首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The crystal structure of Thermus thermophilus asparaginyl-tRNA synthetase has been solved by multiple isomorphous replacement and refined at 2.6 A resolution. This is the last of the three class IIb aminoacyl-tRNA synthetase structures to be determined. As expected from primary sequence comparisons, there are remarkable similarities between the tertiary structures of asparaginyl-tRNA synthetase and aspartyl-tRNA synthetase, and most of the active site residues are identical except for three key differences. The structure at 2.65 A of asparaginyl-tRNA synthetase complexed with a non-hydrolysable analogue of asparaginyl-adenylate permits a detailed explanation of how these three differences allow each enzyme to discriminate between their respective and very similar amino acid substrates, asparagine and aspartic acid. In addition, a structure of the complex of asparaginyl-tRNA synthetase with ATP shows exactly the same configuration of three divalent cations as previously observed in the seryl-tRNA synthetase-ATP complex, showing that this a general feature of class II synthetases. The structural similarity of asparaginyl- and aspartyl-tRNA synthetases as well as that of both enzymes to the ammonia-dependent asparagine synthetase suggests that these three enzymes have evolved relatively recently from a common ancestor.  相似文献   

2.
《FEBS letters》2014,588(9):1808-1812
The human pathogen Staphylococcus aureus is an asparagine prototroph despite its genome not encoding an asparagine synthetase. S. aureus does use an asparaginyl-tRNA synthetase (AsnRS) to directly ligate asparagine to tRNAAsn. The S. aureus genome also codes for one aspartyl-tRNA synthetase (AspRS). Here we demonstrate the lone S. aureus aspartyl-tRNA synthetase has relaxed tRNA specificity and can be used with the amidotransferase GatCAB to synthesize asparagine on tRNAAsn. S. aureus thus encodes both the direct and indirect routes for Asn-tRNAAsn formation while encoding only one aspartyl-tRNA synthetase. The presence of the indirect pathway explains how S. aureus synthesizes asparagine without either asparagine synthetase.  相似文献   

3.
4.
The cDNA for human cytosolic asparaginyl-tRNA synthetase (hsAsnRSc) has been cloned and sequenced. The 1874 bp cDNA contains an open reading frame encoding 548 amino acids with a predicted M r of 62 938. The protein sequence has 58 and 53% identity with the homologous enzymes from Brugia malayi and Saccharomyces cerevisiae respectively. The human enzyme was expressed in Escherichia coli as a fusion protein with an N-terminal 4 kDa calmodulin-binding peptide. A bacterial extract containing the fusion protein catalyzed the aminoacylation reaction of S.cerevisiae tRNA with [14C]asparagine at a 20-fold efficiency level above the control value confirming that this cDNA encodes a human AsnRS. The affinity chromatography purified fusion protein efficiently aminoacylated unfractionated calf liver and yeast tRNA but not E.coli tRNA, suggesting that the recombinant protein is the cytosolic AsnRS. Several human anti-synthetase sera were tested for their ability to neutralize hsAsnRSc activity. A human autoimmune serum (anti-KS) neutralized hsAsnRSc activity and this reaction was confirmed by western blot analysis. The human asparaginyl-tRNA synthetase appears to be like the alanyl- and histidyl-tRNA synthetases another example of a human Class II aminoacyl-tRNA synthetase involved in autoimmune reactions.  相似文献   

5.
Asparagine synthetase A (AsnA) catalyzes asparagine synthesis using aspartate, ATP, and ammonia as substrates. Asparagine is formed in two steps: the β-carboxylate group of aspartate is first activated by ATP to form an aminoacyl-AMP before its amidation by a nucleophilic attack with an ammonium ion. Interestingly, this mechanism of amino acid activation resembles that used by aminoacyl-tRNA synthetases, which first activate the α-carboxylate group of the amino acid to form also an aminoacyl-AMP before they transfer the activated amino acid onto the cognate tRNA. In a previous investigation, we have shown that the open reading frame of Pyrococcus abyssi annotated as asparaginyl-tRNA synthetase (AsnRS) 2 is, in fact, an archaeal asparagine synthetase A (AS-AR) that evolved from an ancestral aspartyl-tRNA synthetase (AspRS). We present here the crystal structure of this AS-AR. The fold of this protein is similar to that of bacterial AsnA and resembles the catalytic cores of AspRS and AsnRS. The high-resolution structures of AS-AR associated with its substrates and end-products help to understand the reaction mechanism of asparagine formation and release. A comparison of the catalytic core of AS-AR with those of archaeal AspRS and AsnRS and with that of bacterial AsnA reveals a strong conservation. This study uncovers how the active site of the ancestral AspRS rearranged throughout evolution to transform an enzyme activating the α-carboxylate group into an enzyme that is able to activate the β-carboxylate group of aspartate, which can react with ammonia instead of tRNA.  相似文献   

