首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Reduction of beta-adrenoceptor function by oxidative stress in the heart   总被引:1,自引:0,他引:1  
The effect of oxidative stress on beta-adrenoceptor function in the heart was determined. To this end ventricle membranes, field-stimulated rat left atria and field-stimulated rat right ventricle strips were exposed to 0.1 mM cumene hydroperoxide for 20 min. It was found that oxidative stress increased beta-adrenoceptor number and reduced c-AMP formation in the ventricle membranes. In the rat left atria and rat right ventricle strips the efficacy of beta-adrenoceptor agonists was reduced to approximately 30% of the control value, whereas maximal beta-adrenoceptor-mediated response was reduced to 50%. Using membranes from control atria and from atria exposed to oxidative stress, it was found that oxidative stress had no effect on beta-adrenoceptor density, nor on the affinity of (-)isoproterenol for the receptor. c-AMP production in membranes prepared from atria exposed to oxidative stress was reduced to approximately 30% of the c-AMP production in membranes prepared of control atria. In addition, it was found that the shape of the function that transduces the stimulus which is generated by receptor activation into an effect, is not altered by oxidative stress. It was concluded that the reduction of the efficacy of beta-adrenoceptor agonists by oxidative stress is probably caused by the reduction of c-AMP formation. Because the efficacy of forskolin and of dibutyryl c-AMP was not affected by oxidative stress, the reduced c-AMP formation is probably caused by an impaired coupling between the receptor and adenylate cyclase. The reduction of maximal beta-adrenoceptor-mediated response might be the result of cytotoxic aldehydes that are produced during oxidative stress. In ischemia, catecholamine release and subsequent beta-adrenoceptor hyperstimulation lead to cardiotoxicity. As shown in the present study, oxidative stress reduces beta-adrenoceptor function. This might represent a protective physiological feedback mechanism that protects the heart against excessive beta-adrenoceptor stimulation.  相似文献   

2.
S Borst  M Conolly 《Life sciences》1988,43(13):1021-1029
In intact human lymphocytes, cyclic AMP accumulation in response to isoproterenol was inhibited by 5 mM EDTA, by deletion of calcium ions from the medium and by 1 mM lanthanum chloride, but not by 1 microM verapamil or by 10 microM nifedipine. A23187 caused a modest increase in cyclic AMP content. Exposure of lymphocytes to 5 microM 1-isoproterenol desensitized the cells to subsequent beta-adrenergic stimulation, reducing cyclic AMP accumulation. With higher concentrations of 1-isoproterenol (50 microM), receptor density was reduced as well. None of the above agents attenuated losses in agonist-stimulated cyclic AMP accumulation induced by treatment with 5 microM isoproterenol for 90 min. These data suggest that calcium ions, both those present in the extracellular medium and those bound to the plasma membrane, are required for isoproterenol-stimulation of adenylate cyclase. In addition, it appears that neither the presence of extracellular calcium ions nor full activation of adenylate cyclase are required for desensitization.  相似文献   

3.
In rat olfactory bulb homogenate, carbachol stimulated adenylate cyclase activity in a concentration-dependent manner (EC50 = 1.1 microM). The carbachol stimulation occurred fully in membranes that had been prepared in the presence of 1 mM EGTA and incubated in a Ca2(+)-free enzyme reaction medium. Under these conditions, exogenous calmodulin (1 microM) failed to stimulate adenylate cyclase activity. In miniprisms of olfactory bulb, carbachol (1 mM) increased accumulation of inositol phosphates, but this response was markedly reduced in a Ca2(+)-free medium. Moreover, the carbachol stimulation of adenylate cyclase activity was not affected by staurosporine at a concentration (1 microM) that completely blocked the stimulatory effect of phorbol 12-myristate 13-acetate, an activator of Ca2+/phospholipid-dependent protein kinase. Quinacrine, a nonselective phospholipase A2 inhibitor, reduced the carbachol stimulation of adenylate cyclase activity, but this inhibition appeared to be competitive with a Ki of 0.2 microM. Nordihydroguaiaretic acid and indomethacin, two inhibitors of arachidonic acid metabolism, failed to affect the carbachol response. These results indicate that in rat olfactory bulb, muscarinic receptors stimulate adenylate cyclase activity through a mechanism that is independent of Ca2+ and phospholipid hydrolysis.  相似文献   

