首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial collagenolytic proteases are important because of their essential role in global collagen degradation and because of their virulence in some human bacterial infections. Bacterial collagenolytic proteases include some metalloproteases of the M9 family from Clostridium or Vibrio strains, some serine proteases distributed in the S1, S8, and S53 families, and members of the U32 family. In recent years, there has been remarkable progress in discovering new bacterial collagenolytic proteases and in investigating the collagen-degrading mechanisms of bacterial collagenolytic proteases. This review provides comprehensive insight into bacterial collagenolytic proteases, especially focusing on the structures and collagen-degrading mechanisms of representative bacterial collagenolytic proteases in each family. The roles of bacterial collagenolytic proteases in human diseases and global nitrogen cycling, together with the biotechnological and medical applications for these proteases, are also briefly discussed.  相似文献   

2.
A number of proteases in the subtilisin family derived from environmental or pathogenic microorganisms have been reported to be collagenolytic serine proteases. However, their collagen degradation mechanisms remain unclear. Here, the degradation mechanism of type I collagen fibres by the S8 collagenolytic protease MCP‐01, from Pseudoalteromonas sp. SM9913, was studied. Atomic force microscopy observation and biochemical analysis confirmed that MCP‐01 progressively released single fibrils from collagen fibres and released collagen monomers from fibrils mainly by hydrolysing proteoglycans and telopeptides in the collagen fibres. Structural and mutational analyses indicated that an enlarged substrate‐binding pocket, mainly composed of loops 7, 9 and 11, is necessary for collagen recognition and that the acidic and aromatic residues on these loops form a negatively charged, hydrophobic environment for collagen binding. MCP‐01 displayed a non‐strict preference for peptide bonds with Pro or basic residues at the P1 site and/or Gly at the P1’ site in collagen. His211 is a key residue for the P1‐basic‐residue preference of MCP‐01. Our study gives structural and mechanistic insights into collagen degradation of the S8 collagenolytic protease, which is helpful in developing therapeutics for diseases with S8 collagenolytic proteases as pathogenic factors and in studying environmental organic nitrogen degradation mechanisms.  相似文献   

3.
Detection of collagenase activity in oral bacteria   总被引:16,自引:0,他引:16  
Collagenolytic activity of 12 species of oral bacteria was assessed using two methods of detection. Except for two species, all bacterial strains tested were capable of degrading at least one general protein substrate. Results of collagenolytic activity in a growth assay indicate that Bacteroides gingivalis is the only bacterium capable of degrading collagen when the substrate is sterilized using ethylene oxide. However, if the substrate is sterilized by autoclaving, in the presence or absence of the growth medium, other bacterial species could be shown to be collagenolytic. Collagenolytic activity was also demonstrated when whole or broken cells were used in a [14C]collagen assay. Results from this assay and from inhibition studies indicate that collagenolytic activity can either be the result of the combined activities of both a specific collagenase and nonspecific proteases (B. gingivalis) or nonspecific proteases only (other strains in this study), although in the latter case, the time taken to hydrolyze collagen can be 10 times longer than with a specific collagenase.  相似文献   

4.
A mixture of collagenolytic proteases has been isolated from the Kamchatka crab hepatopancreas. The four individual enzymes were further separated with FPLC and partially characterized. Crab collagenolytic proteases possess a high activity against different types of collagen, especially against calf skin collagen Type III and bovine lens capsule collagen Type IV, which is resistant to the microbial Clostridium sp. collagenases. In contrast with microbial collagenases the crab enzymes are good general proteases, able to cleave standard synthetic and protein substrates and possess a chymotrypsin-, trypsin- and elastase-like specificity. N-Terminal sequence analysis revealed that crab collagenolytic proteases had evolved from a trypsin-like ancestor. Crab proteases, structurally belonging to the trypsin-like enzymes, nevertheless, possess the unique ability, among this class of enzymes, to cleave the native insoluble collagen. It seems that crab collagenolytic proteases and true metalloenzyme vertebrate and microbial collagenases have certain common structural features particularly in the regions of their substrate binding site.  相似文献   

