首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Generation of oxygen free radicals and reactive aldehydes as a result of excessive ethanol consumption has been well established. Recent studies in human alcoholics and in experimental animal models have indicated that acetaldehyde, the first metabolite of ethanol, and the aldehydic products of lipid peroxidation can bind to proteins in tissues forming stable adducts. The demonstration of such adducts in zone 3 hepatocytes in alcoholics with an early phase of histological liver damage indicates that adduct formation may have an important role in the sequence of events leading to alcoholic liver disease. There may be interference with cellular functions, stimulation of fibrogenesis, and immunological responses. Autoantibodies towards distinct types of adducts have been shown to be associated with the severity of liver disease in alcoholic patients. High fat diet and/or iron supplementation combined with ethanol may increase the amount of aldehyde-derived epitopes and promote fibrogenesis in the liver. Recently, ethanol-derived protein modifications have also been found from other tissues exposed to ethanol and acetaldehyde, including rat brain after lifelong ethanol administration, pancreas, and rat muscle. Elevated adduct levels also occur in erythrocytes of alcoholics, which may be related to ethanol-induced morphological aberrations in hematopoiesis.  相似文献   

2.
The effects of the dietary antioxidant N-acetylcysteine (NAC) on alcoholic liver damage were examined in a total enteral nutrition (TEN) model of ethanol toxicity in which liver pathology occurs in the absence of endotoxemia. Ethanol treatment resulted in steatosis, inflammatory infiltrates, occasional foci of necrosis, and elevated ALT in the absence of increased expression of the endotoxin receptor CD 14, a marker of Kupffer cell activation by LPS. In addition, ethanol treatment induced CYP 2 E1 and increased TNFalpha and TGFbeta mRNA expression accompanied by suppressed hepatic IL-4 mRNA expression. Ethanol treatment also resulted in the hepatic accumulation of malondialdehyde (MDA) and hydroxynonenal (HNE) protein adducts, decreased antioxidant capacity, and increased antibody titers toward serum hydroxyethyl radical (HER), MDA, and HNE adducts. NAC treatment increased cytosolic antioxidant capacity, abolished ethanol-induced lipid peroxidation, and inhibited the formation of antibodies toward HNE and HER adducts without interfering with CYP 2 E1 induction. NAC also decreased ethanol-induced ALT release and inflammation and prevented significant loss of hepatic GSH content. However, the improvement in necrosis score and reduction of TNFalpha mRNA elevation did not reach statistical significance. Although a direct correlation was observed among hepatic MDA and HNE adduct content and TNFalpha mRNA expression, inflammation, and necrosis scores, no correlation was observed between oxidative stress markers or TNFalpha and steatosis score. These data suggest that ethanol-induced oxidative stress can contribute to inflammation and liver injury even in the absence of Kupffer cell activation by endotoxemia.  相似文献   

3.
We previously reported that dilinoleoylphosphatidylcholine (DLPC) decreases lipopolysaccharide-induced TNF-alpha generation by Kupffer cells of ethanol-fed rats by blocking p38, ERK1/2, and NF-kappaB activation. Here we show that DLPC also decreases TNF-alpha induction by acetaldehyde, a toxic metabolite released by ethanol oxidation. Acetaldehyde induces TNF-alpha generation with a maximal effect at 200 microM and activates p38 and ERK1/2; the latter in turn activates NF-kappaB. This effect is augmented in Kupffer cells of ethanol-fed rats, with upregulation of cytochrome P4502E1 by ethanol. DLPC decreases TNF-alpha generation by blocking p38, ERK1/2, and NF-kappaB activation. Likewise, SB203580, which abolishes p38 activation, and PD098059, which abrogates ERK1/2 and NF-kappaB activation, diminish TNF-alpha generation. Since increased TNF-alpha generation plays a pathogenic role in alcoholic liver disease, the DLPC action on Kupffer cells may explain, in part, its beneficial effects on liver cell injury after ethanol consumption.  相似文献   

