首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Spectroscopic studies of myoglobin at low pH: heme structure and ligation   总被引:3,自引:0,他引:3  
We explore heme structure and ligation subsequent to a low-pH conformational transition in sperm whale myoglobin. Below pH 4.0, the iron-histidine bond breaks in metMb and deoxyMb. In MbCO, the majority of the iron-histidine bonds remain intact down to pH 2.6; however, the observation of a weak Fe-CO mode at 526 cm-1 indicates that a small fraction of the sample has the histidine replaced by a weak ligand, possibly water. The existence of a sterically hindered CO subpopulation in MbCO and the continued association of the four-coordinate heme with the protein in deoxyMb suggest that the heme pocket remains at least partially intact in the acid-induced conformation. The global pH-dependent conformational change described here is clearly distinguished from the local "closed" to "open" transition described previously in MbCO [Morikis et al. (1989) Biochemistry 28, 4791-4800]. Further observations of the four-coordinate heme state yield insights on the mechanism of heme photoreduction and the assignment of the 760-nm band in deoxyMb.  相似文献   

2.
Rwere F  Mak PJ  Kincaid JR 《Biochemistry》2008,47(48):12869-12877
Resonance Raman spectroscopy is employed to characterize heme site structural changes arising from conformational heterogeneity in deoxyMb and ligated derivatives, i.e., the ferrous CO (MbCO) and ferric cyanide (MbCN) complexes. The spectra for the reversed forms of these derivatives have been extracted from the spectra of reconstituted samples. Dramatic changes in the low-frequency spectra are observed, where newly observed RR modes of the reversed forms are assigned using protohemes that are selectively deuterated at the four methyl groups or at the four methine carbons. Interestingly, while substantial changes in the disposition of the peripheral vinyl and propionate groups can be inferred from the dramatic spectral shifts, the bonds to the internal histidyl imidazole ligand and those of the Fe-CO and Fe-CN fragments are not significantly affected by the heme rotation, as judged by lack of significant shifts in the nu(Fe-N(His)), nu(Fe-C), and nu(C-O) modes. In fact, the apparent lack of an effect on these key vibrational parameters of the Fe-N(His), Fe-CO, and Fe-CN fragments is entirely consistent with previously reported equilibrium and kinetic studies that document virtually identical functional properties for the native and reversed forms.  相似文献   

3.
M Tsubaki  S Yoshikawa  Y Ichikawa  N T Yu 《Biochemistry》1992,31(37):8991-8999
Effects of the bindings of cholesterol and its hydroxylated analogues on the Fe-CO stretching and the C-O stretching vibrations of cytochrome P-450scc-CO complex were examined by resonance Raman and FT-IR spectroscopies to reveal the spatial relationship between the steroid side-chain groups and the heme-bound C-O moiety at the active center. These C-O and Fe-CO vibrations exhibited considerable variations depending on the steroids used; however, analyses on the nu Fe-CO vs nu C-O plot for cytochrome P-450scc indicated the absence of the negative correlation between these two vibrations, which is common among various Fe(2+)-porphyrin-CO complexes having imidazole ligands. Rather, we noticed the existence of two groups depending on substrates, the one exhibiting C-O infrared absorption bands in the region from 1930 to 1940 cm-1 and higher enzymatic turnover numbers in the reconstituted enzymatic systems and the other exhibiting C-O infrared absorption bands in the region above 1945 cm-1 and lower enzymatic turnover numbers. Thus, the former substrate group is likely to be fitted into the substrate binding site in the efficient "productive substrate binding" structure, whereas the latter group may be bound to the enzyme in the structure not suitable for the efficient enzymatic reaction ("nonproductive substrate binding" conformation).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We present evidence that the structure of carbonmonoxy myoglobin crystals can be altered by lowering the pH. This structural change is monitored by the characteristic Fe-CO Raman modes at 508 and 491 cm-1 and is thought to involve a localized distal pocket transition from a "closed" conformation at pH 7 to a more "open" conformation at pH 4. These changes take place in the crystal without loss of intensity of a conformationally sensitive Raman mode at 252 cm-1 that signals a partial unfolding of the globin structure in solution. Quantitative studies, which monitor the open and closed populations as a function of laser photolysis, demonstrate that the interconversion rates (k+/-) in solution at 298 K are fast compared to the photolysis and CO entry rates (i.e. k+/- much greater than 10(3) s-1), while in frozen samples the interconversion is much slower than the experimental time scale (minutes). Since the open conformation is a minority species at pH 7, rapid exchange in aqueous solution is a necessary condition for this species to play a functional role. In the crystal, the interconversion rates are slowed compared to solution and begin to approach the photolysis rate (i.e. k+/- approximately 10(3) to 10(4) s-1). This indicates that the barriers for conformational exchange are increased in the crystal environment, compared to the solution, apparently due to the packing forces of the surrounding molecules. X-ray and neutron diffraction studies of MbCO crystals at high and low pH are needed to characterize the details of the structural changes and to test the hypothesis that closed and open distal pocket structures are associated with the 508 and 491 cm-1 Fe-CO modes.  相似文献   

