首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physicochemical and biological water quality, including the microcystin concentration, was investigated from spring to autumn 1999 in the Daechung Reservoir, Korea. The dominant genus in the cyanobacterial blooming season was Microcystis. The microcystin concentration in particulate form increased dramatically from August up to a level of 200 ng liter−1 in early October and thereafter tended to decrease. The microcystin concentration in dissolved form was about 28% of that of the particulate form. The microcystins detected using a protein phosphatase (PP) inhibition assay were highly correlated with those microcystins detected by a high-performance liquid chromatograph (r = 0.973; P < 0.01). Therefore, the effectiveness of a PP inhibition assay for microcystin detection in a high number of water samples was confirmed as easy, quick, and convenient. The microcystin concentration was highly correlated with the phytoplankton number (r = 0.650; P < 0.01) and chlorophyll-a concentration (r = 0.591; P < 0.01). When the microcystin concentration exceeded about 100 ng liter−1, the ratio of particulate to dissolved total nitrogen (TN) or total phosphorus (TP) converged at a value of 0.6. Furthermore, the microcystin concentration was lower than 50 ng liter−1 at a particulate N/P ratio below 8, whereas the microcystin concentration varied quite substantially from 50 to 240 ng liter−1 at a particulate N/P ratio of >8. Therefore, it seems that the microcystin concentration in water can be estimated and indirectly monitored by analyzing the following: the phytoplankton number and chlorophyll-a concentration, the ratio of the particulate and the dissolved forms of N and P, and the particulate N/P ratio when the dominant genus is toxigenic Microcystis.  相似文献   

2.
Excessive anthropogenic nitrogen (N) and phosphorus (P) inputs have caused an alarming increase in harmful cyanobacterial blooms, threatening sustainability of lakes and reservoirs worldwide. Hypertrophic Lake Taihu, China’s third largest freshwater lake, typifies this predicament, with toxic blooms of the non-N2 fixing cyanobacteria Microcystis spp. dominating from spring through fall. Previous studies indicate N and P reductions are needed to reduce bloom magnitude and duration. However, N reductions may encourage replacement of non-N2 fixing with N2 fixing cyanobacteria. This potentially counterproductive scenario was evaluated using replicate, large (1000 L), in-lake mesocosms during summer bloom periods. N+P additions led to maximum phytoplankton production. Phosphorus enrichment, which promoted N limitation, resulted in increases in N2 fixing taxa (Anabaena spp.), but it did not lead to significant replacement of non-N2 fixing with N2 fixing cyanobacteria, and N2 fixation rates remained ecologically insignificant. Furthermore, P enrichment failed to increase phytoplankton production relative to controls, indicating that N was the most limiting nutrient throughout this period. We propose that Microcystis spp. and other non-N2 fixing genera can maintain dominance in this shallow, highly turbid, nutrient-enriched lake by outcompeting N2 fixing taxa for existing sources of N and P stored and cycled in the lake. To bring Taihu and other hypertrophic systems below the bloom threshold, both N and P reductions will be needed until the legacy of high N and P loading and sediment nutrient storage in these systems is depleted. At that point, a more exclusive focus on P reductions may be feasible.  相似文献   

3.
任辉  田恬  杨宇峰  王庆 《生态学报》2017,37(22):7729-7740
随着城市生态健康理念的提出,城市河涌生态健康也受到了前所未有的关注。为更好的了解河涌的水环境和浮游植物现状,于2015年3月至2016年2月对珠江口南沙河涌8个站位水环境和浮游植物群落结构进行调查。结果显示:共发现浮游植物164种(属),隶属7门73属,其中以绿藻种类最多,达33属79种,占48.17%;硅藻次之,17属41种,占25%。优势种为梅尼小环藻(Cyclotella meneghiniana)、假鱼腥藻属(Pseudanabaena sp.)和小球藻(Chlorella vulgaris)。浮游植物细胞密度在0.19×10~6—101.34×10~6个/L内变动,呈现单峰型,在4月发生拟菱形弓形藻(Schroederia nitzschioides)水华,14涌密度高达87.38×10~6个/L,随后因强降雨细胞密度骤降。浮游植物群落的季节演替基本符合PEG(Plankton Ecology Group)模型,从冬季的硅藻,到春夏季的绿藻,再到秋季的蓝藻。One-way ANOVA分析显示,各月份浮游植物细胞密度差异显著(P0.01)。Pearson相关性分析表明绿藻细胞丰度变化主导着浮游植物总丰度的变化(r=0.454,P0.01)。运用Margalef物种丰富度指数、Shannon物种多样性指数、Pielou均匀度指数对水体进行评价表明,调查水体呈中度污染。相关加权营养状态指数表明,河涌全年处于富营养化状态。浮游植物聚类分析表明,时间异质性较高,总体相似性较低;空间上相似性较高,人为活动可能是导致空间差异的关键因子。冗余分析显示,叶绿素a、溶解氧、盐度、水温、总氮和p H与浮游植物群落结构关系最为密切。p H对硅藻门浮游植物影响较大,碱性条件适宜直链藻生长,春季水华形成的驱动因子是盐度、温度和总氮。  相似文献   