4.
In order to investigate the role of the Kupffer cells in the regulation of the inflammatory reaction seen in alcoholic hepatitis, rat liver Kupffer cells were cultured and exposed to products of ethanol metabolism. The resultant supernatants were tested to study their ability to stimulate or inhibit polymorphonuclear cell chemotaxis. Kupffer cells produced increased chemokinetic activity for human polymorphonuclear leukocytes (84 +/- 6 vs. 61 +/- 4 randomly migrating cells per 5 high power fields; p less than 0.01); when incubated with soluble products of microsomal peroxidation, the Kupffer cells engendered more chemokinetic activity than that produced by untreated Kupffer cells (106 +/- 6 vs. 84 +/- 6 cells per 5 high power fields; p less than 0.05). When Kupffer cells were incubated with acetaldehyde, the chemokinetic activity that appeared in the supernatant did not differ from control (51 +/- 3 vs. 61 +/- 4 randomly migrating cells per 5 high power fields; p = NS). Chemotaxis of polymorphonuclear cells was not observed when the Kupffer cell supernatants were tested by checkerboard analysis. Kupffer cells released a factor which, at different concentrations, inhibited the response of polymorphonuclear cells to the synthetic polypeptide chemotactic factor f-met-leu-phe by 47% (p less than 0.001). This effect was unchanged when the cells were exposed to acetaldehyde or to soluble products of microsomal peroxidation. Our results demonstrate that Kupffer cells are capable of stimulating or inhibiting polymorphonuclear cell chemotaxis and that some of these effects may be influenced by the products of ethanol metabolism, suggesting that Kupffer cells may play an important role in the regulation of the inflammatory reaction seen in alcoholic hepatitis.  相似文献   

5.
AimEthanol metabolism leads to the formation of acetaldehyde and malondialdehyde. Acetaldehyde and malondialdehyde can together form malondialdehyde–acetaldehyde (MAA) adducts. The role of alcohol dehydrogenase (ADH) and cytochrome P4502E1 (CYP2E1) in the formation of MAA-adducts in liver cells has been investigated.Main methodsChronic ethanol treated VL-17A cells over-expressing ADH and CYP2E1 were pretreated with the specific CYP2E1 inhibitor — diallyl sulfide or ADH inhibitor — pyrazole or ADH and CYP2E1 inhibitor — 4-methyl pyrazole. Malondialdehyde, acetaldehyde or MAA-adduct formation was measured along with assays for viability, oxidative stress and apoptosis.Key findingsInhibition of CYP2E1 with 10 μM diallyl sulfide or ADH with 2 mM pyrazole or ADH and CYP2E1 with 5 mM 4-methyl pyrazole led to decreased oxidative stress and toxicity in chronic ethanol (100 mM) treated VL-17A cells. In vitro incubation of VL-17A cell lysates with acetaldehyde and malondialdehyde generated through ethanol led to increased acetaldehyde (AA)-, malondialdehyde (MDA)-, and MAA-adduct formation. Specific inhibition of CYP2E1 or ADH and the combined inhibition of ADH and CYP2E1 greatly decreased the formation of the protein aldehyde adducts. Specific inhibition of CYP2E1 led to the greatest decrease in oxidative stress, toxicity and protein aldehyde adduct formation, implicating that CYP2E1 accelerates the formation of protein aldehyde adducts which can be an important mechanism for alcohol mediated liver injury.SignificanceCYP2E1-mediated metabolism of ethanol leads to increased AA-, MDA-, and MAA-adduct formation in liver cells which may aggravate liver injury.  相似文献   