4.
Guanosine 5′-tetraphosphate (GTP4) stimulated mammalian adenylate cyclase activity at concentrations down to 1 μM. Greater stimulatory activity was apparent with lung than with heart, brain or liver from the rat. At a concentration of 0.1 mM, GTP4 stimulated lung adenylate cyclase activity from rat, guinea pig and mouse about four-fold. Other guanine nucleotides such as GTP, GDP, GMP, guanosine 3′, 5′-monophosphate and 5′-guanylylimidodiphosphate (GMP · PNP) also stimulated mammalian adenylate cyclase activity. GMP · PNP irreversibly activated, whereas GTP4 and GTP reversibly activated adenylate cyclase. Adenosine 5′-tetraphosphate (ATP4) stimulated rat lung and liver but inhibited rat heart and brain adenylate cyclase activities. Lung from guinea pig and mouse were not affected by ATP4. The formation of cyclic AMP by GTP4-stimulated rat lung adenylate cyclase was verified by Dowex-50 (H+), Dowex 1-formate and polyethyleneimine cellulose column chromatography. GTP4 was at least three times more potent than 1-isoproterenol in stimulating rat lung adenylate cyclase activity. The β-adrenergic receptor antagonist propranolol blocked the effect of 1-isoproterenol but not that of GTP4, thus, suggesting that GTP4 and β-adrenergic agonists interact with different receptor sites on membrane-bound adenylate cyclase. Stimulation of rat lung and liver adenylate cyclase activities with 1-isoproterenol was potentiated by either GTP4 or GMP. PNP, thus indicating that GTP4 resembles other guanine nucleotides in their capacity to increase the sensitivity of adenylate cyclase to β-adrenergic agonists. Stimulation of adenylate cyclase activity by guanine derivatives requires one or more free phosphate moieties on the 5 position of ribose, as no effect was elicited with guanine, guanosine, guanosine 2′-monophosphate, guanosine 3′-monophosphate or guanosine 2′,5′-monophosphate. Ribose, ribose 5-phosphate, phosphate and pyrophosphate were inactive. Pyrimidine nucleoside mono-, di-, tri- and tetraphosphates elicited negligible effects on mammalian adenylate cyclase activity.  相似文献   

5.
The presence of adenosine receptors coupled to adenylate cyclase in rat heart sarcolemma is demonstrated in these studies. Heart sarcolemma was isolated by the hypotonic shock-Lithium bromide treatment method. This preparation contained negligible amounts (2-4%) of contamination by other subcellular organelles such as mitochondria, sarcoplasmic reticulum, and myofibrils as verified by electron microscopic examination. In addition this preparation was also devoid of endothelial cells, since angiotensin-converting enzyme activity was not detected in this preparation. N-Ethylcarboxamide adenosine (NECA), L-N6-phenylisopropyladenosine (PIA), and adenosine N'-oxide (Ado N'-oxide) were all able to stimulate adenylate cyclase in heart sarcolemma, but not in crude homogenate, with an apparent Ka of 3-7 microM. The activation of adenylate cyclase by NECA was dependent on the concentrations of metal ions such as Mg2+ or Mn2+. The maximal stimulation was observed at lower concentrations of the metal ions (0.2-0.5 mM). At 5 mM Mg2+ or Mn2+, the stimulation by NECA was completely abolished. The stimulatory effect of NECA on adenylate cyclase was also dependent on guanine nucleotides and was blocked by 3-isobutyl-1-methylxanthine. In addition, 2'-deoxyadenosine showed an inhibitory effect on adenylate cyclase. The myocardial adenylate cyclase was also stimulated by beta-adrenergic agonists, dopamine and glucagon, and inhibited by cholinergic agonists such as carbachol and oxotremorine. The stimulation of adenylate cyclase by NECA was found to be additive with maximal stimulation obtained by epinephrine. These data suggest that rat heart sarcolemma contains adenosine (Ra), beta-adrenergic, dopaminergic, glucagon, and cholinergic receptors, and the stimulation of adenylate cyclase by epinephrine and adenosine occurs by distinctly different mechanism or adenosine and epinephrine stimulate different cyclase populations.  相似文献   