4.
A two-dimensional microscale (5 cm resolution) sampler was used over the course of a phytoplankton spring bloom dominated by Phaeocystis globosa to investigate the structural properties of chlorophyll a and seawater excess viscosity distributions. The microscale distribution patterns of chlorophyll a and excess viscosity were never uniform nor random. Instead they exhibited different types and levels of aggregated spatial patterns that were related to the dynamics of the bloom. The chlorophyll a and seawater viscosity correlation patterns were also controlled by the dynamics of the bloom with positive and negative correlations before and after the formation of foam in the turbulent surf zone. The ecological relevance and implications of the observed patchiness and biologically induced increase in seawater viscosity are discussed and the combination of the enlarged colonial form and mucus secretion is suggested as a competitive advantage of P. globosa in highly turbulent environments where this species flourishes.  相似文献   

5.
Environmental factors, including water parameters were correlated with assemblages of shell and finfish post-larvae and juveniles in the 5 rivers of Sundarbans mangrove for 2 years, located in the south-west of Bangladesh. Fifteen species of shellfish belonging to 6 families and 37 species of finfish belonging to 27 families were recorded. Four species of shrimp (Metapenaeus monoceros, M. brevicornis, Macrobrachium villosimanus and Acetes spp.) and megalopa of crabs (79.3–96.83%), and 4 species of finfish (Panchax melastigma, Liza parsia, L. tade and Gobidae) (40–76%) were the most abundant species. Significant (p<0.05) inter-month variations in temperature, transparency and chlorophyll-a; inter-month and inter-river variations in salinity, conductivity and TDS were observed in the Sundarbans water. Ordination on correlation coefficients between temperature and salinity with the abundance of dominant species showed that Acetes spp. and Gobidae were abundant in high salinity and high temperature areas; Stolephorus tri in low salinity and high temperature areas; Macrobrachiun villosimanus, Leiognathus spp. and Liza tade in low salinity and low temperature areas, however, other species showed variations among 2 years of study. Out of 7 dominant shellfishes, 4 species showed positive correlation to temperature, pH and TDS; 3 species to salinity, transparency, conductivity and chlorophyll-a in the river water. Among 8 dominant fish species, 4 species were found to positively correlate with temperature and pH; 3 with salinity, conductivity and chlorophyll-a; 6 with transparency and 5 species showed positive correlation to TDS in Sundarbans water. Abundance of Penaeus monodon also showed positive correlation to observed water parameters except chlorophyll-a.  相似文献   

6.
Based on 388 parallel data of phytoplankton biomass and chlorophyll-a of two shallow lakes and two ponds, the following results were obtained:
  1. Relative chlorophyll-a content of phytoplankton biomass varied between 0.08–1.88%; chlorophyll-a concentration showed great differences among lakes.
  2. Significant correlations (r = 0.68–0.92) were established between phytoplankton biomass and chlorophyll-a concentration. The regression in the artificial ponds was non-linear.
  3. In parallel with the increase of average cell volume, a decrease in relative chlorophyll-a content was observed. A significant correlation (r = + 0.83) between the two variables was found. Relative chlorophyll-a content of phytoplankton is a log-function of average cell volume.
  相似文献   