6.
Role of malondialdehyde-acetaldehyde adducts in liver injury   总被引:11,自引:0,他引:11  
Malondialdehyde and acetaldehyde react together with proteins in a synergistic manner and form hybrid protein adducts, designated as MAA adducts. MAA-protein adducts are composed of two major products whose structures and mechanism of formation have been elucidated. MAA adduct formation, especially in the liver, has been demonstrated in vivo during ethanol consumption. These protein adducts are capable of inducing a potent immune response, resulting in the generation of antibodies against both MAA epitopes, as well as against epitopes on the carrier protein. Chronic ethanol administration to rats results in significant circulating antibody titers against MAA-adducted proteins, and high anti-MAA titers have been associated with the severity of liver damage in humans with alcoholic liver disease. In vitro exposure of liver endothelial or hepatic stellate cells to MAA adducts induces a proinflammatory and profibrogenic response in these cells. Thus, during excessive ethanol consumption, ethanol oxidation and ethanol-induced oxidative stress result in the formation of acetaldehyde and malondialdehyde, respectively. These aldehydes can react together synergistically with proteins and generate MAA adducts, which are very immunogenic and possess proinflammatory and profibrogenic properties. By virtue of these potentially toxic effects, MAA adducts may play an important role in the pathogenesis of alcoholic liver injury.  相似文献   

7.
Kupffer cells are a key source of mediators of alcohol-induced liver damage such as reactive oxygen species, chemokines, growth factors, and eicosanoids. Since diets rich in polyunsaturated fatty acids are a requirement for the development of alcoholic liver disease, we hypothesized that polyunsaturated fatty acids could synergize with ethanol to promote Kupffer cell activation and TNFα production, hence, contributing to liver injury. Primary Kupffer cells from control and from ethanol-fed rats incubated with arachidonic acid showed similar proliferation rates than nontreated cells; however, arachidonic acid induced phenotypic changes, lipid peroxidation, hydroperoxides, and superoxide radical generation. Similar effects occurred in human Kupffer cells. These events were greater in Kupffer cells from ethanol-fed rats, and antioxidants and inhibitors of arachidonic acid metabolism prevented them. Arachidonic acid treatment increased NADPH oxidase activity. Inhibitors of NADPH oxidase and of arachidonic acid metabolism partially prevented the increase in oxidant stress. Upon arachidonic acid stimulation, there was a rapid and sustained increase in TNFα, which was greater in Kupffer cells from ethanol-fed rats than in Kupffer cells from control rats. Arachidonic acid induced ERK1/2 phosphorylation and nuclear translocation of early growth response-1 (Egr1), and ethanol synergized with arachidonic acid to promote this effect. PD98059, a mitogen extracellular kinase 1/2 inhibitor, and curcumin, an Egr1 inhibitor, blocked the arachidonic acid-mediated upregulation of TNFα in Kupffer cells. This study unveils the mechanism whereby arachidonic acid and ethanol increase TNFα production in Kupffer cells, thus contributing to alcoholic liver disease.  相似文献   

8.
Metabolic effects of acetaldehyde   总被引:2,自引:0,他引:2  
Acetaldehyde, the toxic product of ethanol metabolism in the liver, covalently binds to a variety of proteins, thereby altering liver function and structure. Through its binding to tubulin, acetaldehyde decreases the polymerization of microtubules thereby impairing protein secretion and favouring their retention, with associated swelling of hepatocytes. Acetaldehyde adduct formation also impairs some enzyme activities. Either directly or through binding with GSH, acetaldehyde favours lipid peroxidation. Various mitochondrial functions are altered, particularly after chronic ethanol consumption which sensitizes the mitochondria to the toxic effects of acetaldehyde. In cultured myofibroblasts, acetaldehyde stimulates collagen production. The acetaldehyde-protein adducts stimulate the production of antibodies directed against the acetaldehyde epitope. This immune response may contribute to the aggravation or perpetuation of alcohol-induced liver damage. Some acetaldehyde effects, however, could conceivably be considered as beneficial, such as the stimulation of vascular prostacyclin release which may take part in the 'protective' effect of moderate ethanol consumption against some cardiovascular complications.  相似文献   