5.
The presence of at least two types of conformers in the ferrous CO complex of horseradish peroxidase has been demonstrated with the use of native and deuteroheme-substituted enzymes. Type I conformers, predominant in acidic pH, exhibited both an Fe-CO stretching and an Fe-C-O bending Raman line together with an infrared C-O stretch band below 1920 em-1. On the other hand, type II conformers, dominant species in alkaline pH, showed only an Fe-CO stretching Raman line with the C-O stretch above 1930 cm-1. They were interconvertible either by the changes in pH or by the binding of benzhydroxamate, a substrate for the enzyme. The pKa value for the pH-dependent interconversion of CO complex of deuteroheme-substituted enzyme was 8.3. These findings were interpreted to mean that the bound CO molecule in type I conformers was more tilted over the heme-plane than that in type II conformers. A steric hindrance by the bound substrate or the protonated form of a distal amino acid residue, presumably of histidine, is considered to be the cause for the isomerization. By summarizing present and previous data on the vibrational frequencies of heme-carbonyl complexes, we found that there are inverse-linear relationships between the square of Fe-CO and that of C-O stretching frequencies, while squares of Fe-CO stretching and Fe-C-O bending frequencies were linearly correlated with each other. Also found is that the dissociation rate constant of CO molecule from heme-carbonyl complexes is a linear function of the Fe-CO stretching frequency. The significance of these results is discussed.  相似文献   

6.
KatG, the catalase peroxidase from Mycobacterium tuberculosis, is important in the activation of the antitubercular drug, isoniazid. About 50% of isoniazid-resistant clinical isolates contain a mutation in KatG wherein the serine at position 315 is substituted with threonine, KatG(S315T). The heme pockets of KatG and KatG(S315T) and their interactions with isoniazid are probed using resonance Raman (rR) spectroscopy to characterize their ferrous CO complexes. Three vibrational modes, C-O and Fe-C stretching and Fe-CO bending, are assigned using 12CO and 13CO isotope shifts. Two conformers are observed for KatG-CO and KatG(S315T)-CO. Resonance Raman features assigned to form I are consistent with it having a neutral proximal histidine ligand and the Fe-C-O moiety hydrogen bonded to a distal residue. The nu(C-O) band for form I is sharp, consistent with a conformationally homogeneous Fe-CO unit. Form II also has a neutral proximal histidine ligand but is not hydrogen bonded. This appears to result in a conformationally disordered Fe-CO unit, as evidenced by a comparatively broad C-O stretching band. The 13CO-sensitive bands assigned to form II are predominant in the KatG(S315T)-CO rR spectrum. Isoniazid binding is apparent from the resonance Raman signatures of both WT KatG-CO and KatG(S315T)-CO. Moreover, isoniazid binding elicits an increase in the form I population of wild-type KatG-CO while having little, if any, effect on the already low population of form I of KatG(S315T)-CO. Since oxyKatG (compound III) also contains a low-spin diatomic ligand-heme adduct (heme-O2), it is reasonable to suggest that it too would exist as a mixture of conformers. Because the small form I population of KatG(S315T)-CO correlates with its inability to activate INH, we hypothesize that form I plays a role in INH activation.  相似文献   

