首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
13N-labeled nitrate was used to trace short-term nitrate influx into Lemna gibba L. G3 in experiments where disappearance of both radioactivity and total nitrate from the incubation medium was measured continuously and simultaneously. In plants performing net nitrate uptake from an initial nitrate concentration of 40 to 60 micromolar, there was no discrepancy between net uptake and influx, irrespective of the N status of the plants, indicating that concomitant nitrate efflux was low or nil. Plants treated with tungstate to inactivate nitrate reductase were able to take up nitrate following induction of the uptake system by exposure to a low amount of nitrate. Also, in this case, net uptake was equivalent to influx. In tungstate-treated plants preloaded with nitrate, both net uptake and influx were nil. In contrast to these observations, a clear discrepancy between net uptake and influx was observed when the plants were incubated at an initial nitrate concentration of approximately 5 micromolar, where net uptake is low and eventually ceases. It is concluded that plasmalemma nitrate transport is essentially unidirectional in plants performing net uptake at a concentration of 40 to 60 micromolar, and that transport is nil when internal nitrate sinks (vacuole, metabolism) are eliminated. The efflux component becomes increasingly important when the external concentration approaches the threshold value for net nitrate uptake (the nitrate compensation point) where considerable exchange between internal and external nitrate occurs.  相似文献   

2.
A computer-controlled multichannel data acquisition system was employed to obtain continuous measurements of net nitrate or chlorate uptake by roots of intact barley plants (Hordeum vulgare cv Betzes) using nitrate-specific electrodes. Plants, previously grown in solutions maintained at 10 or 200 micromolar NO3 (low N or high N conditions, respectively), were provided with 200 micromolar NO3 or ClO3 during the uptake period. Initial rates of NO3 uptake were several times higher in low N plants than in high N plants. Within 10 min, uptake in the former plants declined to a new steady rate which was sustained for the remainder of the experiment. No such time-dependent changes were evident in the high N plants. Rates and patterns of net chlorate uptake exhibited almost identical dependence upon previous nitrate provision. NO3 (36ClO3) influx, by contrast, appeared to be independent of NO3 pretreatment prior to influx determination. Nitrate efflux, estimated by several different methods, was strongly correlated with internal nitrate concentration of the roots.  相似文献   

