in a large number of MDR cancer cell lines. Analysis of drug sequestration in these cells has traditionally been done using fluorescent anthracycline antibiotics (i.e. daunorubicin, doxorubicin). This narrow selection of substrates has resulted in a limited understanding of sequestration mechanisms and the intracellular compartments that are involved. To better characterize this phenotype, we chose to examine the sequestration of molecules having different acid/base properties in the MDR HL-60 human leukemic cell line. Here we show that weakly basic drug daunorubicin is sequestered into lysosomes according to a pH partitioning type mechanism, whereas sulforhodamime 101, a zwitterionic molecule, is sequestered into the Golgi apparatus through a drug transporter-mediated process. Quantitative intracellular pH measurements reveal that the lysosome-tocytosol pH gradient is expanded in the MDR line. Moreover, the MDR cells overexpress the multidrug resistance-related protein (MRP1), which is localized to the Golgi apparatus. These results demonstrate, for the first time, that two distinct mechanisms for intracellular compartmentalization are operational in a single MDR cell line.  相似文献   

11.
The outer nuclear membrane, endoplasmic reticulum, and mitochondrial membrane ion channels are poorly understood, although they are important in the control of compartmental calcium levels, cell division, and apoptosis. Few direct recordings of these ion channels have been made because of the difficulty of accessing these intracellular membranes. Using patch-clamp techniques on isolated nuclei, we measured distinct ion channel classes on the outer nuclear envelope of T-cell (human Jurkat) and BFL5 cell (murine promyelocyte) lines. We first imaged the nuclear envelopes of both Jurkat and FL5 cells with atomic force microscopy to determine the density of pore proteins. The nuclear pore complex was intact at roughly similar densities in both cell types. In patch-clamp recordings of Jurkat nuclear membranes, Cl channels (105 +/- 5 pS) predominated and inactivated with negative pipette potentials. Nucleotides transiently inhibited the anion channel. In contrast, FL5 nuclear channels were cation selective (52 +/- 2 pS), were inactivated with positive membrane potentials, and were insensitive to GTPgammaS applied to the bath. We hypothesize that T- and B-cell nuclear membrane channels are distinct, and that this is perhaps related to their unique roles in the immune system.  相似文献   

12.
Multidrug resistance (MDR) mediated by the over expression of drug efflux protein P-glycoprotein (P-gp) is one of the major impediments to successful treatment of cancer. P-gp acts as an energy-dependent drug efflux pump and reduces the intracellular concentration of structurally unrelated drugs inside the cells. Therefore, there is an urgent need for development of new molecules that are less toxic to normal cell and preferentially effective against drug resistant malignant cells. In this preclinical study we report the apoptotic potential of copper N-(2-hydroxyacetophenone) glycinate (CuNG) on doxorubicin resistant T lymphoblastic leukaemia cells (CEM/ADR5000). To evaluate the cytotoxic effect of CuNG, we used different normal cell lines (NIH 3T3, Chang liver and human PBMC) and cancerous cell lines (CEM/ADR5000, parental sensitive CCRF-CEM, SiHa and 3LL) and conclude that CuNG preferentially kills cancerous cells, especially both leukemic cell types irrespective of their MDR status, while leaving normal cell totally unaffected. Moreover, CuNG involves reactive oxygen species (ROS) for induction of apoptosis in CEM/ADR5000 cells through the intrinsic apoptotic pathway. This is substantiated by our observation that antioxidant N-acetyle-cysteine (NAC) and PEG catalase could completely block ROS generation and, subsequently, abrogates CuNG induced apoptosis. On the other hand, uncomplexed ligand N-(2-hydroxyacetophenone) glycinate (NG) fails to generate a significant amount of ROS and concomitant induction of apoptosis in CEM/ADR5000 cells. Therefore, CuNG induces drug resistant leukemia cells to undergo apoptosis and proves to be a molecule having therapeutic potential to overcome MDR in cancer.  相似文献   