9.
The aim of this work was to determine if the action mechanism of gadolinium on CCl(4)-induced liver damage is by preventing lipid peroxidation (that may be induced by Kupffer cells) and its effects on liver carbohydrate metabolism. Four groups of rats were treated with CCl(4), CCl(4)+GdCl(3), GdCl(3), and vehicles. CCl(4) was given orally (0.4 g 100 g(-1) body wt.) and GdCl(3) (0.20 g 100 g(-1) body wt.) was administered i.p. All the animals were killed 24 h after treatment with CCl(4) or vehicle. Glycogen and lipid peroxidation were measured in liver. Alkaline phosphatase, gamma-glutamyl transpeptidase, alanine amino transferase activities and bilirubins were measured in rat serum. A liver histological analysis was performed. CCl(4) induced significant elevations on enzyme activities and bilirubins; GdCl(3) completely prevented this effect. Liver lipid peroxidation increased 2.5-fold by CCl(4) treatment; this effect was also prevented by GdCl(3). Glycogen stores were depleted by acute intoxication with CCl(4). However, GdCl(3) did not prevent this effect. The present study shows that Kupffer cells may be responsible for liver damage induced by carbon tetrachloride and that lipid peroxidation is produced or stimulated by Kupffer cells, since their inhibition with GdCl(3) prevented both lipid peroxidation and CCl(4)-induced liver injury.  相似文献   

10.
11.
The role of Kupffer cells in the hepatocellular injury and oxidative stress induced by lindane (20 mg/kg; 24h) in hyperthyroid rats (daily doses of 0.1 mg L-3,3',5-triiodothyronine (T3)/kg for three consecutive days) was assessed by the simultaneous administration of gadolinium chloride (GdCl3; 2 doses of 10mg/kg on alternate days). Hyperthyroid animals treated with lindane exhibit enhanced liver microsomal superoxide radical (O2.-) production and NADPH cytochrome c reductase activity, with lower levels of cytochrome P450, superoxide dismutase (SOD) and catalase activity, and glutathione (GSH) content over control values. These changes are paralleled by a substantial increase in the lipid peroxidation potential of the liver and in the O2.- generation/ SOD activity ratio, thus evidencing a higher oxidative stress status that correlates with the development of liver injury characterized by neutrophil infiltration and necrosis. Kupffer cell inactivation by GdCl3 suppresses liver injury in lindane/T3-treated rats with normalization of altered oxidative stress-related parameters, excepting the reduction in the content of GSH and in catalase activity. It is concluded that lindane hepatotoxicity in hyperthyroid state, that comprises an enhancement in the oxidative stress status of the liver, is largely dependent on Kupffer cell function, which may involve generation of mediators leading to pro-oxidant and inflammatory processes.  相似文献   

12.
The study investigates the effect of fenugreek seed polyphenol extract (FPEt) on ethanol-induced damage in rat liver. Chronic ethanol administration (6 g kg(-1) day(-1) x 60 days) caused liver damage that was manifested by excessive formation of thiobarbituric-acid-reactive substances, lipid hydroperoxides, and conjugated dienes, the end products of lipid peroxidation, and significant elevation of protein carbonyl groups and diminution of sulfhydryl groups, a marker of protein oxidation. Decreased activities of enzymic and non-enzymic antioxidant levels and decreased levels of thiol groups (both non-protein and protein) were observed in ethanol-treated rats. Further, ethanol significantly increased the accumulation of 4-hydroxynonenal protein adducts, nitrated and oxidized proteins in liver which was evidenced by immunohistochemistry. Administration of FPEt to ethanol-fed rats (200 mg kg(-1) day(-1)) significantly reduced the levels of lipid peroxidation products and protein carbonyl content, increased the activities of antioxidant enzymes, and restored the levels of thiol groups. The effects of FPEt were comparable with those of a positive control, silymarin. These findings show that FPEt ameliorates the pathological liver changes induced by chronic ethanol feeding.  相似文献   