7.
Succession of phytoplankton in a deep stratifying lake: Mondsee,Austria   总被引:6,自引:6,他引:0  
Phytoplankton numbers, biovolume, chlorophyll-a and various physico-chemical characteristics were followed at weekly intervals in Mondsee, Austria during the year 1982. Secchi-disk transparency varied from 10 m in winter to 2 m in September. Prior to the onset of stratification phosphate-phosphorus concentration was 4 µg 1–1 decreasing to undetectable values thereafter. Nitrate-nitrogen dropped from 590 µg 1–1 to about 100 µg 1–1 during the same time. The vernal bloom was dominated by Asterionella formosa Hass. which abruptly declined after silicon depletion. Spring growth ceased in early June, when Tabellaria flocculosa (Lyngb.) Kütz var. asterionelloides Grun. dominated. Oscillatoria rubescens D.C. and Microcystis aeruginosa Kütz. dominated summer and early autumn followed by the chrysophyte Dinobryon divergens Imh. and D. sociale Ehr. which formed up to 69% of total biovolume in October. Thereafter diatoms and Cryptophyceae (Rhodomonas lacustris Pascher and Ruttner, Cryptomonas pusilla Bach.) became abundant again.Maximum chlorophyll-a concentration in the epilimnion (16 µg 1–1) was reached during spring growth of the diatoms. During summer higher chlorophyll-a levels were always associated with the metalimnetic layer of Oscillatoria.Compared with earlier studies, both the total biovolume and the share of Oscillatoria rubescens significantly decreased because of reduced nutrient loading of the lake and wash-out of Oscillatoria (theor. renewal time of the lake: 1.7 years).  相似文献   

8.
During the summer months of 1974–1985 chlorophyll-a and total P concentration, biomass of Daphnia hyalina, smelt Osmerus eperlanus, bream Abramis brema and pikeperch Stizostedion lucioperca, water temperature and water intake from lake IJsselmeer were monitored in Tjeukemeer. During this period there were manipulations with the bream and pikeperch stocks as a consequence of the termination of a gill-net fishery in 1977, and larval smelt immigrated each year from the large lake IJsselmeer and contributed largely to the yearly smelt recruitment.The correlation matrix of the nine variables mentioned above showed a positive correlation between bream and chlorophyll-a, but surprisingly a negative one between smelt and chlorophyll-a. The latter can only be explained when smelt is the dependent variable. In a multi-linear regression there was a negative effect of temperature, chlorophyll a and pikeperch on smelt and a positive effect of water intake. Daphnia hyalina was negatively influenced by the biomass of smelt and the water intake of lake IJsselmeer. The positive relation of Daphnia hyalina and chlorophyll-a was probably related to better survival chances of D. hyalina in an Oscillatoria-rich environment when smelt is the most important predator. An increasing biomass of bream coincided with higher total-P levels and probably contributed to higher chlorophyll-a levels.  相似文献   

9.
Vast areas of southern Chile are now covered by second-growth forests because of fire and logging. To study successional patterns after moderate-intensity, anthropogenic fire disturbance, we assessed differences in soil properties and N fluxes across a chronosequence of seven successional stands (2–130 years old). We examined current predictions of successional theory concerning changes in the N cycle in forest ecosystems. Seasonal fluctuations of net N mineralization (Nmin) in surface soil and N availability (Na; Na=NH 4 + –N+NO 3 –N) in upper and deep soil horizons were positively correlated with monthly precipitation. In accordance with theoretical predictions, stand age was positively, but weakly related to both Na (r 2=0.282, P<0.001) and total N (Ntot; r 2=0.192, P<0.01), and negatively related to soil C/N ratios (r 2=0.187, P<0.01) in surface soils. A weak linear increase in soil Nmin (upper plus deep soil horizons) was found across the chronosequence (r 2=0.124, P<0.022). Nmin occurred at modest rates in early successional stands, suggesting that soil disturbance did not impair microbial processes. The relationship between N fixation (Nfix) in the litter layer and stand age best fitted a quadratic model (r 2=0.228, P<0.01). In contrast to documented successional trends for most temperate, tropical and Mediterranean forests, non-symbiotic Nfix in the litter layer is a steady N input to unpolluted southern temperate forests during mid and late succession, which may compensate for hydrological losses of organic N from old-growth ecosystems.  相似文献   