6.
Chuawong P  Hendrickson TL 《Biochemistry》2006,45(26):8079-8087
Divergent tRNA substrate recognition patterns distinguish the two distinct forms of aspartyl-tRNA synthetase (AspRS) that exist in different bacteria. In some cases, a canonical, discriminating AspRS (D-AspRS) specifically generates Asp-tRNA(Asp) and usually coexists with asparaginyl-tRNA synthetase (AsnRS). In other bacteria, particularly those that lack AsnRS, AspRS is nondiscriminating (ND-AspRS) and generates both Asp-tRNA(Asp) and the noncanonical, misacylated Asp-tRNA(Asn); this misacylated tRNA is subsequently repaired by the glutamine-dependent Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase (Asp/Glu-Adt). The molecular features that distinguish the closely related bacterial D-AspRS and ND-AspRS are not well-understood. Here, we report the first characterization of the ND-AspRS from the human pathogen Helicobacter pylori (H. pylori or Hp). This enzyme is toxic when heterologously overexpressed in Escherichia coli. This toxicity is rescued upon coexpression of the Hp Asp/Glu-Adt, indicating that Hp Asp/Glu-Adt can utilize E. coli Asp-tRNA(Asn) as a substrate. Finally, mutations in the anticodon-binding domain of Hp ND-AspRS reduce this enzyme's ability to misacylate tRNA(Asn), in a manner that correlates with the toxicity of the enzyme in E. coli.  相似文献   

7.
J Anselme  M H?rtlein 《Gene》1989,84(2):481-485
The Escherichia coli asnS gene codes for asparaginyl-tRNA synthetase (NRSEC). We have sequenced the asnS region, including 382 bp of the 5'-untranslated region, 1398 bp of the coding region and 280 bp of the 3'-untranslated region. The DNA-derived NRSEC amino acid (aa) sequence was confirmed by direct aa sequencing of the N-terminal parts of the native protein and of a 28-kDa internal fragment generated by trypsin digestion. The asnS gene product has been purified to homogeneity using three chromatographic steps. Sequence comparison of the deduced NRSEC sequence with all aminoacyl-tRNA synthetase sequences showed significant homologies with the yeast aspartyl-tRNA synthetase and weaker relationships with other aminoacyl-tRNA synthetases for aa with an XAX codon.  相似文献   

8.
The crystal structure of aspartyl-tRNA synthetase (AspRS) from Pyrococcus kodakaraensis was solved at 1.9 A resolution. The sequence and three-dimensional structure of the catalytic domain are highly homologous to those of eukaryotic AspRSs. In contrast, the N-terminal domain, whose function is to bind the tRNA anticodon, is more similar to that of eubacterial enzymes. Its structure explains the unique property of archaeal AspRSs of accommodating both tRNAAsp and tRNAAsn. Soaking the apo-enzyme crystals with ATP and aspartic acid both separately and together allows the adenylate formation to be followed. Due to the asymmetry of the dimeric enzyme in the crystalline state, different steps of the reaction could be visualized within the same crystal. Four different states of the aspartic acid activation reaction could thus be characterized, revealing the functional correlation of the observed conformational changes. The binding of the amino acid substrate induces movement of two invariant loops which secure the position of the peptidyl moiety for adenylate formation. An unambiguous spatial and functional assignment of three magnesium ion cofactors can be made. This study shows the important role of residues present in both archaeal and eukaryotic AspRSs, but absent from the eubacterial enzymes.  相似文献   