6.
The activity of the adenylate cyclase located in membranes prepared from hippocampus of adult rat can be stimulated by serotonin (5-HT) (Ka = 4 X 10(-7) M). The maximal effect is obtained with 10 microM 5-HT. Freezing of the tissue decreases the 5-HT stimulation; this stimulation is optimal in the presence of 82.5 mM Tris-maleate buffer (pH 7.4) and 50 microM GTP. The adenylate cyclase activity of membranes prepared from cortex, hypothalamus, and colliculi of adult rats is not significantly stimulated by 5-HT. Dopamine (DA) also stimulates adenylate cyclase located in hippocampal membranes; its effect can be blocked by haloperidol (10(-6) M), which fails to inhibit 5-HT stimulation. Moreover, p-chlorophenylalanine treatment for 2 weeks or selective lesion of 5-HT axons afferent to the hippocampus increases the Vmax of 5-HT stimulation, but fails to change that of DA stimulation. The 5-HT stimulation can be inhibited by metergoline, spiroperidol, and pizotyline (10(-6) M), but not by the same concentrations of mianserin, ketanserine, alprenolol, phenoxybenzamine, and mepyramine. The 5-HT stimulation of adenylate cyclase of hippocampal membranes can be mimicked by tryptamine, 5-methoxytryptamine, bufotenine, and to a lesser extent by LSD; N-methyltryptamine, N-methyltryptophan, and 5-hydroxytryptophan are inactive. Studies with kainic acid suggest that the 5-HT recognition site (5-HT1) linked to adenylate cyclase is located on the membrane of intrinsic hippocampal neurons.  相似文献   

7.
Vasoactive intestinal peptide (VIP) stimulated adenylyl cyclase activity in membranes from rat seminal vesicle. GTP potentiated the stimulatory effect of VIP so that it was routinely included at 10 microM. The stimulation of adenylyl cyclase by VIP was time and temperature dependent. The response was linear with time up to 15 min at 30 degrees C. Half-maximal adenylyl cyclase activation (in the presence of 10 microM GTP) was achieved at 3.0 nM VIP. The enzyme activity increased about 150% with respect to basal values at the maximal VIP concentration tested (1 microM). The relative potency of peptides upon stimulation of adenylyl cyclase activity was: VIP greater than helodermin greater than peptide histidine isoleucinamide greater than rat growth hormone-releasing factor. Other agents like GTP (0.1 mM), GppNHp (0.1 mM), forskolin (0.1 mM) and sodium fluoride (10 mM) increased the adenylyl cyclase activity 1.8-, 4.4-, 6.7- and 2.4-fold, respectively. Taken together, the presence of VIP in nerve terminals innervating the seminal vesicle of rats and the existence of VIP receptors coupled to adenylyl cyclase strongly suggest a physiological role for this neuropeptide in the modulation of seminal vesicle cell function.  相似文献   

8.
The effect of molybdate on adenylate cyclase (EC 4.6.1.1) in rat liver plasma membranes has been examined. The apparent K alpha for molybdate activation of the enzyme is 4.5 mM, and maximal, 7-fold stimulation is achieved at 50 mM. The observed increase in cAMP formation in the adenylate cyclase assay is not due to: (a) an inhibition of ATP hydrolysis; (b) a molybdate-catalyzed conversion of ATP to cAMP; (c) an inhibition of cAMP hydrolysis; or (d) an artifact in the isolation of cAMP formed in the reaction. Molybdate activation of adenylate cyclase is a general phenomenon exhibited by the enzyme in brain, cardiac, and renal tissue homogenates and in erythrocyte ghosts. However, like fluoride and guanyl-5'-yl imidodiphosphate (Gpp(NH)p), molybdate does not activate the soluble rat testicular adenylate cyclase. Molybdate is a reversible activator of adenylate cyclase. Activation is not due to an increase in ionic strength and is independent of the salt used to introduce molybdate. Molybdate does not activate adenylate cyclase previously stimulated with Gpp(NH)p or fluoride. At concentration greater than 20 mM, molybdate inhibits fluoride-stimulated adenylate cyclase, and at concentrations greater than 100 mM, molybdate stimulation of basal adenylate cyclase activity is diminished.  相似文献   