7.
Carbon monoxide and dioxygen were employed as resonance Raman-visible ligands for probing the nature of the heme-binding site in elephant myoglobin, which has glutamine in the distal position (E7) instead of the usual histidine. The distal histidine (E7) residue has been thought to be responsible for weakening carbon monoxide binding to hemoproteins. It is of interest to see how the His(E7)----Gln replacement affects such parameters as nu(Fe-N epsilon), nu(Fe-CO), delta(Fe-C-O), nu(C-O), delta(Fe-O-O), and nu(O-O) vibrational frequencies and relative intensities. Elephant myoglobin has a CO affinity approximately 6 times higher than that for human/sperm whale myoglobin (Mb). If this enhanced affinity were solely due to the removal of some of the steric hindrance that normally tilts the CO off the heme axis, one would expect the nu(Fe-CO) frequency to decrease and the nu(C-O) frequency to increase relative to the corresponding values in sperm whale Mb. However, the opposite was found. In addition, strong enhancement of the Fe-C-O bending mode was observed. These results suggest that the Fe-C-O linkage remains distorted. In elephant Mb, new interactions resulting from the conformational change accompanying ligand binding may be responsible for the increased CO binding. Similar spectra were obtained for elephant and sperm whale oxymyoglobin. This suggests that the interactions of bound O2 are not markedly affected by the glutamine replacement.  相似文献   

8.
Cytoglobin (Cgb) represents a fourth member of the globin superfamily in mammals, but its function is unknown. Site-directed mutagenesis, in which six histidine residues were replaced with alanine, was carried out, and the results indicate that the imidazoles of His81 (E7) and His113 (F8) bind to the heme iron as axial ligands in the hexacoordinate and the low-spin state. The optical absorption, resonance Raman, and IR spectral results are consistent with this conclusion. The redox potential measurements revealed an E' of 20 mV (vs NHE) in the ferric/ferrous couple, indicating that the imidazole ligands of His81 and His113 are electronically neutral. On the basis of the nu(Fe-CO) and nu(C-O) values in the resonance Raman and infrared spectra of the ferrous-CO complexes of Cgb and its mutants, it was found that CO binds to the ferrous iron after the His81 imidazole is dissociated, and three conformers are present in the resultant CO coordination structure. Two are in closed conformations of the heme pocket, in which the bound CO ligand interacts with the dissociated His81 imidazole, while the third is in an open conformation. The nu(Fe-O2) in the resonance Raman spectra of oxy Cgb can be observed at 572 cm(-1), suggesting a polar heme environment. These structural properties of the heme pocket of Cgb are discussed with respect to its proposed in vivo oxygen storage function.  相似文献   

9.
Resonance Raman (RR) spectroscopy and infrared spectroscopy have been used to characterize the three vibrational modes, CO and FeC stretching and FeCO bending, for carbon monoxide bound to reduced horseradish peroxidase, with the aid of 13CO and C18O isotope shifts. At high pH, one species, I, is observed, with nu FeC = 490 cm-1 and nu CO = 1932 cm-1. The absence of a band attributable to delta FeCO suggests a linear FeCO unit normal to the heme plane. The data were consistent with I having a strongly H-bonded proximal histidine, as shown by a comparison with imidazole and imidazolate adducts of FeIIPPDME(CO) (PPDME = protoporphyrin IX dimethyl ester), with nu FeC = 497 and 492 cm-1 and nu CO = 1960 and 1942 cm-1. At low pH an additional species, II, is observed, with nu FeC = 537 cm-1, nu CO = 1904 cm-1, and delta FeCO = 587 cm-1; it is attributed to FeCO that is H bonded to a protonated distal histidine, the H bond strongly lowering nu CO and raising nu FeC. The appearance of delta FeCO in the RR spectrum suggests that the FeCO unit in II is tilted with respect to the heme plane. At low pH, the population of I and II depends on the CO concentration. I dominates at low CO/protein levels but is replaced by II as the amount of CO is increased. This behavior is suggested to arise from secondary binding of CO, which induces a conformation change involving the distal residues of the heme pocket.  相似文献   