9.
The nondiscriminating aspartyl-tRNA synthetase (ND-AspRS), found in many archaea and bacteria, covalently attaches aspartic acid to tRNAAsp and tRNAAsn generating a correctly charged Asp-tRNAAsp and an erroneous Asp-tRNAAsn. This relaxed tRNA specificity is governed by interactions between the tRNA and the enzyme. In an effort to assess the contributions of the anticodon-binding domain to tRNA specificity, we constructed two chimeric enzymes, Chimera-D and Chimera-N, by replacing the native anticodon-binding domain in the Helicobacter pylori ND-AspRS with that of a discriminating AspRS (Chimera-D) and an asparaginyl-tRNA synthetase (AsnRS, Chimera-N), both from Escherichia coli. Both chimeric enzymes showed similar secondary structure compared to wild-type (WT) ND-AspRS and maintained the ability to form dimeric complexes in solution. Although less catalytically active than WT, Chimera-D was more discriminating as it aspartylated tRNAAsp over tRNAAsn with a specificity ratio of 7.0 compared to 2.9 for the WT enzyme. In contrast, Chimera-N exhibited low catalytic activity toward tRNAAsp and was unable to aspartylate tRNAAsn. The observed catalytic activities for the two chimeras correlate with their heterologous toxicity when expressed in E. coli. Molecular dynamics simulations show a reduced hydrogen bond network at the interface between the anticodon-binding domain and the catalytic domain in Chimera-N compared to Chimera-D or WT, explaining its lower stability and catalytic activity.  相似文献   

10.
Summary The glnA gene of the thermophilic sulphur-dependent archaebacterium Sulfolobus solfataricus was identified by hybridization with the corresponding gene of the cyanobacterium Spirulina platensis and cloned in Escherichia coli. The nucleotide sequence of the 1696 bp DNA fragment containing the structural gene for glutamine synthetase was determined, and the derived amino acid sequence (471 residues) was compared to the sequences of glutamine synthetases from eubacteria and eukaryotes. The homology between the archaebacterial and the eubacterial enzymes is higher (42%–49%) than that found with the eukaryotic counterpart (less than 20%). This was true also when the five most conserved regions, which it is possible to identify in both eubacterial and eukaryotic glutamine synthetases, were analysed.  相似文献   

11.
Asparaginyl-tRNA synthetase (AsnRS) is a member of the class-II aminoacyl-tRNA synthetases, and is responsible for catalyzing the specific aminoacylation of tRNA(Asn) with asparagine. Here, the crystal structure of AsnRS from Pyrococcus horikoshii, complexed with asparaginyl-adenylate (Asn-AMP), was determined at 1.45 A resolution, and those of free AsnRS and AsnRS complexed with an Asn-AMP analog (Asn-SA) were solved at 1.98 and 1.80 A resolutions, respectively. All of the crystal structures have many solvent molecules, which form a network of hydrogen-bonding interactions that surrounds the entire AsnRS molecule. In the AsnRS/Asn-AMP complex (or the AsnRS/Asn-SA), one side of the bound Asn-AMP (or Asn-SA) is completely covered by the solvent molecules, which complement the binding site. In particular, two of these water molecules were found to interact directly with the asparagine amide and carbonyl groups, respectively, and to contribute to the formation of a pocket highly complementary to the asparagine side-chain. Thus, these two water molecules appear to play a key role in the strict recognition of asparagine and the discrimination against aspartic acid by the AsnRS. This water-assisted asparagine recognition by the AsnRS strikingly contrasts with the fact that the aspartic acid recognition by the closely related aspartyl-tRNA synthetase is achieved exclusively through extensive interactions with protein amino acid residues. Furthermore, based on a docking model of AsnRS and tRNA, a single arginine residue (Arg83) in the AsnRS was postulated to be involved in the recognition of the third position of the tRNA(Asn) anticodon (U36). We performed a mutational analysis of this particular arginine residue, and confirmed its significance in the tRNA recognition.  相似文献   