10.
Rapid economic development in China’s Lake Taihu basin during the past four decades has accelerated nitrogen (N) and phosphorus (P) loadings to the lake. This has caused a shift from mesotrophic to hypertrophic conditions, symptomized by harmful cyanobacterial blooms (CyanoHABs). The relationships between phytoplankton biomass as chlorophyll a (Chla) and nutrients as total nitrogen (TN) and total phosphorus (TP) were analyzed using historical data from 1992 to 2012 to link the response of CyanoHAB potential to long-term nutrient changes. Over the twenty year study period, annual mean Chla showed significantly positive correlations with both annual mean TN and TP (P < 0.001), reflecting a strong phytoplankton biomass response to changes in nutrient inputs to the lake. However, phytoplankton biomass responded slowly to annual changes in TN after 2002. There was not a well-defined or significant relationship between spring TN and summertime Chla. The loss of a significant fraction of spring N loading due to denitrification likely weakened this relationship. Bioavailability of both N and P during the summer plays a key role in sustaining cyanobacterial blooms. The frequency of occurrence of bloom level Chla (>20 μg L?1) was compared to TN and TP to determine nutrient-bloom thresholds. A decline in bloom risk is expected if TN remains below 1.0 mg L?1 and TP below 0.08 mg L?1.  相似文献   

11.
Cyanobacteria are commonly used for the phytostimulation and biofertilization of agriculture crops due to their nitrogen-fixing ability. However, the contribution by their phytohormones has been neglected. This study focuses on the screening of rhizospheric and free-living cyanobacteria for in vitro phytohormones production and growth stimulation in wheat. Selected isolates were shown to release cytokinin and indole-3-acetic acid (IAA) by using UPLC coupled with MS/MS via an electrospray interface. The maximum cytokinin and IAA concentration was 22.7 pmol mg−1 ch-a and 38 pmol mg−1 ch-a, respectively, in the culture medium of Chroococcidiopsis sp. Ck4 and Anabaena sp. Ck1. The growth of wheat inoculated with cyanobacterial strains was stimulated under axenic as well as field conditions. Seed germination, shoot length, tillering, number of lateral roots, spike length, and grain weight were significantly enhanced in inoculated plants. The maximum increase in grain weight (43%) was demonstrated in wheat plants inoculated with Chroococcidiopsis sp. Ck4 under natural conditions. Positive linear correlation of cyanobacterial cytokinin with shoot length (r = 0.608; P = 0.01), spike length (r = 0.682; P = 0.01), and grain weight (r = 0.0.869; P = 0.01) was recorded. Similarly, cyanobacterial IAA was correlated with the root growth parameters shoot length (r = 0.588; P = 0.01), spike length (r = 0.0.689; P = 0.01), and weight of seeds (r = 0.480; P = 0.05). The endogenous phytohormones pool of the plant was enhanced significantly as a result of the plant–cyanobacteria association in the rhizosphere. It was concluded that cyanobacterial phytohormones are a major tool for improved growth and yield in wheat.  相似文献   

12.
The impact of nutrient enrichment on the phytoplankton community structure, and particularly cyanobacteria, was studied in a 3-week mesocosm experiment conducted in August 2001 in the Archipelago Sea, a part of the northern Baltic Sea. The factorial design experiment included daily additions of nitrogen (N) and phosphorus (P) at two mass ratios, 1N:1P and 7N:1P, respectively, additions of iron (Fe) and a synthetic chelator, ethylenediaminetetraacetic acid (EDTA). The floating enclosures (400 l) were sampled for analyses of phytoplankton biomass and community structure, phytoplankton primary production, chlorophyll a, nutrients, and hepatotoxins. Chlorophyll a concentration, phytoplankton biomass and primary production increased most in the 7N:1P treatment. The increase was mainly due to an abundant growth of chlorophytes (Dictyosphaerium subsolitarium, Kirchneriella spp., Monoraphidium contortum, and Oocystis spp.), pennate diatoms (especially Nitzschia spp.), dinophytes and the chroococcalean cyanobacterium Synechococcus sp. The nutrient enrichments had no effect on the total biomass of N2-fixing cyanobacteria. Nevertheless, the biomass of Anabaena spp. was highest in the enrichments with a low N/P ratio. Chlorophyll a concentration and total phytoplankton biomass were not affected by Fe or EDTA, but Fe alone had a positive effect on the chlorophyte Kirchneriella sp. The N2-fixing cyanobacteria Aphanizomenon sp. responded positively to Fe alone and to both Fe and EDTA added together. The hepatotoxin concentration increased during the experiment, but no clear responses to nutrient enrichments were found. Our study showed species-specific responses to nutrient enrichments among the N2-fixing cyanobacteria. Although the total phytoplankton production was not Fe-limited; the availability of Fe clearly affected the phytoplankton community structure.  相似文献   