10.
S H Lin  N T Yu  J Tame  D Shih  J P Renaud  J Pagnier  K Nagai 《Biochemistry》1990,29(23):5562-5566
Using an Escherichia coli gene expression system, we have engineered human hemoglobin (Hb) mutants having the distal histidine (E7) and valine (E11) residues replaced by other amino acids. The interaction between the mutated distal residues and bound carbon monoxide has been studied by Soret-excited resonance Raman spectroscopy. The replacement of Val-E11 by Ala, Leu, Ile, and Met has no effect on the v(C-O), v(Fe-CO) stretching or delta(Fe-C-O) bending frequencies in both the alpha and beta subunits of Hb, although some of these mutations affect the CO affinity as much as 40-fold. The strain imposed on the protein by the binding of CO is not localized in the Fe-CO bond and is probably distributed among many bonds in the globin. The replacement of His-E7 by Val or Gly brings the stretching frequencies v(Fe-CO) and v(C-O) close to those of free heme complexes. In contrast, the substitution of His-E7 by Gln, which is flexible and polar, produces no effects on the resonance Raman spectrum of either alpha- or beta-globin. The replacement of His-E7 of beta-globin by Phe shows the same effect as replacement by Gly or Val. Therefore, the steric bulk of the distal residues is not the primary determinant of the Fe-CO ligand vibrational frequencies. The ability of both histidine and glutamine to alter the v(C-O), v(Fe-CO), or delta(Fe-C-O) frequencies may be attributed to the polar nature of their side chains which can interact with bound CO in a similar manner.  相似文献   

11.
The Heme Nitric oxide/OXygen binding (H-NOX) family of proteins have important functions in gaseous ligand signaling in organisms from bacteria to humans, including nitric oxide (NO) sensing in mammals, and provide a model system for probing ligand selectivity in hemoproteins. A unique vibrational feature that is ubiquitous throughout the H-NOX family is the presence of a high C-O stretching frequency. To investigate the cause of this spectroscopic characteristic, the Fe-CO and C-O stretching frequencies were probed in the H-NOX domain from Thermoanaerobacter tengcongensis (Tt H-NOX) using resonance Raman (RR) spectroscopy. Four classes of heme pocket mutants were generated to assess the changes in stretching frequency: (i) the distal H-bonding network, (ii) the proximal histidine ligand, (iii) modulation of the heme conformation via Ile-5 and Pro-115, and (iv) the conserved Tyr-Ser-Arg (YxSxR) motif. These mutations revealed important electrostatic interactions that dampen the back-donation of the Fe(II) d(π) electrons into the CO π* orbitals. The most significant change occurred upon disruption of the H-bonds between the strictly conserved YxSxR motif and the heme propionate groups, producing two dominant CO-bound heme conformations. One conformer was structurally similar to Tt H-NOX WT, whereas the other displayed a decrease in ν(C-O) of up to ~70 cm(-1) relative to the WT protein, with minimal changes in ν(Fe-CO). Taken together, these results show that the electrostatic interactions in the Tt H-NOX binding pocket are primarily responsible for the high ν(C-O) by decreasing the Fe d(π) → CO π* back-donation and suggest that the dominant mechanism by which this family modulates the Fe(II)-CO bond likely involves the YxSxR motif.  相似文献   

12.
Kabir M  Sudhamsu J  Crane BR  Yeh SR  Rousseau DL 《Biochemistry》2008,47(47):12389-12397
Nitric oxide synthase (NOS) generates NO via a sequential two-step reaction [l-arginine (l-Arg) --> N-hydroxy-l-arginine (NOHA) --> l-citrulline + NO]. Each step of the reaction follows a distinct mechanism defined by the chemical environment introduced by each substrate bound to the heme active site. The dioxygen complex of the NOS enzyme from a thermophilic bacterium, Geobacillus stearothermophilus (gsNOS), is unusually stable; hence, it provides a unique model for the studies of the mechanistic differences between the two steps of the NOS reaction. By using CO as a structural probe, we found that gsNOS exhibits two conformations in the absence of substrate, as indicated by the presence of two sets of nu(Fe-CO)/nu(C-O) modes in the resonance Raman spectra. In the nu(Fe-CO) versus nu(C-O) inverse correlation plot, one set of data falls on the correlation line characterized by mammalian NOSs (mNOS), whereas the other set of data lies on a new correlation line defined by a bacterial NOS from Bacillus subtilis (bsNOS), reflecting a difference in the proximal Fe-Cys bond strength in the two conformers of gsNOS. The addition of l-Arg stabilizes the conformer associated with the mNOS correlation line, whereas NOHA stabilizes the conformer associated with the bsNOS correlation line, although both substrates introduce a positive electrostatic potential into the distal heme pocket. To assess how substrate binding affects Fe-Cys bond strength, the frequency of the Fe-Cys stretching mode of gsNOS was monitored by resonance Raman spectroscopy with 363.8 nm excitation. In the substrate-free form, the Fe-Cys stretching mode was detected at 342.5 cm(-1), similar to that of bsNOS. The binding of l-Arg and NOHA brings about a small decrease and increase in the Fe-Cys stretching frequency, respectively. The implication of these unique structural features with respect to the oxygen chemistry of NOS is discussed.  相似文献   