12.
The gene encoding threonyl-tRNA synthetase (Thr-tRNA synthetase) from the extreme thermophilic eubacterium Thermus thermophilus HB8 has been cloned and sequenced. The ORF encodes a polypeptide chain of 659 amino acids (Mr 75 550) that shares strong similarities with other Thr-tRNA synthetases. Comparative analysis with the three-dimensional structure of other subclass IIa synthetases shows it to be organized into four structural modules: two N-terminal modules specific to Thr-tRNA synthetases, a catalytic core and a C-terminal anticodon-binding module. Comparison with the three-dimensional structure of Escherichia coli Thr-tRNA synthetase in complex with tRNAThr enabled identification of the residues involved in substrate binding and catalytic activity. Analysis by atomic absorption spectrometry of the enzyme overexpressed in E. coli revealed the presence in each monomer of one tightly bound zinc atom, which is essential for activity. Despite strong similarites in modular organization, Thr-tRNA synthetases diverge from other subclass IIa synthetases on the basis of their N-terminal extensions. The eubacterial and eukaryotic enzymes possess a large extension folded into two structural domains, N1 and N2, that are not significantly similar to the shorter extension of the archaebacterial enzymes. Investigation of a truncated Thr-tRNA synthetase demonstrated that domain N1 is not essential for tRNA charging. Thr-tRNA synthetase from T. thermophilus is of the eubacterial type, in contrast to other synthetases from this organism, which exhibit archaebacterial characteristics. Alignments show conservation of part of domain N2 in the C-terminal moiety of Ala-tRNA synthetases. Analysis of the nucleotide sequence upstream from the ORF showed the absence of both any anticodon-like stem-loop structure and a loop containing sequences complementary to the anticodon and the CCA end of tRNAThr. This means that the expression of Thr-tRNA synthetase in T. thermophilus is not regulated by the translational and trancriptional mechanisms described for E. coli thrS and Bacillus subtilis thrS and thrZ. Here we discuss our results in the context of evolution of the threonylation systems and of the position of T. thermophilus in the phylogenic tree.  相似文献   

13.
A gene encoding a putative GTP-specific phosphoenolpyruvate carboxykinase has been cloned and sequenced from the type I amitochondriate protist Giardia intestinalis. The deduced amino acid sequence is related most closely to homologs from hyperthermophilic archaebacteria and only more distantly to homologs from Eubacteria and Metazoa. Most enzymes of Giardia core metabolism, however, are related more closely to eubacterial and metazoan homologs. An archaebacterial relationship has been noted previously for the unusual acetyl-CoA synthetase (ADP-forming) of this organism. The results suggest that phosphoenolpyruvate carboxykinase and acetyl-CoA synthetase have been acquired from different sources than most enzymes of Giardia core metabolism.  相似文献   

14.
Thermus thermophilus possesses two aspartyl-tRNA synthetases (AspRSs), AspRS1 and AspRS2, encoded by distinct genes. Alignment of the protein sequences with AspRSs of other origins reveals that AspRS1 possesses the structural features of eubacterial AspRSs, whereas AspRS2 is structurally related to the archaebacterial AspRSs. The structural dissimilarity between the two thermophilic AspRSs is correlated with functional divergences. AspRS1 aspartylates tRNA(Asp) whereas AspRS2 aspartylates tRNA(Asp), and tRNA(Asn) with similar efficiencies. Since Asp bound on tRNA(Asn) is converted into Asn by a tRNA-dependent aspartate amidotransferase, AspRS2 is involved in Asn-tRNA(Asn) formation. These properties relate functionally AspRS2 to archaebacterial AspRSs. The structural basis of the dual specificity of T. thermophilus tRNA(Asn) was investigated by comparing its sequence with those of tRNA(Asp) and tRNA(Asn) of strict specificity. It is shown that the thermophilic tRNA(Asn) contains the elements defining asparagine identity in Escherichia coli, part of which being also the major elements of aspartate identity, whereas minor elements of this identity are missing. The structural context that permits expression of aspartate and asparagine identities by tRNA(Asn) and how AspRS2 accommodates tRNA(Asp) and tRNA(Asn) will be discussed. This work establishes a distinct structure-function relationship of eubacterial and archaebacterial AspRSs. The structural and functional properties of the two thermophilic AspRSs will be discussed in the context of the modern and primitive pathways of tRNA aspartylation and asparaginylation and related to the phylogenetic connexion of T. thermophilus to eubacteria and archaebacteria.  相似文献   