13.
We investigated the mode of cell death induced by the anthracyclines, aclarubicin, doxorubicin and daunorubicin in the human leukemia cell lines, HL60 and Jurkat. The cells were incubated with drug concentrations up to 500 nM for periods between 3 and 24 hours, followed by morphological and biochemical analyses. All three substances induced DNA fragmentation, evident as DNA laddering and appearance of cells with hypodiploid DNA content, externalisation of phosphatidyl serine, activation of caspases and degradation of the apoptosis-specific endonuclease inhibitor DFF45. However, concentrations and times necessary for these effects to occur were different, aclarubicin being the quickest acting drug with a lag phase of 3 h, followed by daunorubicin with 6 h and doxorubicin with 24 h. More importantly, aclarubicin induced these effects while the cell membrane was intact, whereas doxorubicin and daunorubicin led to immediate loss of membrane integrity. Programmed cell death is characterised by preservation of membrane integrity in order to allow removal of apoptotic bodies, whereas cell rupture is an early event in necrosis. We therefore suggest that, in our experimental settings, doxorubicin- and daunorubicin-induced cell death occurs by necrosis, while aclarubicin induces programmed cell death.  相似文献   

14.
30 surgical specimens of patients with non-small cell lung carcinomas (NSCLC) were investigated. Significant increases of intracellular pH values in epithelial and inflammatory cells, in the percentage of dead epithelial and inflammatory cells and in the cell volume of vital inflammatory cells in cancerous lung tissue were encountered. Furthermore, decreases of the esterase activity of vital epithelial cells and of the percentage of free cell nuclei were observed. The DNA aneuploidy in 36.6% of the tumours was frequently associated with non-squamous cell carcinomas and stage II, III, IV tumours. Patients with DNA aneuploid tumours had a significantly shorter survival rate than those with DNA euploid tumours. Within the different tumour stages a similar tendency was observed which was, however, only significant in stage III tumour patients. Stage III tumours constitute therefore a heterogeneous entity with a worse prognosis for DNA aneuploid tumour patients. The intracellular pH values and esterase activity as well as the cell volume, the percentage of free cell nuclei and dead inflammatory or epithelial cells contained no significant prognostic information.  相似文献   

15.
16.
The Pseudomonas aeruginosa quorum-sensing signal molecule N-3-oxododecanoyl)-L-homoserine lactone (OdDHL) has been reported to affect the function of a wide range of mammalian cell types, including cells of the immune system. In T cells, it has been reported to inhibit the production of most cytokines, and it has been reported to inhibit the function of antigen-presenting cells. The intracellular target of OdDHL in these cells remains to be identified, although the lipophilic nature of the molecule suggested that the target could be membrane associated. We explored the association of radiolabelled OdDHL with the membrane and cytoplasm of Jurkat T-cell lines and of primary murine T cells and dendritic cells. We found that not only did 3H-OdDHL enter the cytoplasm of Jurkat cells without disproportionate association with the cell membrane, it also reached maximum levels in the cytoplasm very quickly, and that the intracellular concentration was proportional to the extracellular concentration. Similar results were obtained when 3H-OdDHL was incubated with primary murine T cells or cultured dendritic cells. In addition, we show that the cellular distribution of OdDHL does not significantly alter after stimulation of Jurkat cells or primary murine CD4 T cells with immobilized anti-CD3, with little activity being associated with nuclear fractions. Together, these data strongly suggest that OdDHL enters mammalian cells by passive mechanisms, and that it does not preferentially associate with the membrane or nucleus upon T-cell receptor ligation.  相似文献   

17.
The induction of differentiation in human malignant T-lymphoblastic cell lines MOLT-3 and Jurkat by the tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA) was examined using the monoclonal antibodies OKT3, OKT4, OKT6, and OKT8 which are known to react with human T-cell differentiation antigens. It was found that in the presence of nanomolar concentrations of TPA the proportion of OKT3+ (mature T-cell marker) cells increased while the proportion of OKT4+, OKT6+, and OKT8+ (relatively immature T-cell markers) cells decreased. These changes in the distribution of the OKT antigens in MOLT-3 cells were found to be more prominent with MOLT-3 cells than when the Jurkat cells were used. In studies using a double labeling approach it was found that although the OKT3+ and E-rosette-positive (E+) cells appeared to belong to the same subpopulations of MOLT-3 cells, the OKT3 antigen was probably not related to the receptor for sheep erythrocytes because adsorption of the OKT3 antibody did not block E-rosette formation. Studies using the DNA synthesis inhibitor, arabinosylcytidine (ara-C) also indicate that DNA synthesis was not required for the induction of more mature T-cell antigens in the malignant T-cell lines by TPA. These studies, taken together with our earlier reports, support the conclusion that namomolar concentrations of TPA can induce differentiation in these malignant T-cell lines. Furthermore we have shown that the T-cell hybridoma antibodies are useful markers to detect differentiation changes in human T cells.  相似文献   