9.
In isolated perfused rat hearts, epidermal growth factor (EGF; 15 nM) increased cellular cyclic AMP (cAMP) content by 9.5-fold. In rat cardiac membranes, EGF also stimulated adenylate cyclase activity in a dose-dependent manner, with maximal stimulation (35% above control) being observed at 10 nM-EGF. Half-maximal stimulation of adenylate cyclase was observed at 40 pM-EGF. Although the beta-adrenergic-receptor antagonist propranolol markedly attenuated the isoprenaline-mediated increase in cAMP content of perfused hearts and stimulation of adenylate cyclase activity, it did not alter the ability of EGF to elevate tissue cAMP content and stimulate adenylate cyclase. The involvement of a guanine-nucleotide-binding protein (G-protein) in the activation of adenylate cyclase by EGF was indicated by the following evidence. First, the EGF-mediated stimulation of adenylate cyclase required the presence of the non-hydrolysable GTP analogue, guanyl-5'-yl-imidodiphosphate (p[NH]ppG). Maximal stimulation was observed in the presence of 10 microM-p[NH]ppG. Secondly, in the presence of 10 microM-p[NH]ppG, the stable GDP analogue guanosine 5'-[beta-thio]diphosphate at a concentration of 10 microM blocked the stimulation of the adenylate cyclase by 1 nM- and 10 nM-EGF. Third, NaF + AlCl3-stimulated adenylate cyclase activity was not altered by EGF. The ability of EGF to stimulate adenylate cyclase was not affected by pertussis-toxin treatment of cardiac membranes. However, in cholera-toxin-treated cardiac membranes, when the adenylate cyclase activity was stimulated by 2-fold, EGF was ineffective. Finally, PMA by itself did not alter the activity of cardiac adenylate cyclase, but abolished the EGF-mediated stimulation of this enzyme activity. The experimental evidence in the present paper demonstrates, for the first time, that EGF stimulates adenylate cyclase in rat cardiac membranes through a stimulatory GTP-binding regulatory protein, and this effect is manifested in elevated cellular cAMP levels in perfused hearts exposed to EGF.  相似文献   

10.
1. Enzyme activity, basal or dopamine-stimulated (10 microM), was linear with time to 25 min and with protein concentration to 0.8 mg protein/ml of final assay volume. Activity was maximal between pH 7.0 and 7.5. 2. Mg2+ maximally stimulated basal or dopamine-sensitive adenylate cyclase activity at about 4 mM. 3. Adenylate cyclase had a Km of 0.042 mM for ATP and maximum velocities for basal and dopamine-stimulated activity of 107 and 179 pmol cyclic AMP formed/mg protein per min, respectively. 4. Half-maximal stimulation of the enzyme occurred at about 4.2 x 10(-7) M dopamine with the threshold being less than 10(-9) M. Dopamine increased the Vmax but had no effect on the Km of ATP. 5. Eighty-five to 90% of the adenylate cyclase activity was found in the particulate fraction. 6. Calcium ion produced a marked inhibition of adenylate cyclase activity above 0.04 mM and half-maximal inhibition occurred near 0.1-0.2 mM.  相似文献   

11.
The adenylate cyclase of rat adipocyte plasma membrane is stimulated by sodium azide with a half maximal activation of 100–150% occuring at 50 mM NaN3. Studies of the effects of azide and fluoride indicate different mechanisms of stimulation of the enzyme by these ions. Comparable stimulation of the activity is obtained by 100 mM NaN3 or 10 mM NaF but unlike azide, higher concentrations of fluoride cause inhibition of the enzyme. Fluoride activated adenylate cyclase is further stimulated by azide. Epinephrine stimulation of the enzyme is absent in the presence of fluoride but the hormone enhances the activity in the presence of azide. Reversal of the inhibitory action of GTP on adenylate cyclase by epinephrine is demonstrated even in the presence of azide but not in the presence of fluoride.  相似文献   