13.
The response of large calanoid, Eucalanus bungii, to environmental fluctuation, particularly in relation to the spring diatom bloom in the Oyashio region, western subarctic Pacific Ocean, was examined by investigating egg production, grazing, development and starvation tolerance. Mean in situ egg production rate increased with ambient chlorophyll-a concentration, ranging from 0 to 47 eggs female−1 d−1, while no diurnal synchronous spawning behavior was observed. Under the spring bloom condition, E. bungii showed prey preference for less mobile and larger-sized prey (≥30 μm ESD) and bloom-forming diatom Thalassiosira spp. accounted for >80% of ingested carbon. In the laboratory, E. bungii was successfully reared from newly hatched nauplii to adult with the diatom, Thalassiosira nordenskioldi, as a food resource. Nauplii newly hatched from eggs reached the adult stage in ca. 150 days (5°C) with a sigmoidal developmental pattern and no sexual difference in development pattern. Starvation experiments indicated that the starved copepodids (C1–C4) became more vulnerable to high temperature with the progression of developmental stage, suggesting that the post-bloom condition with low food availability and increased temperature is harsh for their copepodids. The results of this study in conjunction with previous findings suggest that E. bungii is well adapted to utilize large-sized phytoplankton, such as a bloom-forming diatoms and, therefore, their recruitment processes, including egg production, development and mortality would be strongly affected by the duration and intensity of the spring bloom.  相似文献   

14.
The relative importance of and changes in resource limitation of herbivorous rotifers were assessed during the clear-water phase in the Rímov Reservoir, Czech Republic, using in situ manipulative experiments. Resource limitation was tested experimentally as the difference in population growth rate (Δr) among various experimental treatments on four occasions. The reservoir community of rotifers was exposed to three treatments: (i) control, (ii) diluted and (iii) diluted and fertilized. Significant responses to these experimental manipulations were shown by Synchaeta spp., Polyarthra spp. and Keratella cochlearis. Growth rate was usually highest during the spring rotifer maximum and decreased during the clear water phase. The highest intensity of food limitation (expressed as ‚Chlorophyll-a’ limitation) was found in Synchaeta spp. K. cochlearis had low food limitation during the spring peak, high food limitation during the second experiment and low food limitation, again, during the later experiment. In contrast, Polyarthra spp. had the same Chlorophyll-a limitation throughout the whole experimental period. Linear regression was used to estimate the relative proportion of Δr variability explained by Chlorophyll-a concentration and rotifer density in all of the experiments. Chlorophyll-a concentration explained 89, 97 and 92% of the resource limitation in Synchaeta spp., Polyarthra spp. and K. cochlearis, respectively. The proportion of variability explained by rotifer density-dependent factors was lower: 60% for Synchaeta spp. and 68 % for Polyarthra spp.  相似文献   

15.
鄱阳湖湿地灰化苔草生长季氮磷含量与储量的变化   总被引:1,自引:0,他引:1  
白秀玲  周云凯  王杰华  李文丽 《生态学报》2018,38(13):4752-4760
湿地植物在营养元素生物地球化学循环过程中起着重要作用,研究植物氮磷元素的吸收、分配和积累特征对于正确理解氮磷循环关键过程及其生态作用具有重要意义。基于野外实地观测和室内实验分析,研究了鄱阳湖淡水湿地灰化苔草春草生长季内不同部位生物量、氮磷含量及氮磷储量的动态变化。结果表明:在生长季内,灰化苔草各部位生物量随时间推移而增加,地上部分生物量在各生长期均高于地下部分,地下部分生物量积累速率相对稳定,而地上部分和总体平均积累速率表现为生长前期高于生长后期;各部位氮磷含量经历了先减少再增加的变化过程,其中地上部分氮元素在灰化苔草生长的中后期显著高于地下部分,而磷元素在中前期两者差异更为显著;生物量与氮磷储量均呈显著正相关,是灰化苔草氮磷储量动态变化的主导因子,氮磷元素主要储存在灰化苔草的地上部分;研究期间灰化苔草平均氮磷比介于3.32—3.83之间,按营养限制理论进行判断,氮元素可能是灰化苔草生长的限制性营养因子。  相似文献   