15.
In many organisms, the formation of asparaginyl-tRNA is not done by direct aminoacylation of tRNA(Asn) but by specific tRNA-dependent transamidation of aspartyl-tRNA(Asn). This transamidation pathway involves a nondiscriminating aspartyl-tRNA synthetase (AspRS) that charges both tRNA(Asp) and tRNA(Asn) with aspartic acid. Recently, it has been shown for the first time in an organism (Pseudomonas aeruginosa PAO1) that the transamidation pathway is the only route of synthesis of Asn-tRNA(Asn) but does not participate in Gln-tRNA(Gln) formation. P. aeruginosa PAO1 has a nondiscriminating AspRS. We report here the identification of two residues in the anticodon recognition domain (H31 and G83) which are implicated in the recognition of tRNA(Asn). Sequence comparisons of putative discriminating and nondiscriminating AspRSs (based on the presence or absence of the AdT operon and of AsnRS) revealed that bacterial nondiscriminating AspRSs possess a histidine at position 31 and usually a glycine at position 83, whereas discriminating AspRSs possess a leucine at position 31 and a residue other than a glycine at position 83. Mutagenesis of these residues of P. aeruginosa AspRS from histidine to leucine and from glycine to lysine increased the specificity of tRNA(Asp) charging over that of tRNA(Asn) by 3.5-fold and 4.2-fold, respectively. Thus, we show these residues to be determinants of the relaxed specificity of this nondiscriminating AspRS. Using available crystallographic data, we found that the H31 residue could interact with the central bases of the anticodons of the tRNA(Asp) and tRNA(Asn). Therefore, these two determinants of specificity of P. aeruginosa AspRS could be important for all bacterial AspRSs.  相似文献   

16.
Aminoacyl-tRNA is generally formed by aminoacyl-tRNA synthetases, a family of 20 enzymes essential for accurate protein synthesis. However, most bacteria generate one of the two amide aminoacyl-tRNAs, Asn-tRNA or Gln-tRNA, by transamidation of mischarged Asp-tRNA(Asn) or Glu-tRNA(Gln) catalyzed by a heterotrimeric amidotransferase (encoded by the gatA, gatB, and gatC genes). The Chlamydia trachomatis genome sequence reveals genes for 18 synthetases, whereas those for asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase are absent. Yet the genome harbors three gat genes in an operon-like arrangement (gatCAB). We reasoned that Chlamydia uses the gatCAB-encoded amidotransferase to generate both Asn-tRNA and Gln-tRNA. C. trachomatis aspartyl-tRNA synthetase and glutamyl-tRNA synthetase were shown to be non-discriminating synthetases that form the misacylated tRNA(Asn) and tRNA(Gln) species. A preparation of pure heterotrimeric recombinant C. trachomatis amidotransferase converted Asp-tRNA(Asn) and Glu-tRNA(Gln) into Asn-tRNA and Gln-tRNA, respectively. The enzyme used glutamine, asparagine, or ammonia as amide donors in the presence of either ATP or GTP. These results suggest that C. trachomatis employs the dual specificity gatCAB-encoded amidotransferase and 18 aminoacyl-tRNA synthetases to create the complete set of 20 aminoacyl-tRNAs.  相似文献   

17.
A cDNA clone encoding rat liver aspartyl-tRNA synthetase was isolated by probing a lambda gt11 recombinant cDNA expression library with antibodies directed against the corresponding polypeptide from sheep liver. The 1930-base pairs-long cDNA insert allowed the expression in Escherichia coli of an active enzyme of mammalian origin. The nucleotide sequence of that cDNA, corresponding to the DRS1 gene, was determined. The open reading frame of DRS1 corresponds to a protein of Mr = 57,061, in good agreement with the previously determined molecular weight of the purified enzyme. The deduced amino acid sequence shows extensive homologies with that of yeast cytoplasmic aspartyl-tRNA synthetase, more than 50% of the residues being identical. In rat liver, aspartyl-tRNA synthetase occurs in two distinct forms: a dimeric enzyme and a component of a multienzyme complex comprising the nine aminoacyl-tRNA synthetases specific for arginine, aspartic acid, glutamic acid, glutamine, isoleucine, leucine, lysine, methionine, and proline. The primary structure of the DRS1 gene product is discussed in relation to the occurrence of two distinct forms of that enzyme.  相似文献   