12.
Normal rat kidney (NRK) cells growth arrested by picolinic acid and isoleucine deprivation exhibit an increased response to certain agents (i.e., prostaglandin E1, (?)-isoproterenol, and cholera toxin) which elevate intracellular cyclic AMP levels. The enhanced hormonal response is apparently due, at least in part, to increased adenylate cyclase activity. Adenylate cyclase activities measured in the presence of GTP, GTP plus prostaglandin E1, and GTP plus (?)-isoproterenol are increased two- to threefold in membranes prepared from treated cells. In contrast, basal activity is potentiated only 20 to 50% and activity determined in the presence of fluoride is only marginally altered. Also of interest is the increase in cholera toxin activation of cyclase activity in the treated cells. Lower concentrations of cholera toxin (5 ng/ml) are required to achieve maximal stimulation of cyclase activity from picolinic acid-treated and isoleucine-deprived cells; maximal stimulation of control cell adenylate cyclase is attained with 25 to 50 ng/ml cholera toxin. Picolinic acid treatment and isoleucine deficiency both have been shown to arrest NRK cell growth in the G1 phase of the cell cycle. However, results with cells arrested in G1 by serum starvation and by growth to high cell population density indicate that G1 specific growth arrest does not appear to account for the increase in hormonal responsiveness. Chelation of inhibitory metals and proteolytic activation also do not appear to be involved in the mechanism by which picolinic acid enhances cyclic AMP formation. Rather, the results suggest that the treated cells have an increased amount of an active GTP-dependent function required for hormone and cholera toxin stimulation of adenylate cyclase. Thus, picolinic acid treatment and isoleucine deprivation may provide a useful means of modulating the GTP-dependent step required to potentiate hormonal responsiveness.  相似文献   

13.
In the presence of 1 microM atrial natriuretic factor (ANF) and low (0.1 mM) Mg2+ concentrations, the initial rate of binding of [3H]guanosine 5'-[beta, gamma-imido)triphosphate [( 3H]p[NH]ppG) to rat lung plasma membranes was increased twofold to threefold. ANF-dependent stimulation of the initial rate of [3H]p[NH]ppG binding was reduced at high (5 mM) Mg2+ concentrations. Preincubation of membranes with p[NH]ppG (5 min at 37 degrees C) eliminated the ANF-dependent effect on [3H]p[NH]ppG binding whereas ANF-dependent [3H]p[NH]ppG binding was unaffected by similar pretreatment with guanosine 5'-[beta-thio]diphosphate (GDP[beta S]). An increase in ANF concentration from 10 pM to 1 microM caused a 40% decrease in forskolin-stimulated or isoproterenol-stimulated adenylate cyclase activities (IC50 5 nM) in rat lung plasma membranes. GTP (100 microM) was obligatory for the ANF-dependent inhibition of adenylate cyclase, which could be completely overcome by the presence of 100 microM GDP[beta S] or the addition of 10 mM Mn2+. Reduction of Na2+ concentration from 120 mM to 20 mM had the same effect. Pertussis toxin eliminated ANF-dependent inhibition of adenylate cyclase by catalyzing ADP-ribosylation of membrane-bound Ni protein (41-kDa alpha subunit of the inhibitory guanyl-nucleotide-binding protein of adenylate cyclase). The data support the notion that one of the ANF receptors in rat lung plasma membranes is negatively coupled to a hormone-sensitive adenylate cyclase complex via the GTP-binding Ni protein.  相似文献   

14.
5-Iodonaphthyl 1-azide (INA) has been previously shown to selectively label, on photolysis, only those proteins in contact with the membrane lipids. Low concentrations (less than 10 microM) of INA added to rat ovarian plasma membranes induced, on photoactivation, a selective and complete loss of the response of the adenylate cyclase to stimulation by human chorionic gonadotropin (hCG) or luteinizing hormone (LH). In contrast, this treatment affected neither hCG binding to the receptor nor the stimulation of the enzyme by NaF. That the uncoupling of the receptor from the enzyme by INA occurred within the lipid bilayer can be derived from the finding that the prior presence neither of saturating concentrations of hCG nor of the aqueous nitrene-scavenger glutathione (GSH) prevented this effect. Photolysis at higher concentrations of INA (0.1-1 mM) led to the inhibition of the adenylate cyclase stimulated by fluoride. This effect was totally prevented by glutathione. A similar behavior was obtained with a water-soluble analogue of INA, namely, 5-diazonionapthyl 1-azide (DAN). On photoactivation with 30 microM DAN, the NaF-stimulated adenylate cyclase was inhibited, but this effect was completely prevented by added GSH. At low concentrations where its effects are restricted to the lipid core, INA may represent a useful tool to define receptor coupling with the adenylate cyclase. The capacity of INA at low concentrations to uncouple the hormone receptor from the adenylate cyclase is not restricted to the LH/hCG receptor. Other hormone receptors tested behaved similarly. Therefore, the reported findings appear to represent a general phenomenon.  相似文献   