16.
Lipid peroxidation and decrease in chlorophyll-a and chlorophyll-b content in Scenedesmus cells was followed in the course of time. Addition of diquat to the algae in the light causes lipid peroxidation and a decrease in chlorophyll content. This decrease is mainly due to chlorophyll-a, the concentration of chlorophyll-b remains more or less constant during the experiment. In the presence of N′-(3,4-dichlorophenyl)-NN-dimethylurea (DCMU), of cysteine, or during nitrogen-flushing of the algal suspension, the lipid peroxidation caused by diquat is strongly suppressed. The decrease in chlorophyll-a content caused by diquat is somewhat smaller in the presence of DCMU or during nitrogen-flushing than with diquat alone, but is not influenced by cysteine. The chemical antioxidant butylated hydroxytoluene does not affect lipid peroxidation and chlorophyll destruction caused by diquat.  相似文献   

17.
Liposomal dispersions in water were used as a tool to study photo-oxidation of chlorophyll-a and photo-oxidation of unsaturated lipids at 1 or 4°C. The presence of monogalactosyl diglyceride stimulated chlorophyll-a degradation. In addition the level of linolenic acid was decreased in liposomal dispersions containing chlorophyll-a, dipalmitoyl phosphatidyl choline, and monogalactosyl diglyceride, indicating that monogalactosyl diglyceride and chlorophyll-a were coupled in the preparations. In liposomal dispersions containing equal (molar) quantities of a-tocopherol, monogalactosyl diglyceride, and chlorophyll-a, a-tocopherol fully protected linolenic acid against photo-oxidative degradation, while chlorophyll-a degradation was only slightly reduced. In liposomal preparations containing a-tocopherol, chlorophyll-a and phosphatidyl choline, a-tocopherol catalyzed degradation of chlorophyll-a. Absorption spectra of the liposomal dispersions showed that the presence of a-tocopherol caused increased absorption in red light, which was attributed to structural changes in the liposomal preparations and thus could explain the noted effects. Tocopherol itself was rapidly degraded in chlorophyll-a containing liposomal preparations. Complex formation between chlorophyll-a and monogalactosyl diglyceride in chloroplasts is suggested and protection by a-tocopherol against photo-oxidation in chilling-sensitive plants; a suggestion which is founded on the similarities that exist between chloroplast preparations and liposomal preparations containing chlorophyll-a and monogalactosyl diglyceride as regards photo-oxidative degradation of chlorophyll-a, a-tocopherol and linolenic acid.  相似文献   

18.
The spatial-temporal distribution of a dinoflagellate bloom dominated or co-dominated by Prorocentrum minimum was examined during autumn through early spring in a warm temperate, eutrophic estuary. The developing bloom was first detected from a web-based alert provided by a network of real-time remote monitoring (RTRM) platforms indicating elevated dissolved oxygen and pH levels in upper reaches of the estuary. RTRM data were used to augment shipboard sampling, allowing for an in-depth characterization of bloom initiation, development, movement, and dissipation. Prolonged drought conditions leading to elevated salinities, and relatively high nutrient concentrations from upstream inputs and other sources, likely pre-disposed the upper estuary for bloom development. Over a 7-month period (October 2001–April 2002), the bloom moved toward the northern shore of the mesohaline estuary, intensified under favorable conditions, and finally dissipated after a major storm. Bloom location and transport were influenced by prevailing wind structure and periods of elevated rainfall. Chlorophyll a within bloom areas averaged 106 ± 13 μg L−1 (mean ± 1 S.E.; maximum, 803 μg L−1), in comparison to 20 ± 1 μg L−1 outside the bloom. There were significant positive relationships between dinoflagellate abundance and TN and TP. Ammonium, NO3, and SRP concentrations did not decrease within the main bloom, suggesting that upstream inputs and other sources provided nutrient-replete conditions. In addition, PAM fluorometric measurements (09:00–13:00 h) of maximal PSII quantum yield (Fv/Fm) were consistently 0.6–0.8 within the bloom until late March, providing little evidence of photo-physiological stress as would have been expected under nutrient-limiting conditions. Nitrogen uptake kinetics were estimated for P. minimum during the period when that species was dominant (October–December 2001), based on literature values for N uptake by an earlier P. minimum bloom (winter 1999) in the Neuse Estuary. The analysis suggests that NH4+ was the major N species that supported the bloom. Considering the chlorophyll a concentrations during October and December and the estimated N uptake rates, phytoplankton biomass was estimated to have doubled once per day. Bloom displacement (January–February) coincided with higher diversity of heterotrophic dinoflagellate species as P. minimum abundance decreased. This research shows the value of RTRM in bloom detection and tracking, and advances understanding of dinoflagellate bloom dynamics in eutrophic estuaries.  相似文献   