18.
In order to enhance the cytotoxicity of ara-C in the HL60 cell line the following deoxynucleoside analogs were used: cladribine, fludarabine and gemcitabine. HL60 cells were co-incubated with ara-C and each of the modulators at the ratios of their respective IC50s. Cytotoxicity was determined with the MTT-assay and drug interactions were evaluated with the combination index (CI) method (Calcusyn; Chou & Talalay). CI < 1, CI +/- 1 and > 1 indicate synergism, additive effect and antagonism, respectively. We observed moderate synergism between ara-C/cladribine and ara-C/gemcitabine, with CIs of 0.76 +/- 0.14 and 0.82 +/- 0.04, respectively. The interaction between ara-C/fludarabine resulted in moderate antagonism (CI = 1.29 +/- 0.11). In conclusion, in this in vitro study we showed that the cytotoxicity of ara-C can be succesfully modulated in the HL60 cell line by cladribine and gemcitabine.  相似文献   

19.
Cancer cells escape cytotoxic effects of anticancer drugs by a process known as multidrug resistance (MDR). Identification of cell status by less time-consuming methods can be extremely useful in patient management and treatment. This study aims at evaluating the potentials of vibrational spectroscopic methods to perform cell typing and to differentiate between sensitive and resistant human cancer cell lines, in particular those that exhibit the MDR phenotype. Micro-Raman and Fourier transform infrared (FTIR) spectra have been acquired from the sensitive promyelocytic HL60 leukemia cell line and two of its subclones resistant to doxorubicin (HL60/DOX) and daunorubicin (HL60/DNR), and from the sensitive MCF7 breast cancer cell line and its MDR counterpart resistant to verapamil (MCF7/VP). Principal components analysis (PCA) was employed for spectral comparison and classification. Our data show that cell typing was feasible with both methods, giving two distinct clusters for HL60- and MCF7-sensitive cells. In addition, phenotyping of HL60 cells, i.e., discriminating between the sensitive and MDR phenotypes, was attempted by both methods. FTIR could not only delineate between the sensitive and resistant HL60 cells, but also gave two distinct clusters for the resistant cells, which required a two-step procedure with Raman spectra. In the case of MCF7 cell lines, both the sensitive and resistant phenotypes could be differentiated very efficiently by PCA analysis of their FTIR and Raman point spectra. These results indicate the prospective applicability of FTIR and micro-Raman approaches in the differentiation of cell types as well as characterization of the cell status, such as the MDR phenotype exhibited in resistant leukemia cell lines like HL60 and MCF7.  相似文献   

20.
Deoxycytidine kinase (dC kinase) is the rate-limiting enzyme in the anabolism of important anticancer and retroviral nucleoside derivatives. Its activity is often decreased in resistance to these drugs. To analyze the structure, function, and control of this clinically important enzyme we isolated 15 cDNA clones for human deoxycytidine kinase from lambda gt11 thymus and Molt 4 libraries. Four clones were sequenced. The largest clone is 2.9 kilobases and codes for a 626-amino acid open reading frame. The DNA and deduced amino acid sequence of the human dC kinase clones are homologous with a previously unidentified murine cDNA clone p3.4J (EMBL:MM34j) reported to be related to granulocyte-macrophage colony-stimulating factor. Deoxycytidine kinase also has cysteine-rich regions that are homologous with thioredoxin, the beta subunit of prolyl 4-hydroxylase, phosphoinositide-specific phospholipase C, thyroid hormone-binding protein, and protein disulfide isomerase. No differences were seen in the amount and size of deoxycytidine kinase protein and mRNA between CCRF/CEM and L1210 leukemic cell lines that express and do not express enzyme activity. Genomic restriction fragments were similar between the active and inactive CCRF/CEM cell lines. These data suggest that the cells deficient in dC kinase activity have a small defect in the structural gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号