18.
Huot JL  Balg C  Jahn D  Moser J  Emond A  Blais SP  Chênevert R  Lapointe J 《Biochemistry》2007,46(45):13190-13198
The trimeric GatCAB aminoacyl-tRNA amidotransferases catalyze the amidation of Asp-tRNAAsn and/or Glu-tRNAGln to Asn-tRNAAsn and/or Gln-tRNAGln, respectively, in bacteria and archaea lacking an asparaginyl-tRNA synthetase and/or a glutaminyl-tRNA synthetase. The two misacylated tRNA substrates of these amidotransferases are formed by the action of nondiscriminating aspartyl-tRNA synthetases and glutamyl-tRNA synthetases. We report here that the presence of a physiological concentration of a nondiscriminating aspartyl-tRNA synthetase in the transamidation assay decreases the Km of GatCAB for Asp-tRNAAsn. These conditions, which were practical for the testing of potential inhibitors of GatCAB, also allowed us to discover and characterize two novel inhibitors, aspartycin and glutamycin. These analogues of the 3'-ends of Asp-tRNA and Glu-tRNA, respectively, are competitive inhibitors of the transamidase activity of Helicobacter pylori GatCAB with respect to Asp-tRNAAsn, with Ki values of 134 microM and 105 microM, respectively. Although the 3' end of aspartycin is similar to the 3' end of Asp-tRNAAsn, this analogue was neither phosphorylated nor transamidated by GatCAB. These novel inhibitors could be used as lead compounds for designing new types of antibiotics targeting GatCABs, since the indirect pathway for Asn-tRNAAsn or Gln-tRNAGln synthesis catalyzed by these enzymes is not present in eukaryotes and is essential for the survival of the above-mentioned bacteria.  相似文献   

19.
A Théobald  D Kern  R Giegé 《Biochimie》1988,70(2):205-213
Essential lysine residues were sought in the catalytic site of baker's yeast aspartyl-tRNA synthetase (an alpha 2 dimer of Mr 125,000) using affinity labeling methods and periodate-oxidized adenosine, ATP, and tRNA(Asp). It is shown that the number of periodate-oxidized derivatives which can be bound to the synthetase via Schiff's base formation with epsilon-NH2 groups of lysine residues exceeds the stoichiometry of specific substrate binding. Furthermore, it is found that the enzymatic activities are not completely abolished, even for high incorporation levels of the modified substrates. The tRNA(Asp) aminoacylation reaction is more sensitive to labeling than is the ATP-PPi exchange one; for enzyme preparations modified with oxidized adenosine or ATP this activity remains unaltered. These results demonstrate the absence of a specific lysine residue directly involved in the catalytic activities of yeast aspartyl-tRNA synthetase. Comparative labeling experiments with oxidized ATP were run with several other aminoacyl-tRNA synthetases. Residual ATP-PPi exchange and tRNA aminoacylation activities measured in each case on the modified synthetases reveal different behaviors of these enzymes when compared to that of aspartyl-tRNA synthetase. When tested under identical experimental conditions, pure isoleucyl-, methionyl-, threonyl- and valyl-tRNA synthetases from E. coli can be completely inactivated for their catalytic activities; for E. coli alanyl-tRNA synthetase only the tRNA charging activity is affected, whereas yeast valyl-tRNA synthetase is only partly inactivated. The structural significance of these experiments and the occurrence of essential lysine residues in aminoacyl-tRNA synthetases are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Aspartyl-tRNA synthetase from higher eukaryotes is a component of a multienzyme complex comprising nine aminoacyl-tRNA synthetases. The cDNA encoding cytoplasmic rat liver aspartyl-tRNA synthetase was previously cloned and sequenced. This work reports the identification of structural features responsible for its association within the multisynthetase complex. Mutant and chimeric proteins have been expressed in mammalian cells and their structural behavior analyzed. A wild-type rat liver aspartyl-tRNA synthetase, expressed in Chinese hamster ovary (CHO) cells, associates within the complex from CHO cells, whereas a mutant enzyme with a deletion of 34 amino acids from its amino-terminal extremity does not. A chimeric enzyme, made of the amino-terminal moiety of rat liver aspartyl-tRNA synthetase fused to the catalytic domain of yeast lysyl-tRNA synthetase, has been expressed in Lys-101 cells, a CHO cell line with a temperature-sensitive lysyl-tRNA synthetase. The fusion protein is stable in vivo, does not associate within the multisynthetase complex and cannot restore normal growth of the mutant cells. These results establish that the 3.7-kDa amino-terminal moiety of mammalian aspartyl-tRNA synthetase mediates its association with the other components of the complex. In addition, the finding that yeast lysyl-tRNA synthetase cannot replace the aspartyl-tRNA synthetase component of the mammalian complex, indicates that interactions between neighbouring enzymes also play a prominent role in stabilization of this multienzyme structure and strengthened the view that the multisynthetase complex is a discrete entity with a well-defined structural organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号