5.
Collagen is an insoluble protein that widely distributes in the extracellular matrix of marine animals. Collagen degradation is an important step in the marine nitrogen cycle. However, the mechanism of marine collagen degradation is still largely unknown. Here, a novel subtilisin-like collagenolytic protease, myroicolsin, which is secreted by the deep sea bacterium Myroides profundi D25, was purified and characterized, and its collagenolytic mechanism was studied. Myroicolsin displays low identity (<30%) to previously characterized subtilisin-like proteases, and it contains a novel domain structure. Protein truncation indicated that the Pro secretion system C-terminal sorting domain in the precursor protein is involved in the cleavage of the N-propeptide, and the linker is required for protein folding during myroicolsin maturation. The C-terminal β-jelly roll domain did not bind insoluble collagen fiber, suggesting that myroicolsin may degrade collagen without the assistance of a collagen-binding domain. Myroicolsin had broad specificity for various collagens, especially fish-insoluble collagen. The favored residue at the P1 site was basic arginine. Scanning electron microscopy and atomic force microscopy, together with biochemical analyses, confirmed that collagen fiber degradation by myroicolsin begins with the hydrolysis of proteoglycans and telopeptides in collagen fibers and fibrils. Myroicolsin showed strikingly different cleavage patterns between native and denatured collagens. A collagen degradation model of myroicolsin was proposed based on our results. Our study provides molecular insight into the collagen degradation mechanism and structural characterization of a subtilisin-like collagenolytic protease secreted by a deep sea bacterium, shedding light on the degradation mechanism of deep sea sedimentary organic nitrogen.  相似文献   

6.
A collagenolytic protease was purified to homogeneity from thermophilic Bacillus sp. strain MO-1. The protease from strain MO-1 showed high activity toward type I and IV collagens and gelatin. However, peptide substrates (4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-Arg and 2-furylacryloyl-Leu-Gly-Pro-Ala) for collagenases were inert as substrates. The collagenolytic protease cleaved oxidized insulin B-chain at 11 sites and degraded type I and IV collagens into anonymous small pieces, suggesting that the protease digests collagens at multiple sites. The collagenolytic protease was far more thermostable than a mesophilic Clostridium histolyticum collagenase. The collagenolytic protease possesses two salient features: (1) it has a very large molecular mass, 210 kDa, and consists of two, identical 105-kDa subunits; (2) it belongs to a serine protease group. The high molecular mass is unique among serine proteases but common for collagenases. The features of the enzyme from strain MO-1 suggest that it is a new collagenolytic protease which is distinct from previously reported collagenases and serine proteases.  相似文献   

7.
Cathepsin K, a lysosomal papain-like cysteine protease, forms collagenolytically highly active complexes with chondroitin sulfate and represents the most potent mammalian collagenase. Here we demonstrate that complex formation with glycosaminoglycans (GAGs) is unique for cathepsin K among human papain-like cysteine proteases and that different GAGs compete for the binding to cathepsin K. GAGs predominantly expressed in bone and cartilage, such as chondroitin and keratan sulfates, enhance the collagenolytic activity of cathepsin K, whereas dermatan, heparan sulfate, and heparin selectively inhibit this activity. Moreover, GAGs potently inhibit the collagenase activity of other cysteine proteases such as cathepsins L and S at 37 degrees C. Along this line MMP1-generated collagen fragments in the presence of GAGs are stable against further degradation at 28 degrees C by all cathepsins but cathepsin K, whereas thermal destabilization at 37 degrees C renders the fragments accessible to all cathepsins. These results suggest a novel mechanism for the regulation of matrix protein degradation by GAGs. It further implies that cathepsin K represents the only lysosomal collagenolytic activity under physiologically relevant conditions.  相似文献   