15.
Lung membranes are susceptible to oxygen radicals, formed during inflammation, redox cycling of toxic agents, exposition to ozon etc. Oxygen radicals may modify the beta-adrenergic response. However, at the same time beta-adrenoceptors of the lung are frequently addressed in therapy. We embarked upon this problem by studying the effects of the aldehyde 4-hydroxy-2,3-transnonenal (HNE), one of the major products of lipid peroxidation, on the density of beta-adrenoceptors of rat lung membranes. It is shown, that the physiological important sulfhydryl blocking agent HNE inactivates the beta-adrenoceptors in a time- and concentration dependent (0.5-2.5 mM) way, indicated by a decrease in (-)-[3H]dihydroalprenolol (DHA) binding to lung membranes. Moreover, it is shown that combined treatment of HNE with (-)-isoproterenol (0.5 microM) or 1-alprenolol (0.5-10 nM) does not influence the extent of inactivation of beta-adrenoceptors by HNE. This is in contrast with previous studies, conducted with other, synthetic, sulfhydryl blocking agents, such as N-ethylmaleimide (NEM), suggesting that an other mechanism of inactivation is involved upon HNE treatment.  相似文献   

16.
The effect of the hepatocarcinogen dimethylnitrosamine on rat liver plasma membrane adenylate cyclase activity and lipid fluidity was assessed. Glucagon-stimulated adenylate cyclase activity exhibited a complex response to increasing concentrations of dimethylnitrosamine, whereas fluoride-stimulated adenylate cyclase activity was progressively inhibited. Maximal inhibitory effects were observed at a concentration of 15 mM in both cases. The activity of detergent-solubilized adenylate cyclase was unaffected by dimethylnitrosamine. ESR analysis using a fatty acid spin probe showed that dimethylnitrosamine produced a marked, dose-dependent reduction in the fluidity of the plasma membrane with a maximal effect occurring at 20 mM. Dimethylnitrosamine also elevated the temperature at which the lipid phase separation occurred in rat liver plasma membranes, from 28 degrees C to 31 degrees C. The non-carcinogenic but structurally similar compound, dimethylamine hydrochloride neither inhibited adenylate cyclase nor decreased plasma membrane fluidity. It is suggested that the decrease in membrane fluidity, induced by dimethylnitrosamine, via its effects on membrane fluidity, could influence plasma membrane function and cellular regulation.  相似文献   

17.
An adenosine-sensitive adenylate cyclase has been characterized in cultured mesenteric artery smooth muscle cells. N-Ethylcarboxamide-adenosine (NECA), N-Methylcarboxamide-adenosine (MECA), L-N6-phenylisopropyladenosine (PIA) and 2-chloroadenosine (2-cl-Ado) all stimulated adenylate cyclase in a concentration dependent manner. NECA was the most potent analog (EC50, 1 microM), whereas PIA (EC50, 15 microM), 2-Cl-Ado (EC50, 15 microM) and MECA (EC50, 24 microM), were less potent and had efficacies relative to NECA of 0.61, 0.61 and 0.65, respectively. Adenosine showed a biphasic effect: stimulation at lower concentrations and inhibition at higher concentrations, whereas 2' deoxyadenosine only inhibited adenylate cyclase activity. The stimulatory effect of NECA on adenylate cyclase was dependent on metal ion concentration and was blocked by 3-isobutyl-l-methylxanthine (IBMX) and 8-phenyltheophylline (8-PT). Adenylate cyclase from these cultured cells was also stimulated by other agonists such as epinephrine, norepinephrine, prostaglandins, dopamine, NaF and forskolin. The stimulation of adenylate cyclase by isoproterenol, epinephrine and norepinephrine was blocked by propranolol but not by phentolamine. On the other hand, phentolamine, propranolol and flupentixol all inhibited dopamine-stimulated adenylate cyclase activity. In addition, the stimulation by an optimal concentration of PIA was additive or almost additive with maximal stimulation caused by catecholamines and prostaglandins. These data indicate the presence of adenosine (Stimulatory "Ra"), catecholamine and prostaglandin receptors in mesenteric artery smooth muscle cells and suggest that these agents may exert their physiological actions through their interaction with their respective receptors coupled to adenylate cyclase.  相似文献   