19.
1. Monitoring at fortnightly to monthly intervals of a very shallow, lowland lake over 24 years has enabled the time course of recovery from nutrient enrichment to be investigated after high external P loading of the lake (>10 g P m?2 year?1) was reduced between 1977 and 1980. 2. The lake showed a relatively rapid response during the spring and early summer, with a reduction in phytoplankton biomass occurring after 5 years when soluble reactive phosphorus concentration was <10 μg L?1. 3. However, during the later summer the response was delayed for 15 years because of sustained remobilisation of phosphorus from the sediment. The greater water clarity in spring and a gradual shift from planktonic to benthic algal growth may be related to the reduction in internal loading after 15 years. 4. Changes in the phytoplankton community composition were also observed. Centric diatoms became less dominant in the spring, and the summer cyanobacteria populations originally dominated by non‐heterocystous species (Limnothrix/Planktothrix spp.) almost disappeared. Heterocystous species (Anabaena spp. and Aphanizomenon flosaquae) were slower to decline, but after 20 years the phytoplankton community was no longer dominated by cyanobacteria. 5. There were no substantial changes in food web structure following re‐oligotrophication. Total zooplankton biomass decreased but body size of Daphnia hyalina, the largest zooplankton species in the lake, remained unchanged, suggesting that the fish population remained dominated by planktivorous species. 6. Macrophyte growth was still largely absent after 20 years, although during the spring water clarity may have become sufficient for macrophytes to re‐establish.  相似文献   

20.
A. Nakano  S. Ban 《Limnology》2003,4(1):0019-0024
 The vertical distributions of planktonic bacteria, chroococcoid cyanobacteria, and heterotrophic nanoflagellates (HNF) were examined in Lake Toya, an oligotrophic lake located in Hokkaido, the northern island of Japan, at monthly intervals from May 1993 to May 1994. The abundances of bacteria, cyanobacteria, and HNF during the study period ranged from 104 to 105,102 to 104, 10 to 102 cells ml−1, respectively. The range of bacterial abundances was among the lowest previously reported from other oligotrophic lakes. The vertical distributions of both bacteria and cyanobacteria were influenced by thermal stratification: they were homogeneous throughout the water column during the circulation period (January to April) and heterogeneous during the period of stratification (June to November). During the period of stratification, the cyanobacterial abundance decreased toward the surface in the euphotic zone while the frequency of diving cells (FDC) increased, suggesting that grazing pressure was high near the surface. This hypothesis was supported by the relatively high abundance of HNF at the surface and the negative correlation between HNF and cyanobacterial abundances in the euphotic zone (r = −0.503, n = 33, P < 0.05). On the other hand, multiple regression analysis revealed that 52% of the variation in bacterial abundance in the stratified period can be explained by chlorophyll a concentration, water temperature, and HNF abundance (df = 3, 45; F = 16.2; P < 0.01), suggesting that both substrate limitation and grazing loss by HNF were important factors controlling bacterial abundance in the lake. Received: June 21, 2002 / Accepted: October 16, 2002 Present address: 5-2-2-18-805 Kikusui-motomachi, Shiroishi, Sapporo 003-0825, Japan Present address: School of Environmental Science, University of Shiga Prefecture, 2500 Hassaka-cho, Hikone 522-8533, Japan Tel. +81-749-28-8307; Fax +81-749-28-8463 e-mail: ban@ses.usp.ac.jp Acknowledgments We thank Dr. H. Ueda for encouraging this study and Mr. Haruna and the members of the Plankton Laboratory, Hokkaido University, for their help in sampling. We also thank two anonymous reviewers for their critical comments. Correspondence to:S. Ban  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号