8.
Collagens are the most abundant proteins in marine animals and their degradation is important for the recycling of marine nitrogen. However, it is rather unclear how marine collagens are degraded because few marine collagenolytic proteases are studied in detail. Deseasins are a new type of multidomain subtilases. Here, the collagenolytic activity of deseasin MCP-01, the type example of deseasins, was studied. MCP-01 had broad substrate specificity to various type collagens from terrestrial and marine animals. It completely decomposed insoluble collagen into soluble peptides and amino acids, and was more prone to degrade marine collagen than terrestrial collagen. Thirty-seven cleavage sites of MCP-01 on bovine collagen chains were elucidated, showing the cleavage is various but specific. As the main extracellular cold-adapted protease from deep-sea bacterium Pseudoalteromonas sp. SM9913, MCP-01 displayed high activity at low temperature and alkaline range. Our data also showed that the C-terminal polycystic kidney disease (PKD) domain of MCP-01 was able to bind insoluble collagen and facilitate the insoluble collagen digestion by MCP-01. Site-directed mutagenesis demonstrated that Trp-36 of the PKD domain played a key role in its binding to insoluble collagen. It is the first time that the structure and function of a marine collagenolytic protease, deseasin MCP-01, has been studied in detail. Moreover, the PKD domain was experimentally proven to bind to insoluble protein for the first time. These results imply that MCP-01 would play an important role in the degradation of deep-sea sedimentary particulate organic nitrogen.  相似文献   

9.
Collagen is an important, extracellular structural protein for metazoans and provides a rich nutrient source for bacteria that possess collagen-degrading enzymes. In a symbiotic host system, collagen degradation could benefit the bacteria, but would be harmful for the eukaryotic host. Using a polyphasic approach, we investigated the presence of collagenolytic activity in the bacterial community hosted by the marine sponge Cymbastela concentrica. Functional screening for collagenase activity using metagenomic library clones (227 Mbp) and cultured isolates of sponge's bacterial community, as well as bioinformatic analysis of metagenomic shotgun-sequencing data (106,679 predicted genes) were used. The results show that the abundant members of the bacterial community contain very few genes encoding for collagenolytic enzymes, while some low-abundance sponge isolates possess collagenolytic activities. These findings indicate that collagen is not a preferred nutrient source for the majority of the members of the bacterial community associated with healthy C. concentrica, and that some low-abundance bacteria have collagenase activities that have the potential to harm the sponge through tissue degradation.  相似文献   

10.
Reconstituted, acid-extracted collagen was used to prepare a medium to screen proteolytic marine bacteria for their ability to elaborate collagenolytic enzymes. The medium was resistant to solubilization by trypsin, hyaluronidase, chondroitinase ABC, and various marine proteinases, but was readily hydrolyzed by commercial Clostridium collagenases. Eighty-seven marine isolates collected in the vicinity of Bermuda, Oahu (Hawaii), and Stone Harbor and Cape May, N. J., were screened. Approximately 44 per cent of the isolates were capable of elaborating enzymes that hydrolyzed reconstituted collagen gels. Several cultures produced collagenolytic enzymes only when grown in the presence of collagen or degradation products of collagen, and with very few exceptions the presence of collagen in the medium greatly enhanced collagenolytic enzyme production. The enzymes from a collagenolytic Bermuda marine isolate were studied in more detail to illustrate that the enzymes capable of hydrolyzing reconstituted collagen were separable from nonspecific proteinases by zone electrophoresis and that these enzymes were true collagenases by virtue of their ability to hydrolyze native bovine Achilles'tendon obtained from three different sources.  相似文献   

11.
Properties of a collagenolytic enzyme from Bipalium kewense   总被引:1,自引:0,他引:1  
A collagenolytic enzyme from the land planarian Bipalium kewense has been purified by preparative isoelectric focusing. The enzyme has a molecular weight of 47,000 +/- 2,000 and appears to be dimeric. It has an isoelectric point of 4.6 +/- 0.1 and a high content of acidic amino acids. The amino acid composition of the Bipalium collagenase is similar to that of human skin fibroblast collagenases but clearly different from previously reported collagenolytic proteases from other invertebrates, Uca pugilator and Hypoderma lineatum. In its action on guinea-pig collagen, the enzyme produces distinct products, at low incubation temperatures, different from those produced by vertebrate and other invertebrate collagenolytic enzymes. These products have glycine as their N-terminal amino acids. As determined by viscosity measurements, the Bipalium collagenase is more active on invertebrate, earthworm, collagen than it is on the vertebrate, Type I guinea-pig skin, collagen. The Bipalium collagenase differs from both bacterial and vertebrate collagenases as well as from invertebrate, collagenolytic serine proteases.  相似文献   