13.
The enzyme-soluble guanylate cyclase (sGC), which converts GTP to cGMP, is a receptor for the signaling agent nitric oxide (NO). YC-1, a synthetic benzylindazole derivative, has been shown to activate sGC in an NO-independent fashion. In the presence of carbon monoxide (CO), which by itself activates sGC approximately 5-fold, YC-1 activates sGC to a level comparable to stimulation by NO alone. We have used kinetic analyses and resonance Raman spectroscopy (RR) to investigate the interaction of YC-1 and CO with guanylate cyclase. In the presence of CO and 200 microM YC-1, the V(max)/K(m GTP) increases 226-fold. While YC-1 does not perturb the RR spectrum of the ferrous form of baculovirus/Sf9 cell expressed sGC, it induces a shift in the Fe-CO stretching frequency for the CO-bound form from 474 to 492 cm(-1). Similarly, YC-1 has no effect on the RR spectrum of ferrous beta1(1-385), the isolated sGC heme-binding domain, but shifts the nu(Fe-CO) of CO-beta1(1-385) from 478 to 491 cm(-1), indicating that YC-1 binds in heme-binding region of sGC. In addition, the CO-bound forms of sGC and beta1(1-385) in the presence of YC-1 lie on the nu(Fe-CO) vs nu(C-O) correlation curve for proximal ligands with imidazole character, which suggests that histidine remains the heme proximal ligand in the presence of YC-1. Interestingly, YC-1 does not shift nu(Fe-CO) for the CO-bound form of H105G(Im), the imidazole-rescued heme ligand mutant of beta1(1-385). The data are consistent with binding of CO and YC-1 to the sGC heme-binding domain leading to conformational changes that give rise to an increase in catalytic turnover and a change in the electrostatic environment of the heme pocket.  相似文献   

14.
J Ramsden  T G Spiro 《Biochemistry》1989,28(8):3125-3128
The resonance Raman band assigned to Fe--CO stretching in the sperm whale myoglobin CO adduct shifts from 507 cm-1 at neutral pH to 488 cm-1 at low pH, in concert with a shift of the C-O stretching infrared band from 1947 to 1967 cm-1 (Fuchsman & Appleby, 1979), while the 575-cm-1 Fe-C-O bending RR band loses intensity. The pKa that characterizes these changes is approximately 4.4. The vibrational frequencies at low pH are well modeled by the protein-free CO, imidazole adduct of protoheme in a nonpolar solvent while those at high pH are modeled by the adduct of a heme with a covalent strap (Yu et al., 1983) which inhibits upright CO binding. It is inferred that the Fe-C-O unit changes from a tilted to an upright geometry when the distal histidine is protonated, because its side chain swings out of the heme pocket due to electrostatic repulsion with a nearby arginine residue. A different protonation step (pKa = 5.7), which has been shown to modulate the CO rebinding kinetics (Doster et al., 1982) as well as the optical spectrum (Fuchsman & Appleby, 1979), is suggested to involve a global structure change associated with protonation of histidine residues distant from the heme.  相似文献   