13.
Chronic ethanol feeding sensitizes Kupffer cells to activation by lipopolysaccharide (LPS), leading to increased production of tumor necrosis factor-alpha (TNF-alpha). Adiponectin treatment protects mice from ethanol-induced liver injury. Because adiponectin has anti-inflammatory effects on macrophages, we hypothesized that adiponectin would normalize chronic ethanol-induced sensitization of Kupffer cells to LPS-mediated signals. Serum adiponectin concentrations were decreased by 45% in rats fed an ethanol-containing diet for 4 wk compared with pair-fed rats. Adiponectin dose dependently inhibited LPS-stimulated accumulation of TNF-alpha mRNA and peptide in Kupffer cells from both pair- and ethanol-fed rats. Kupffer cells from ethanol-fed rats were more sensitive to both globular (gAcrp) and full-length adiponectin (flAcrp) than Kupffer cells from pair-fed controls with suppression at 10 ng/ml adiponectin after chronic ethanol feeding. Kupffer cells expressed both adiponectin receptors 1 and 2; chronic ethanol feeding did not change the expression of adiponectin receptor mRNA or protein. gAcrp suppressed LPS-stimulated ERK1/2 and p38 phosphorylation as well as IkappaB degradation at 100-1,000 ng/ml in Kupffer cells from both pair- and ethanol-fed rats. However, only LPS-stimulated ERK1/2 phosphorylation was sensitive to 10 ng/ml gAcrp. gAcrp also normalized LPS-stimulated DNA binding activity of early growth response-1 with greater sensitivity in Kupffer cells from rats fed chronic ethanol. In conclusion, these results demonstrate that Kupffer cells from ethanol-fed rats are more sensitive to the anti-inflammatory effects of both gAcrp and flAcrp. Suppression of LPS-stimulated ERK1/2 signaling by low concentrations of gAcrp was associated with normalization of TNF-alpha production by Kupffer cells after chronic ethanol exposure.  相似文献   

14.
Chronic ethanol consumption causes increased production of reactive oxygen species in hepatic mitochondria accompanied by elevations in products of lipid peroxidation such as 4-hydroxynonenal (4-HNE). In the current study we investigated the effects of chronic ethanol consumption on a prominent protein-4-HNE adduct in liver mitochondria. Male Sprague-Dawley rats were fed a liquid diet for 31 days in which ethanol constituted 36% of total calories. Immunoblot analyses of liver mitochondria from ethanol-fed and control animals, using an antibody to a 4-HNE-protein adduct, demonstrated elevated 4-HNE binding (+50%) to a mitochondrial protein of approximately 55 kDa due to chronic ethanol consumption. Analysis of this protein using AspN digestion and tandem mass spectrometry identified it as the mitochondrial form of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase. Activity of the activated form of this enzyme was unchanged in livers from ethanol-fed animals, but the protein level was elevated by 36%, which suggests a compensatory mechanism to maintain constant levels of synthase activity in the mitochondrion in the face of continuous inactivation by 4-HNE. Treatment of isolated mitochondria with 4-HNE demonstrated that the enzyme activity decreased as a function of 4-HNE concentration and with time of exposure. This study demonstrates that ethanol consumption increases the formation of a 4-HNE adduct with mitochondrial HMG-CoA synthase, which has the potential to inactivate the enzyme in situ.  相似文献   

15.
Formation of acetaldehyde adducts with ethanol-inducible P450IIE1 in vivo   总被引:4,自引:0,他引:4  
Hepatic microsomes, obtained from rats pair-fed liquid diets supplemented with either ethanol or an isocaloric amount of carbohydrates (for 4 weeks), were subjected to crossed immunoelectrophoresis. Anti-acetaldehyde adduct-specific immunoglobulin reacted on the protein blots with a single major 52,000 dalton polypeptide. This same protein was recognized by antibodies specific for P450IIE1, an ethanol-inducible P450 isozyme. Furthermore, a single protein, also reactive with anti-P450IIE1 IgG, was isolated from liver microsomes of ethanol-fed rats by immunoaffinity chromatography on Sepharose-conjugated anti-acetaldehyde adduct IgG. These results indicate that P450IIE1 is a target protein for acetaldehyde binding in liver microsomes in vivo.  相似文献   