12.
Matrix metalloproteinases and collagen catabolism   总被引:5,自引:0,他引:5  
The matrix metalloproteinase (MMP)/matrixin family has been implicated in both normal tissue remodeling and a variety of diseases associated with abnormal turnover of extracellular matrix components. The mechanism by which MMPs catabolize collagen (collagenolysis) is still largely unknown. Substrate flexibility, MMP active sites, and MMP exosites all contribute to collagen degradation. It has recently been demonstrated that the ability to cleave a triple helix (triple-helical peptidase activity) can be distinguished from the ability to cleave collagen (collagenolytic activity). This suggests that the ability to cleave a triple helix is not the limiting factor for collagenolytic activity-the ability to properly orient and potentially destabilize collagen is. For the MMP family, the catalytic domain can unwind and cleave a triple-helical structure, while the C-terminal hemopexin-like domain appears to be responsible for properly orienting collagen and destabilizing it to some degree. It is also possible that exosites within the catalytic and/or C-terminal hemopexin-like domain may exclude some MMPs from cleaving collagen. Overall, it appears that many proteases of distinct mechanisms possess triple-helical peptidase activity, and that convergent evolution led to a few proteases possessing collagenolytic activity. Proper orientation and distortion of the triple helix may be the key factor for collagenolysis.  相似文献   

13.
Interstitial collagen mechanical and biological properties are altered by proteases that catalyze the hydrolysis of the collagen triple-helical structure. Collagenolysis is critical in development and homeostasis but also contributes to numerous pathologies. Mammalian collagenolytic enzymes include matrix metalloproteinases, cathepsin K, and neutrophil elastase, and a variety of invertebrates and pathogens possess collagenolytic enzymes. Components of the mechanism of action for the collagenolytic enzyme MMP-1 have been defined experimentally, and insights into other collagenolytic mechanisms have been provided. Ancillary biomolecules may modulate the action of collagenolytic enzymes.  相似文献   

14.
Bacterial proteases are a promising post-translational regulation strategy in synthetic circuits because they recognize specific amino acid degradation tags (degrons) that can be fine-tuned to modulate the degradation levels of tagged proteins. For this reason, recent efforts have been made in the search for new degrons. Here we review the up-to-date applications of degradation tags for circuit engineering in bacteria. In particular, we pay special attention to the effects of degradation bottlenecks in synthetic oscillators and introduce mathematical approaches to study queueing that enable the quantitative modelling of proteolytic queues.  相似文献   

15.
A collagen-degrading thermophile, Geobacillus collagenovorans MO-1, extracellularly produces a collagenolytic protease with a large molecular mass. Complete nucleotide sequencing of this gene after gene cloning revealed that the collagenolytic protease is a member of the subtilisin family of serine proteases and consists of a signal sequence for secretion, a prosequence for maturation, a catalytic region, 14 direct repeats of 20 amino acids at the C terminus, and a region with unknown function intervening between the catalytic region and the numerous repeats. Since the unusual repeats are most likely to be cleaved in the secreted form of the enzyme, the intervening region was investigated to determine whether it participates in collagen binding to facilitate collagen degradation. It was found that the mature collagenolytic protease containing the intervening region at the C terminus bound collagen but not the other insoluble proteins, elastin and keratin. Furthermore, the intervening region fused with glutathione S-transferase showed a collagen-binding ability comparable to that of the mature collagenolytic protease. The collagen-binding ability was finally attributed to two-thirds of the intervening region which is rich in beta-strands and is approximately 35 kDa in molecular mass. In the collagenolytic protease from strain MO-1, hydrogen bonds most likely predominate over the hydrophobic interaction for collagen binding, since a higher concentration of NaCl released collagen from the enzyme surface but a nonionic detergent could not. To the best of our knowledge, this is the first report of a thermophilic collagenolytic protease containing the collagen-binding segment.  相似文献   