3.
Regulation of nitrate influx and efflux in spinach (Spinacia oleracea L., cv. Subito), was studied in short-term label experiments with 13N- and 15N-nitrate. Nitrate fluxes were examined in relation to the N demand for growth, defined as relative growth rate (RGR) times plant N concentration. Plants were grown at different nitrate concentrations (0.8 and 4 mM), with mineral composition of growth and uptake solutions identical. Nitrate influx, efflux and net nitrate uptake rate (NNUR) were independent of the external nitrate concentration, despite differences in internal nitrate concentration. At both N regimes, NNUR was adequate to meet the N demand for growth. RGR-related signals predominantly determined the nitrate fluxes. At high RGR (0.25 g g-1 day-1), nitrate influx was 20 to 40% lower and nitrate efflux was 50 to 70% lower than at lower RGR (0.17 g g-1 day-1); efflux:influx ratio (E:I) declined from 0.5 at low RGR to 0.2 at higher RGR. Thus, the efficiency of NNUR substantially increased with increasing RGR. Differences in nitrate translocation between morning and afternoon coincided with differences in nitrate efflux, which is in accordance with the suggested regulation of nitrate efflux by the root cytoplasmic nitrate concentration. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
In this paper we address the question why slow-growing grass species appear to take up nitrate with greater respiratory costs than do fast-growing grasses when all plants are grown with free access to nutrients. Specific costs for nitrate transport, expressed as moles of ATP per net mole of nitrate taken up, were 1.5 to 4 times higher in slow-growing grasses than in fast-growing ones (Scheurwater et al., 1998, Plant, Cell & Environ. 21, 995–1005). The net rate of nitrate uptake is determined by two opposing nitrate fluxes across the plasma membrane: influx and efflux. To test whether differences in specific costs for nitrate transport are due to differences in the ratio of nitrate influx to net rate of nitrate uptake, nitrate influx and the net rate of nitrate uptake were measured in the roots of two fast-growing ( Dactylis glomerata L. and Holcus lanatus L.) and two slow-growing (Deschampsia flexuosa L. and Festuca ovina L.) grass species at four points during the diurnal cycle, using 15NO3 -. Efflux was calculated by subtraction of net uptake from influx; it was assumed that efflux of nitrogen represents the flux of nitrate. Transfer of the plants to the solution containing the labelled nitrate did not significantly affect nitrate uptake in the present grass species. The net rate of nitrate uptake was highest during the middle of the light period in all species. Diurnal variation in the net rate of nitrate uptake was mostly due to variation in nitrate influx. Variation in nitrate efflux did not occur in all species, but efflux per net mole of nitrate taken up was higher during darkness than in the light in the slow-growing grasses. The two fast-growing species, however, did not show diurnal variation in the ratio of efflux to net nitrate uptake. Integrated over 24 hours, the slow-growing grasses clearly exhibited higher ratios of influx to net uptake than the fast-growing grass species. Our results indicate that the higher ratio of nitrate influx to net nitrate uptake can account for higher specific costs for nitrate transport in slow-growing grass species compared with those in their fast-growing counterparts, possibly in combination with greater activity of the non-phosphorylating alternative respiratory path. Therefore, under our experimental conditions with plants grown at a non-limiting nitrate supply, nitrate uptake is less efficient (from the point of ATP consumption) in slow-growing grasses than in fast-growing grass species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The inhibitory effect of NH4+ on net NO3- uptake has been attributed to an enhancement of efflux and, recently, to an inhibition of influx. To study this controversy, we devised treatments to distinguish the effects of NH4+ on these two processes. Roots of intact barley (Hordeum vulgare L.) seedlings, uninduced or induced with NO3- or NO2-, were used. Net uptake and efflux, respectively, were determined by following the depletion and accumulation in the external solutions. In roots of both uninduced and NO2- -induced seedlings, NO3- efflux was negligible; hence, the initial uptake rates were equivalent to influx. Under these conditions, NH4+ had little effect on NO3- uptake (influx) rates by either the low- or high-Km uptake systems. In contrast, in plants preloaded with NO3-, NH4+ and its analog CH3NH3+ decreased net uptake, presumably by enhancing NO3- efflux. The stimulatory effect of NH4+ on NO3- efflux was a function of external NH4+ and internal NO3- concentration. These results were corroborated by the absence of any effect of NH4+ on NO2- uptake unless the roots were preloaded with NO2-. In this case NH4+ increased efflux and decreased net uptake. Hence, the main effect of NH4+ on net NO3- and NO2- uptake appears to be due to enhancement of efflux and not to inhibition of influx.  相似文献   

6.
The influence of NH4+, in the external medium, on fluxes of NO3 and K+ were investigated using barley (Hordeum vulgare cv Betzes) plants. NH4+ was without effect on NO3 (36ClO3) influx whereas inhibition of net uptake appeared to be a function of previous NO3 provision. Plants grown at 10 micromolar NO3 were sensitive to external NH4+ when uptake was measured in 100 micromolar NO3. By contrast, NO3 uptake (from 100 micromolar NO3) by plants previously grown at this concentration was not reduced by NH4+ treatment. Plants pretreated for 2 days with 5 millimolar NO3 showed net efflux of NO3 when roots were transferred to 100 micromolar NO3. This efflux was stimulated in the presence of NH4+. NH4+ also stimulated NO3 efflux from plants pretreated with relatively low nitrate concentrations. It is proposed that short term effects on net uptake of NO3 occur via effects upon efflux. By contrast to the situation for NO3, net K+ uptake and influx of 36Rb+-labeled K+ was inhibited by NH4+ regardless of the nutrient history of the plants. Inhibition of net K+ uptake reached its maximum value within 2 minutes of NH4+ addition. It is concluded that the latter ion exerts a direct effect upon K+ influx.  相似文献   