15.
The active site of the oxygen-avid truncated hemoglobin from Bacillus subtilis has been characterized by infrared absorption and resonance Raman spectroscopies, and the dynamics of CO rebinding after photolysis has been investigated by picosecond transient absorption spectroscopy. Resonance Raman experiments on the CO bound adduct revealed the presence of two Fe-CO stretching bands at 545 and 520 cm-1, respectively. Accordingly, two C-O stretching bands at 1924 and 1888 cm-1 were observed in infrared absorption and resonance Raman measurements. The very low C-O stretching frequency at 1888 cm-1 (corresponding to the extremely high RR stretching frequency at 545 cm-1) indicates unusually strong hydrogen bonding between CO and distal residues. On the basis of a comparison with other truncated hemoglobin it is envisaged that the two CO conformers are determined by specific interactions with the TrpG8 and TyrB10 residues. Mutation of TrpG8 to Leu deeply alters the hydrogen-bonding network giving rise mainly to a CO conformer characterized by a Fe-CO stretching band at 489 cm-1 and a CO stretching band at 1958 cm-1. Picosecond laser photolysis experiments carried out on the CO bound adduct revealed dynamical processes that take place within a few nanoseconds after photolysis. Picosecond dynamics is largely dominated by CO geminate rebinding and is consistent with strong H-bonding contributions of TyrB10 and TrpG8 to ligand stabilization.  相似文献   

16.
Four independent 90 ps molecular dynamics simulations of sperm-whale wild-type carbonmonoxy myoglobin (MbCO) have been calculated using a new AMBER force field for the haem prosthetic group. Two trajectories have the distal 64N delta nitrogen protonated, and two have the 64N epsilon nitrogen protonated; all water molecules within 16 A of the carbonyl O are included. In three trajectories, the distal residue remains part of the haem pocket, with the protonated distal nitrogen pointing into the active site. This is in contrast with the neutron diffraction crystal structure, but is consistent with the solution phase CO stretching frequencies (upsilon CO) of MbCO and various of its mutants. There are significant differences in the "closed" pocket structures found for each tautomer: the 64N epsilon H trajectories both show stable distal-CO interactions, whereas the 64N delta H tautomer) has a weaker interaction resulting in a more mobile distal side chain. One trajectory (a 64N delta H tautomer) has the distal histidine moving out into the "solvent", leaving the pocket in an "open" structure, with a large unhindered entrance to the active site. These trajectories suggest that the three upsilon CO frequencies observed for wild-type MbCO in solution, rather than representing significantly different Fe-C-O geometries as such, arise from three different haem pocket structures, each with different electric fields at the ligand. Each pocket structure corresponds to a different distal histidine conformer: the A3 band to the 64N epsilon H tautomer, the A1,2 band to the 64N delta H tautomer, and the A0 band to the absence of any significant interaction with the distal side chain.  相似文献   

17.
L P Yu  G N La Mar  H Mizukami 《Biochemistry》1990,29(10):2578-2585
Two-dimensional 1H NMR methods have been used to assign side-chain resonances for the residues in the distal heme pocket of elephant carbonmonoxymyoglobin (MbCO) and oxymyoglobin (MbO2). It is shown that, while the other residues in the heme pocket are minimally perturbed, the Phe CD4 residue in elephant MbCO and MbO2 resonates considerably upfield compared to the corresponding residue in sperm whale MbCO. The new NOE connectivities to Val E11 and heme-induced ring current calculations indicate that Phe CD4 has been inserted into the distal heme pocket by reorienting the aromatic side chain and moving the CD corner closer to the heme. The C zeta H proton of the Phe CD4 was found to move toward the iron of the heme by approximately 4 A relative to the position of sperm whale MbCO, requiring minimally a 3-A movement of the CD helical backbone. The significantly altered distal conformation in elephant myoglobin, rather than the single distal E7 substitution, forms a plausible basis for its altered functional properties of lower autoxidation rate, higher redox potential, and increased affinity for CO ligand. These results demonstrate that one-to-one interpretation of amino acid residue substitution (E7 His----Gln) is oversimplified and that conformational changes of substituted proteins which are not readily predicted have to be considered for interpretation of their functional properties.  相似文献   