18.
The influence of Vibrio cholerae enterotoxin (choleragen) on the response of adenylate cyclase to hormones and GTP, and on the binding of 125I-labeled glucagon to membranes, has been examined primarily in rat adipocytes, but also in guinea pig ileal mucosa and rat liver. Incubation of fat cells with choleragen converts adenylate cyclase to a GTP-responsive state; (-)-isoproterenol has a similar effect when added directly to membranes. Choleragen also increases by two- to fivefold the apparent affinity of (-)-isoproterenol, ACTH, glucagon, and vasoactive intestinal polypeptide for the activation of adenylate cyclase. This effect on vasoactive intestinal polypeptide action is also seen with the enzyme of guinea pig ileal mucosa; the toxin-induced sensitivity to VIP may be relevant in the pathogenesis of cholera diarrhea. The apparent affinity of binding of 125I-labeled glucagon is increased about 1.5- to twofold in choleragen-treated liver and fat cell membranes. The effects of choleragen on the response of adenylate cyclase to hormones are independent of protein synthesis, and they are not simply a consequence to protracted stimulation of the enzyme in vivo or during preparation of the membranes. Activation of cyclase in rat erythrocytes by choleragen is not impaired by agents which disrupt microtubules or microfilaments, and it is still observed in cultured fibroblasts after completely suppressing protein synthesis with diphtheria toxin. Choleragen does not interact directly with hormone receptor sites. Simple occupation of the choleragen binding sites with the analog, choleragenoid, does not lead to any of the biological effects of the toxin.  相似文献   

19.
The responsiveness of a growth-regulated rat 3Y1 cell line and five clones of 3Y1 cells transformed by the highly oncogenic human adenovirus type 12 to the catecholamine hormone (-)-isoproterenol was studied. The untransformed cells contained beta-adrenergic receptors characterized by specific binding of the beta-adrenergic receptor antagonist (-)-[3H]dihydroalprenolol, a 9- to 12-fold increase in cyclic AMP production in intact cells after incubation with 10 microM (-)-isoproterenol, and significantly increased adenylate cyclase (ATP pyrophosphatelyase [cyclizing], EC 4.6.1.1) activity in the presence of the hormone. In contrast, (-)-isoproterenol (10 to 100 microM) had no apparent effect on cyclic AMP production or the basal adenylate cyclase activity in the transformed cell lines. Binding studies revealed that untransformed cells contained approximately 19,400 beta-adrenergic receptor sites per cell. Three transformed cell clones tested showed a three- to fourfold loss of beta-adrenergic receptors.  相似文献   

20.
Stimulation of cyclic AMP (cAMP) accumulation in rat cortex slices by 1 microM forskolin (F) was markedly reduced (96%) by treatment with adenosine deaminase (ADA). The effect of ADA was progressively less at higher concentrations of F, but still inhibited the response by 50% at 100 microM F. ADA-mediated inhibition of the cAMP response to 1 microM F was completely reversed by 5 microM 2-chloroadenosine (CA), an ADA-resistant analogue. Stimulation by F (controls) and F plus CA (ADA treated) in cortex slices was significantly inhibited by 200 microM caffeine (CAF) and by 10 microM 8-phenyltheophylline. cAMP accumulation in ADA-treated cortex slices stimulated with CA at concentrations from 5 to 100 microM was markedly enhanced by 1 microM F. Neither ADA treatment nor 200 microM CAF significantly affected cAMP accumulation in slices stimulated by 1 microM vasoactive intestinal polypeptide or adenylate cyclase in membranes stimulated by 1 microM F. CAF (1 mM) did not significantly increase basal cAMP levels in cortex slices, whereas 1 mM 3-isobutyl-1-methylxanthine caused a significant 80% increase and 100 microM rolipram enhanced cAMP levels by 4.5-fold. F-stimulated cAMP accumulation (1 microM) in cortex slices was inhibited 98% by 1 mM CAF and 49% by 1 mM 3-isobutyl-1-methylxanthine, and was enhanced 2.5-fold by 100 microM rolipram. These data have been interpreted to indicate that the stimulation of cAMP accumulation in rat cortex slices by 1 microM F is predominantly due to synergistic interaction with endogenous adenosine and that the inhibition of this response by CAF is largely due to blockade of adenosine receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号