16.
A second collagenolytic serine protease has been isolated from the hepatopancreas of the fiddler crab, Uca pugilator. This enzyme cleaves the native triple helix of collagen under physiological conditions of pH, temperature, and ionic strength. In addition to its collagenolytic activity, the enzyme exhibits endopeptidase activity toward other polypeptides and small molecular weight synthetic substrates. The polypeptide bond specificity of this enzyme is similar to that of bovine trypsin as is its interaction with specific protease inhibitors. The amino-terminal sequence of this enzyme displays significant homology with other serine proteases, most notably with that of crayfish trypsin, and demonstrates that this enzyme is a member of the trypsin family of serine endopeptidases. The relatively unique action of this protease with regard to both collagenous and noncollagenous substrates has important implications concerning the specificity and mechanism of collagen degradation.  相似文献   

17.
Protein degradation is an essential quality control and regulatory function in organisms ranging from bacteria to eukaryotes. In bacteria, this process is initiated by ATP-dependent proteases which digest proteins to short peptides that are subsequently hydrolyzed to smaller fragments and free amino acids. While the entire genome of Escherichia coli has been sequenced, identification of endopeptidases that perform this downstream hydrolysis remains incomplete. However, in eukaryotes, thimet oligopeptidases (TOP) has been shown to hydrolyze peptides generated by the degradation of proteins by the 26S proteasome. These findings motivated us to investigate whether E. coli oligopeptidase A (OpdA), a homolog of TOP might play a similar general role in bacterial protein degradation. Herein, we provide initial support for this hypothesis by demonstrating that OpdA efficiently cleaves the peptides generated by the activity of the three primary ATP-dependent proteases from E. coli-Lon, HslUV, and ClpAP.  相似文献   

18.
A protease-producing, crude oil degrading marine isolate was identified as Nocardiopsis sp. on the basis of the morphology, cell wall composition, mycolic acid analysis and DNA base composition. The Nocardiopsis produces two extracellular proteases, both of which are alkaline serine endopeptidases. Protease I was purified to homogeneity by chromatography on CM-Sephadex at pH 5.0 and pH 9.0. Protease II was purified using DEAE-cellulose, Sephadex G-50, phenyl-Sepharose and hydroxyapatite chromatography. Protease I and II had almost similar M(r) of 21 kDa (Protease I) and 23 kDa (Protease II), pI of 8.3 and 7.0 respectively with pH and temperature optima for activity between 10.0 and 11.0 and about 60 degrees C. Specific activities were 152 and 14 U/mg respectively on casein. However, Protease I was antigenically unrelated to Protease II. Both proteases were endopeptidases and required extended substrate binding for catalysis. Both proteases had collagenolytic and fibrinolytic activity but only Protease I had elastinolytic activity. The proteases were chymotrypsin-like with respect to their amino acid compositions and N-terminal sequences.  相似文献   

19.
The types and sources of proteolytic enzymes, enzyme assays, strategies for fermentation yield improvement, and novel proteases and their applications in industrial sectors are widely covered in this review. We give a special focus on alkaline proteases for the textile and detergent industries, as well as for the degradation of keratin-rich wastes.  相似文献   

20.
AAA proteases are a conserved class of ATP-dependent proteases that mediate the degradation of membrane proteins in bacteria, mitochondria and chloroplasts. They combine proteolytic and chaperone-like activities and thus form a membrane-integrated quality-control system. Inactivation of AAA proteases causes severe defects in various organisms, including neurodegeneration in humans. Proteolysis by AAA proteases is modulated by another membrane-protein complex that is composed of prohibitins in eukaryotic cells and related proteins in bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号