7.
The influence of nitrogen stress on net nitrate uptake resulting from concomitant 15NO3 influx and 14NO3 efflux was examined in two 12-day-old inbred lines of maize. Plants grown on 14NO3 were deprived of nitrogen for up to 72 hours prior to the 12th day and then exposed for 0.5 hour to 0.15 millimolar nitrate containing 98.7 atom% 15N. The nitrate concentration of the roots declined from approximately 100 to 5 micromolar per gram fresh weight during deprivation, and 14NO3 efflux was linearly related to root nitrate concentration. Influx of 15NO3 was suppressed in nitrogen-replete plants and increased with nitrogen deprivation up to 24 hours, indicating a dissipation of factors suppressing influx. Longer periods of nitrogen-deprivation resulted in a decline in 15NO3 influx from its maximal rate. The two inbreds differed significantly in the onset and extent of this decline, although their patterns during initial release from influx suppression were similar. Except for plants of high endogenous nitrogen status, net nitrate uptake was largely attributable to influx, and genetic variation in the regulation of this process is implied.  相似文献   

8.
The effect of salinity on nitrate influx, efflux, nitrate net uptake rate and net nitrogen translocation to the shoot was assessed in a 15N steady state labelling experiment in the halophyte Plantago maritima L. raised for 14 days on solution supplied with 50, 100 and 200 mol m–3 sodium chloride or without sodium chloride. Additionally, salinity induced changes in root morphology were determined. Specific root length increased upon exposure to elevated sodium chloride concentrations due to variations in biomass allocation and length growth of the tap root. Changes in root morphology, however, had a minor effect on nitrate fluxes when expressed on a root fresh weight basis. The decreased rate of nitrate net uptake in plants grown on elevated levels of sodium chloride was almost entirely due to a decrease in nitrate influx. Expressed as a proportion of influx, nitrate efflux remained unchanged and was even lower at the highest salinity level. At all sodium chloride concentrations applied the initial rate of nitrogen net translocation to the shoot decreased relative to the rate of nitrate net uptake. It is concluded that under steady state conditions the negative effect of sodium chloride on the rate of nitrate net uptake at non growth-limiting salinity levels was due to the interaction between sodium chloride and nitrate transporters in the root plasma membrane and/or processes mediating the translocation of nitrogen compounds, possibly nitrate, to the shoot.  相似文献   

9.
Current global nitrogen fertilizer use has reached approximately one hundred billion kg per annum. In many agricultural systems, a very substantial portion of this applied nitrogen fertilizer is lost from soil to groundwaters, rivers and oceans. While soil physicochemical properties play a significant part in these losses, there are several characteristic features of plant nitrogen transporter function that facilitate N losses. Nitrate and ammonium efflux from roots result in a reduction of net nitrogen uptake. As external nitrate and ammonium concentrations, respectively, are increased, particularly into the range of concentrations that are typical of agricultural soils, elevated rates of nitrate and ammonium efflux result. The rapid down-regulation of high-affinity influx as plants become nitrogen replete further reduces the root's capacity to acquire external nitrogen; only nitrogen-starved roots absorb with both high capacity and high affinity. The results of studies using molecular biology methods demonstrate that genes encoding nitrate and ammonium transporters are rapidly down-regulated when nitrogen is resupplied to nitrogen-starved plants. Provision of ammonium to roots of plants actively absorbing nitrate imposes a block on nitrate uptake, the extent of which depends on the ammonium concentration, thus further reducing the efficient utilization of soil nitrate. During the daily variation of incoming light and during periods of low incident irradiation (i.e. heavy cloud cover) the expression levels of genes encoding nitrate and ammonium transporters, and rates of nitrate and ammonium uptake, are substantially reduced. Low temperatures reduce growth and nitrogen demand, and appear to discriminate against high-affinity nitrogen influx. In sum, these several factors conspire to limit rates of plant nitrogen uptake to values that are well below capacity. These characteristics of the plant's nitrogen uptake systems facilitate nitrogen losses from soils.  相似文献   