16.
Destruction of Kupffer cells with gadolinium chloride (GdCl(3)) and intestinal sterilization with antibiotics diminished ethanol-induced steatosis in the enteral ethanol feeding model. However, mechanisms of ethanol-induced fatty liver remain unclear. Accordingly, the role of Kupffer cells in ethanol-induced fat accumulation was studied. Rats were given ethanol (5 g/kg body wt) intragastrically, and tissue triglycerides were measured enzymatically. Kupffer cells were isolated 0-24 h after ethanol, and PGE(2) production was measured by ELISA, whereas inducible cyclooxygenase (COX-2) mRNA was detected by RT-PCR. As expected, ethanol increased liver triglycerides about threefold. This increase was blunted by antibiotics, GdCl(3), the dihydropyridine-type Ca(2+) channel blocker nimodipine, and the COX inhibitor indomethacin. Ethanol also increased PGE(2) production by Kupffer cells about threefold. This increase was also blunted significantly by antibiotics, nimodipine, and indomethacin. Furthermore, tissue triglycerides were increased about threefold by PGE(2) treatment in vivo as well as by a PGE(2) EP(2)/EP(4) receptor agonist, whereas an EP(1)/EP(3) agonist had no effect. Moreover, permeable cAMP analogs also increased triglyceride content in the liver significantly. We conclude that PGE(2) derived from Kupffer cells, which are activated by ethanol, interacts with prostanoid receptors on hepatocytes to increase cAMP, which causes triglyceride accumulation in the liver. This mechanism is one of many involved in fatty liver caused by ethanol.  相似文献   

17.
Enhancement of acetaldehyde-protein adduct formation by L-ascorbate   总被引:5,自引:0,他引:5  
The effect of L-ascorbate on the binding of [14C]acetaldehyde to bovine serum albumin was examined. In the absence of ascorbate, acetaldehyde reacted with albumin to form both unstable (Schiff bases) and stable adducts. Ascorbate (5 mM) caused a time-dependent increase in the formation of total acetaldehyde-albumin adducts, which were comprised mainly of stable adducts. Significant enhancement of adduct formation by ascorbate was observed at acetaldehyde concentrations as low as 5 microM. An ascorbate concentration as low as 0.5 mM was still effective in stimulating stable adduct formation. The electron acceptor, 2,6 dichlorophenolindophenol, prevented the ascorbate-induced increase in albumin-adduct formation. Ascorbate also caused enhanced acetaldehyde adduct formation with other purified proteins, including cytochrome c and histones, as well as the polyamino acid, poly-L-lysine. These results indicate that ascorbate, acting as a reducing agent, can convert unstable acetaldehyde adducts to stable adducts, and can thereby increase and stabilize the binding of acetaldehyde to proteins.  相似文献   

18.
Immune reactions toward the liver have been implicated in the pathogenesis of alcoholic liver disease (ALD), however the antigens involved are still poorly characterized. The contribution of free radical mechanisms to the immune reactions associated with ALD first emerged from the observation that the binding of hydroxyethyl free radicals (HER) to hepatic proteins, including cytochrome P4502E1 (CYP2E1), stimulates the production of specific antibodies in both alcohol-fed rats and alcoholic patients. We have subsequently observed that ALD patients have increased titers of antibodies directed against protein adducts with different lipid peroxidation products and antigens derived from the combination of malonildialdehyde and acetaldehyde. Free radical mechanisms can also contribute in promoting the autoimmune reactions often associated with ALD. Indeed, we have observed that antiphospholipid antibodies present in more than 50% of ALD patients recognize oxidized cardiolipin complexed with beta2-glycoprotein 1. Furthermore, a strict association between anti-HER IgG and the development of autoantibodies against CYP2E1 indicates that CYP2E1 modification by HER might promote anti-CYP2E1 autoreactivity in subjects with alcoholic cirrhosis. Altogether, these observations suggest the importance of ethanol-induced oxidative stress in stimulating immune reactions towards both liver allo-and self-antigens.  相似文献   