18.
The influence of high pressure on the heme protein conformation of myoglobin in different ligation states is studied using Raman spectroscopy over the temperature range from 30 to 295 K. Photostationary experiments monitoring the oxidation state marker bands demonstrate the change of rebinding rate with pressure. While frequency changes of vibrational modes associated with rigid bonds of the porphyrin ring are <1 cm(-1), we investigate a significant shift of the iron-histidine mode to higher frequency with increasing pressure (approximately 3 cm(-1) for deltaP = 190 MPa in Mb). The observed frequency shift is interpreted structurally as a conformational change affecting the tilt angle between the heme plane and the proximal histidine and the out-of-plane iron position. Independent evidence for iron motion comes from measurements of the redshift of band III in the near-infrared with pressure. This suggests that at high pressure the proximal heme pocket and the protein are altered toward the bound state conformation, which contributes to the rate increase for CO binding. Raman spectra of Mb and photodissociated MbCO measured at low temperature and variable pressure further support changes in protein conformation and are consistent with glasslike properties of myoglobin below 160 K.  相似文献   

19.
Cytoglobin (Cgb) and neuroglobin (Ngb) are the first examples of hexacoordinated globins from humans and other vertebrates in which a histidine (His) residue at the sixth position of the heme iron is an endogenous ligand in both the ferric and ferrous forms. Static and time-resolved resonance Raman and FT-IR spectroscopic techniques were applied in examining the structures in the heme environment of these globins. Picosecond time-resolved resonance Raman (ps-TR3) spectroscopy of transient five-coordinate heme species produced by the photolysis of carbon monoxide (CO) adducts of Cgb and Ngb showed Fe-His stretching (nu(Fe-His)) bands at 229 and 221 cm(-1), respectively. No time-dependent shift in the nu(Fe-His) band of Cgb and Ngb was detected in the 20-1000 ps time domain, in contrast to the case of myoglobin (Mb). These spectroscopic data, combined with previously reported crystallographic data, suggest that the structure of the heme pocket in Cgb and Ngb is altered upon CO binding in a manner different from that of Mb and that the scales of the structural alteration are different for Cgb and Ngb. The structural property of the heme distal side of the ligand-bound forms was investigated by observing the sets of (nu(Fe-CO), nu(C-O), delta(Fe-C-O)) and (nu(Fe-NO), nu(N-O), delta(Fe-N-O)) for the CO and nitric oxide (NO) complexes of Cgb and Ngb. A comparison of the spectra of some distal mutants of Cgb (H81A, H81V, R84A, R84K, and R84T) and Ngb (H64A, H64V, K67A, K67R, and K67T) showed that the CO adducts of Cgb and Ngb contained three conformers and that the distal His (His81 in Cgb and His64 in Ngb) mainly contributes to the interconversion of the conformers. These structural characteristics of Cgb and Ngb are discussed in relation to their ligand binding and physiological properties.  相似文献   

20.
Understanding of the chemical nature of the dioxygen and nitric oxide moiety of ba3-cytochrome c oxidase from Thermus thermophilus is crucial for elucidation of its physiological function. In the present work, direct resonance Raman (RR) observation of the Fe-C-O stretching and bending modes and the C-O stretching mode of the CuB-CO complex unambiguously establishes the vibrational characteristics of the heme-copper moiety in ba3-oxidase. We assigned the bands at 507 and 568 cm(-1) to the Fe-CO stretching and Fe-C-O bending modes, respectively. The frequencies of these modes in conjunction with the C-O mode at 1973 cm(-1) showed, despite the extreme values of the Fe-CO and C-O stretching vibrations, the presence of the alpha-conformation in the catalytic center of the enzyme. These data, distinctly different from those observed for the caa3-oxidase, are discussed in terms of the proposed coupling of the alpha-and beta-conformations that occur in the binuclear center of heme-copper oxidases with enzymatic activity. The CuB-CO complex was identified by its nu(CO) at 2053 cm(-1) and was strongly enhanced with 413.1 nm excitation indicating the presence of a metal-to-ligand charge transfer transition state near 410 nm. These findings provide, for the first time, RR vibrational information on the EPR silent CuB(I) that is located at the O2 delivery channel and has been proposed to play a crucial role in both the catalytic and proton pumping mechanisms of heme-copper oxidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号