10.
Influx, efflux and net uptake of NO 3 was studied in Pisum sativum L. cv. Marma in short-term experiments where 13NO 3 was used to trace influx. The influx rate in N-limited plants was similar both during net uptake at external concentrations of around 50 M, and at low external NO 3 concentrations (4–6 M) when net uptake was practically zero. Efflux could be inferred from discrepancies between influx and net uptake but was never very high in the N-limited plants during net uptake. Close to the threshold concentration for not NO 3 uptake, efflux was high and equalled influx. Thus, the threshold concentration can be regarded as a NO 3 compensation point. The inclusion of NH 4 + in the outer medium decreased influx by about 40% but did not significantly affect efflux. The roles of NO 3 fluxes and nitrate-reductase activity in regulating/limiting NO 3 utilization are discussed.Abbreviations DW dry weight - FW fresh weight - RN relative nitrogen addition rate  相似文献   

11.
It was investigated whether K(+) efflux, like K(+) influx, is affected when roots are transferred between solutions with different K(+) concentrations. Sunflower plants (Hehanthus annuus L. cv. Uniflorus) were grown on complete nutrient solutions with 0.1, 1.0, 10 or 25 mM K(+) . This produced plants with K(+) concentrations in the roots varying between 9 and 110 μmol (g fresh weight)(-1) . At the beginning of the experiments the plants were transferred to an (86) Rb-labelled experimental solution initially containing 0.1 mM K(+) . At intervals during 6.5 h samples were removed from the solution and analyzed for K(+) and radioactivity. Based on the analyses K(+) ((86) Rb) influx, K(+) net uptake and K(+) efflux could be computed. In'low K(+) 'roots, K(+) ((86) Rb) influx and K(+) net uptake agreed, suggesting a very low K(+) efflux. This was contrary to'high K(+) 'roots, where K(+) efflux was initially higher than K(+) ((86) Rb) influx. After about 4 h, K(+) efflux declined to a low value also in these roots. When 2-4-dinitrophenol was included in the experimental solution, K(+) ((86) Rb) influx was generally depressed, whereas K(+) efflux was high throughout the experiment and directly proportional to the K(+) status of the roots. Our hypothesis is that after transfer of'high K(+) 'roots to a solution with low K(+) concentration, the K(+) efflux from the vacuoles of root cells transiently increases, until a new electrochemical equilibrium is attained.  相似文献   

12.
The effect of pH and Ca2+ on net NO3- uptake, influx, and efflux by intact roots of barley (Hordeum vulgare L.) seedlings was studied. Seedlings were induced with NO3- or NO2-. Net NO3- uptake and efflux, respectively, were determined by following its depletion from, and accumulation in, the external solution. Since roots of both uninduced and NO2(-)-induced seedlings contain little internal NO3- initial net uptake rates are equivalent to influx (M. Aslam, R.L. Travis, R.C. Huffaker [1994] Plant Physiol 106: 1293-1301). NO3-, uptake (influx) by these roots was little affected at acidic pH. In contrast, in NO3(-)-induced roots, which accumulate NO3-, net uptake rates decreased in response to acidic pH. Under these conditions, NO3- efflux was stimulated and was a function of root NO3- concentration. Conversely, at basic pH, NO3- uptake by NO3- and NO2(-)-induced and uninduced roots decreased, apparently because of the inhibition of influx. Calcium had little effect on NO3- uptake (influx) by NO2(-)-induced roots at either pH 3 or 6. However, in NO3(-)-induced roots, lack of Ca2+ at pH 3 significantly decreased net NO3- uptake and stimulated efflux. The results indicate that at acidic pH the decrease in net NO3- uptake is due to the stimulation of efflux, whereas at basic pH, it is due to the inhibition of influx.  相似文献   