19.
Gadolinium chloride (GdCl) is commonly used to study the role of Kupffer cells in liver disease in vivo. The in vitro effects of GdCl on cultured Kupffer cells are poorly characterised. The aim of this study was to characterise rat Kupffer cell TNFalpha production, phagocytic function, and ED1 and ED2 antigen expression following the administration of GdCl. For in vivo experiments, rats received 10mg/kg GdCl IV or sterile saline. Lipopolysaccharide 3mg/kg IP (LPS) was administered 4h prior to sacrifice on Days 1-3, 5 or 8 following GdCl injection. Hepatic ED1 and ED2 positive macrophage numbers and TNFalpha mRNA levels were determined. For in vitro experiments, Kupffer cells were cultured in the presence of 0-270 microM GdCl for 24h following which viability, TNFalpha protein production in response to LPS (10 ng/ml), phagocytosis, and ED1 and ED2 staining were evaluated. In vivo, the proportion of ED1 positive cells which were ED2 positive was reduced from 87 to 3% and hepatic TNFalpha mRNA levels following LPS declined by 60% over Days 1-5 after injection of GdCl (P<0.01). In vitro, phagocytosis declined with increasing concentrations of GdCl. GdCl (0-27 microM) did not effect cultured Kupffer cell viability, TNFalpha production, ED1 or ED2 staining. We conclude that GdCl significantly reduces ED2 expression by Kupffer cells in vivo. In vitro, GdCl has a dose dependent effect on phagocytosis but only effects viability and TNFalpha production at high concentrations. ED2 expression of cultured Kupffer cells is not affected by GdCl.  相似文献   

20.
Exocyclic alkylamino purine adducts, including N(2)-ethyldeoxyguanosine, N(2)-isopropyldeoxyguanosine, and N(6)-isopropyldeoxyadenosine, occur as a consequence of reactions of DNA with toxins such as the ethanol metabolite acetaldehyde, diisopropylnitrosamine, and diisopropyltriazene. However, there are few data addressing the biological consequences of these adducts when present in DNA. Therefore, we assessed the mutagenicities of these single, chemically synthesized exocyclic amino adducts when placed site-specifically in the supF gene in the reporter plasmid pLSX and replicated in Escherichia coli, comparing the mutagenic potential of these exocyclic amino adducts to that of O(6)-ethyldeoxyguanosine. Inclusion of deoxyuridines on the strand complementary to the adducts at 5' and 3' flanking positions resulted in mutant fractions of N(2)-ethyldeoxyguanosine and N(2)-isopropyldeoxyguanosine-containing plasmid of 1.4+/-0.5% and 5.7+/-2.5%, respectively, both of which were significantly greater than control plasmid containing deoxyuridines but no adduct (p=0.04 and 0.003, respectively). The mutagenicities of the three exocyclic alkylamino purine adducts tested were of smaller magnitude than O(6)-ethyldeoxyguanosine (mutant fraction=21.2+/-1.2%, p=0.00001) with the N(6)-isopropyldeoxyadenosine being the least mutagenic (mutant fraction=1.2+/-0.5%, p=0.13). The mutation spectrum generated by the N(2)-ethyl and -isopropyldeoxyguanosine adducts included adduct site-targeted G:C-->T:A transversions, adduct site single base deletions, and single base deletions three bases downstream from the adduct, which contrasted sharply with the mutation spectrum generated by the O(6)-ethyldeoxyguanosine lesion of 95% adduct site-targeted transitions. We conclude that N(2)-ethyl and -isopropyldeoxyguanosine are mutagenic adducts in E. coli whose mutation spectra differ markedly from that of O(6)-ethyldeoxyguanosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号