13.
Summary Wheat (Triticum vulgare L., cv. Blueboy) seedlings, grown with 0.25, 1.0 and 15 mM nitrate in complete nutrient solutions, were transferred 10 days after germination to 1.0 mM K15NO3 (99 A% 15N) plus 0.1 mM CaSO4 at pH 6.0. The solutions were replaced periodically over a 6-h period (5 mW cm-2; 23°). Changes in the [15N]- and [14N]nitrate in the solution were determined by nitrate reductase and mass-spectrometric procedures and potassium by flame photometry. Influx of [15N]nitrate was depressed in plants grown at 1.0 mM nitrate relative to those grown at 0.25 mM, but there was no appreciably difference in [14N]nitrate efflux. Prior growth at 15 mM further restricted [15N]nitrate influx which, together with a substantial increase in [14N]nitrate efflux, resulted in no net nitrate uptake during the course of the experiment. Efflux of [14N]nitrate occurred to solutions containing no nitrate but it was significantly enhanced upon exposure to [15N]nitrate in the external solution. Influx of [15N]nitrate was more restricted at 5°, relative to 23°, than was [14N]nitrate efflux. The nitrate concentrations of the root tissue immediately before exposure to the K15NO3 solutions did not give a precise indication of the subsequent [15N]nitrate influx rates nor of the [14N]nitrate efflux rates. Net K+ uptake was related to the magnitude of the net nitrate uptake, not to the initial K+ concentration in the roots. The data are interpreted as indicating that [15N]nitrate influx and [14N]nitrate efflux are largely independent processes, subject to different controls, and that net nitrate uptake provides the driving force for net potassium uptake.Paper No. 4884 of the Journal Series of the North Carolina Agricultural Experiment Station, Raleigh, NC, USA. This investigation was supported in part by the U.S. Energy Research and Development Administration, Contract No. AT-(40-1)-2410  相似文献   

14.
Rapid, Reversible Inhibition of Nitrate Influx in Barley by Ammonium   总被引:18,自引:2,他引:16  
The rate of influx of nitrate into the roots of intact barleyplants was measured over a period of 3–5 min from externalnitrate concentrations of 1–150 mmol m–3, using13N-labelled nitrate as tracer. Ammonium at external concentrationsof 0.005–50 mol m–3 inhibited nitrate influx ina manner which did not conform to a simple kinetic model butincreased approximately as the logarithm of the ammonium concentration.At any particular ammonium concentration, inhibition of nitrateinflux reached its full extent within 3 min of the ammoniumbeing supplied and was not made more severe by up to 17 minpre-treatment with ammonium. On removing the external ammonium,nitrate influx returned to its original rate within about 3min. Potassium at 0.005–50 mol m–3 did not reproducethe rapid effect of ammonium on nitrate influx. Net uptake of nitrate also decreased when ammonium was supplied,over a similar timescale and to a similar extent as nitrateinflux. The decrease in nitrate influx caused by ammonium wassufficient to account for the observed reduction in net uptake,without necessitating any acceleration of nitrate efflux. Key words: Hordeum vulgare, roots, ion transport, short-lived isotopes, 13N  相似文献   

15.
Rates of P influx and efflux were determined in whole plants at ambient P concentrations comparable to those found in soil solutions. Maize (Zea mays L. var NC+59) seedlings were trimmed (endosperm and adventitious roots removed) and grown in a greenhouse in solution cultures at P concentrations of approximately 0.4 and 1.8 micromolar. Roots of intact plants previously exposed to 32P-labeled solutions at 0.2 and 2.0 micromolar P for 48 hours were rinsed 10 minutes in P-free solution and exposed to 33P solutions at 0.2 and 2.0 micromolar for 10 minutes. Net depletion of 33P from and appearance of 32P in the ambient solution were used to measure influx and efflux. The ration of 32P efflux to 33P influx was about 0.68 at 0.2 micromolar and 0.08 at 2.0 micromolar. When plants were allowed to deplete P from solutions, the P concentration in the medium dropped to about 0.15 micromolar within 24 hours and 0.05 micromolar within 60 hours. Results indicate that P efflux is a substantial component of net P accumulation at P concentrations normally found in soil solutions.  相似文献   

16.
The kinetics of methotrexate transport in L1210 cells are described. Data derived from the measurements of initial influx, the complete time-course of uptake, intracellular steady-state level and unidirectional efflux were found to be consistent with a simple empirical equation containing three constants. Properties of the system include the following: (1) saturability of initial influx; (2) approach to steady state during uptake is expoential; (3) the half-time for drug uptake is independent of external concentration and qual to half-time for efflux; and (4) transport is concentrative at low external concentrations, whereas the reverse is true at high external concentrations. These observations are incorporated into a kinetic model which quantitatively accounts for the data on the basis of the hypothesis that influx and efflux take place via different carriers.  相似文献   

17.
Nitrate influx, efflux and net nitrate uptake were measured for the slow-growing Quercus suber L. (cork-oak) to estimate the N-uptake efficiency of its seedlings when grown with free access to nitrate. We hypothesise that nitrate influx, an energetically costly process, is not very efficiently controlled so as to avoid losses through efflux, because Q. suber has relatively high respiratory costs for ion uptake. Q. suber seedlings were grown in a growth room in hydroponics with 1 mM NO3 -. Seedlings were labelled with 15NO3 - in nutrient solution for 5 min to measure influx and for 2 h for net uptake. Efflux was calculated as the difference between influx and net uptake. Measurements were made in the morning, afternoon and night. The site of nitrate reduction was estimated from the ratio of NO3 - to amino acids in the xylem sap; the observed ratio indicated that nitrate reduction occurred predominantly in the roots. Nitrate influx was always much higher than net acquisition and both tended to be lower at night. High efflux occurred both during the day and at night, although the proportion of 15NO3 - taken up that was loss through efflux was proportionally higher during the night. Efflux was a significant fraction of influx. We concluded that the acquisition system is energetically inefficient under the conditions tested. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
When barley plants were grown in a solution with nitrate asthe sole N-source but deprived of sulphate (–Splants)for 1 to 5 d, the capacity for sulphate transport by the rootsincreased very markedly; subsequent measurement of influx using35S-labelled showed increases of > 10-fold compared to plants continuously supplied with sulphate (+S plants).There were only small effects on plant growth over a 5 d periodand yet the influx of , labelled with the short-lived tracer 13N, was diminished by approximately 30%.By contrast, the influx of phosphate was little affected bysulphate-deprivation. When a sulphate supply was restored to– S plants, the sulphate influx was quickly repressedover the subsequent 24 h and the nitrate influx was restoredto >90% of the value in +S plants. When plants were grown in a solution with a mixed nitrate andammonium supply and deprived of sulphate for 1 d or 5 d thedepression of nitrate influx was more strongly marked (up to55% depression). The influx of ammonium was also depressed after5 d of sulphate-deprivation, but not at 1 d, nor where the concentrationof ammonium in the uptake solution was lowered to 20 mmol m–3or less. Additional measurements with 15N-labelled nitrate and ammoniumover longer periods were used to determine net uptake. Net uptakeof nitrate was depressed to a similar extent to efflux, butnet ammonium uptake was depressed only in unbuffered uptakesolution where the pH decreased to pH 4.9 during the uptakeperiod. The 15N-tracer experiments showed that the translocationof label to the shoot, from both nitrate and ammonium, was depressedto a greater extent than net uptake in –S plants. Thedepression of nitrate influx, caused by 5 d of sulphate deprivation,could be relieved almost completely by providing plants with1.0 mol m–3 L-methionine during the day prior to influxmeasurement. This treatment substantially decreased sulphateand potassium (86Rb-labelled) influx in both +S and –Splants, but greatly increased total S-status of the plants.This methionine treatment had no effect on ammonium influx ornet uptake in – S plants but increased influx significantlyin +S ones. When plants were grown with sulphate but deprived of nitratefor 4 d there was a marked depression of the sulphate influx(by 48–65%) but a smaller effect on phosphate influx (21–37%of +N). The results are discussed in relation to the effects of sulphate-deprivationon growth rate and the root: shoot weight ratio. It is concludedthat the effects on influx and net uptake of nitrogen are moresevere than could be accounted for by these factors. The decreasedtranslocation of either nitrate, or the products of nitrateand ammonium assimilation from the roots, is suggested as areason for the depression of influx. The restoration of nitrateinflux and net uptake by methionine suggests that, for thision at least, a shortage of S-amino acids within the plant maylead to the accumulation of inhibitory concentrations of non-Samino acids in the transport pool. Key words: 13N, sulphate, nitrate, ammonium, ion-uptake, barley  相似文献   

19.
The effect of pH on nitrate and ammonium uptake in the high‐affinity transport system and low‐affinity transport system ranges was compared in two conifers and one crop species. Many conifers grow on acidic soils, thus their preference for ammonium vs nitrate uptake can differ from that of crop plants, and the effect of pH on nitrogen (N) uptake may differ. Proton, ammonium and nitrate net fluxes were measured at seedling root tips and 5, 10, 20 and 30 mm from the tips using a non‐invasive microelectrode ion flux measurement system in solutions of 50 or 1500 µM NH4NO3 at pH 4 and 7. In Glycine max and Pinus contorta, efflux of protons was observed at pH 7 while pH 4 resulted in net proton uptake in some root regions. Pseudotsuga menziesii roots consistently showed proton efflux behind the root tip, and thus appear better adapted to maintain proton efflux in acid soils. P. menziesii's ability to maintain ammonium uptake at low pH may relate to its ability to maintain proton efflux. In all three species, net nitrate uptake was greatest at neutral pH. Net ammonium uptake in G. max and net nitrate uptake in P. menziesii were greatly reduced at pH 4, particularly at high N concentration, thus N concentration should be considered when determining optimum pH for N uptake. In P. menziesii and G. max, net N uptake was greater in 1500 than 50 µM NH4NO3 solution, but flux profiles of all ions varied among species.  相似文献   

20.
Rengel Z 《Plant physiology》1990,93(3):1261-1267
Rhizotoxicity of Al is more pronounced in younger plants. Effects of Al on nutrient uptake by plants of different age are poorly understood. The depletion technique was used to monitor net Mg2+ uptake from nutrient solutions by intact 15- and 35-day-old plants of two ryegrass (Lolium multiflorum Lam.) cultivars. Lowering the pH from 6.0 to 4.2 decreased the maximum net ion influx without affecting Km. Aluminum at 6.6 micromolar Al3+ activity increased Km indicating competitive inhibition. The effects of pH and 6.6 micromolar Al3+ on net Mg2+ uptake were much larger in 15- than in 35-day-old plants. Aluminum at 26 micromolar Al3+ activity competitively inhibited net Mg2+ uptake by 35-day-old plants, while causing time- and external Mg2+ activity-dependent net Mg2+ efflux from 15-day-old plants. The equilibrium constant (Ki) of a reversible combination of postulated plasmalemma Mg2+ transporter and Al3+ was calculated to be 2 and 5 micromolar Al3+ activity for 15-day-old plants of Wilo and Gulf ryegrass, respectively, and 21 micromolar Al3+ activity for 35-day-old plants of both cultivars. The Al3+-mediated increase in Km was larger for 15-day-old plants of the Al-sensitive cultivar `Wilo' than of the more Al-tolerant cultivar `Gulf,' while Al3+ affected 35-day-old plants of both cultivars to the same extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号