首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A cDNA clone encoding porcine α-lactalbumin (αLA) was isolated and sequenced. The longest clone was 688 nucleotides (nt) long and encoded a preprotein of 141 amino acids (aa) including a leader peptide of 19 aa. The porcine cDNA exhibited a nt similarity of between 72.2%–83.5% to other αLA cDNAs and an aa similarity of between 50.8%–85.2% with other αLA aa sequences. The derived aa sequence varied at three positions from a previously reported sequence for porcine αLA obtained by direct aa sequencing.  相似文献   

2.
A number of secreted cytokines, such as interleukin-6 (IL-6), are attractive targets for the treatment of inflammatory diseases. We have determined the solution structure of mouse IL-6 to assess the functional significance of apparent differences in the receptor interaction sites (IL-6Rα and gp130) suggested by the fairly low degree of sequence similarity with human IL-6. Structure-based sequence alignment of mouse IL-6 and human IL-6 revealed surprising differences in the conservation of the two distinct gp130 binding sites (IIa and IIIa), which suggests a primacy for site III-mediated interactions in driving initial assembly of the IL-6/IL-6Rα/gp130 ternary complex. This is further supported by a series of direct binding experiments, which clearly demonstrate a high affinity IL-6/IL-6Rα-gp130 interaction via site III but only weak binding via site II. Collectively, our findings suggest a pathway for the evolution of the hexameric, IL-6/IL-6Rα/gp130 signaling complex and strategies for therapeutic targeting. We propose that the signaling complex originally involved specific interactions between IL-6 and IL-6Rα (site I) and between the D1 domain of gp130 and IL-6/IL-6Rα (site III), with the later inclusion of interactions between the D2 and D3 domains of gp130 and IL-6/IL-6Rα (site II) through serendipity. It seems likely that IL-6 signaling benefited from the evolution of a multipurpose, nonspecific protein interaction surface on gp130, now known as the cytokine binding homology region (site II contact surface), which fortuitously contributes to stabilization of the IL-6/IL-6Rα/gp130 signaling complex.  相似文献   

3.
4.
The authors have previously reported that the soluble serum form of the alpha subunit of the IL-2 receptor (sIL-2Rα), whose natural half-life is approximately 40 min, survived much longer in the circulation when bound by a specific antibody. In the present study, the authors evaluated the extent to which sIL-2Rα protected IL-2 in freshly collected serum using biochemical analyses, and a functional CTLL-2 assay. In particular, sIL-2Rα protected IL-2 from forming complexes with α2-macroglobulin and from inactivation in vitro. In addition, the authors demonstrated that the anti-IL-2Rα monoclonal antibody 7G7/B6, which does not inhibit the binding of IL-2 to its binding site on sIL-2Rα, protected IL-2 from degradation and inactivation in vivo in the presence of sIL-2Rα. Both125I-labelled and unlabelled IL-2 were injected into mice preinjected with humanized anti-Tac (hTac) or 7G7/B6 and sIL-2Rα, or sIL-2Rα alone. Using size-exclusion HPLC, ELISA, and CTLL-2 cell proliferation assays, we observed that the presence of 7G7/B6 led to formation of complexes with sIL-2Rα and increased the serum levels of IL-2 more than 3- to 40-fold those of groups receiving IL-2 alone, sIL-2Rα, or hTac. Taken as a whole, these results suggest that the complex of 7G7/B6 and sIL-2Rα not only prolongs the survival of IL-2 in vivo, but also maintains the bioactivity of IL-2. The use of antibodies against endogenous soluble receptors could increase the in vivo survival of cytokines, protect their bioactivity and thereby facilitate their clinical use in the treatment of various malignancies and AIDS.  相似文献   

5.
Phosphatidylinositol 3-kinase (PI 3-K) plays an important role in signaling via a wide range of receptors such as those for antigen, growth factors, and a number of cytokines, including interleukin-2 (IL-2). PI 3-K has been implicated in both IL-2-induced proliferation and prevention of apoptosis. A number of potential mechanisms for the recruitment of PI 3-K to the IL-2 receptor have been proposed. We now have found that tyrosine residues in the IL-2 receptor β chain (IL-2Rβ) are unexpectedly not required for the recruitment of the p85 component of PI 3-K. Instead, we find that Jak1, which associates with membrane-proximal regions of the IL-2Rβ cytoplasmic domain, is essential for efficient IL-2Rβ–p85 interaction, although some IL-2Rβ–p85 association can be seen in the absence of Jak1. We also found that Jak1 interacts with p85 in the absence of IL-2Rβ and that IL-2Rβ and Jak1 cooperate for the efficient recruitment and tyrosine phosphorylation of p85. This is the first report of a PI 3-K–Jak1 interaction, and it implicates Jak1 in an essential IL-2 signaling pathway distinct from the activation of STAT proteins.  相似文献   

6.
The α/β hydrolase fold is a typical example of a tertiary fold adopted by proteins that have no obvious sequence similarity, but nevertheless, in the course of evolution, diverged from a common ancestor. Recently solved structures demonstrate a considerably increased variability in fold architecture and substrate specificity, necessitating the redefinition of the minimal features that distinguish the family.  相似文献   

7.
8.
A variety of cytokine/cytokine receptor systems affect the biological behavior of acute leukemia cells. However, little is known about the clinical relevance of cytokine receptor expression in acute myeloid leukemia (AML). We quantitatively examined the expression of interleukin-2 receptor α-chain (IL-2Rα, also known as CD25), IL-2Rβ, IL-3Rα, IL-4Rα, IL-5Rα, IL-6Rα, IL-7Rα, the common β-chain (βc), γc, granulocyte-macrophage colony-stimulating factor (GM-CSF)Rα, G-CSFR, c-fms, c-mpl, c-kit, FLT3, and GP130 in leukemia cells from 767 adult patients with AML by flow cytometry and determined their prevalence and clinical significance. All cytokine receptors examined were expressed at varying levels, whereas the levels of IL-3Rα, GM-CSFRα, IL-2Rα, γc, c-kit, and G-CSFR exhibited a wide spectrum of ≥10,000 sites/cell. In terms of their French-American-British classification types, GM-CSFRα and c-fms were preferentially expressed in M4/M5 patients, G-CSF in M3 patients, and IL-2Rα in non-M3 patients. Elevated levels of IL-3Rα, GM-CSFRα, and IL-2Rα correlated with leukocytosis. In patients ≤60 years old, higher levels of these 3 receptors correlated with poor responses to conventional chemotherapy, but only IL-2Rα was associated with a shorter overall survival. By incorporating IL-2Rα status into cytogenetic risk stratification, we could sort out a significantly adverse-risk cohort from the cytogenetically intermediate-risk group. Analyses with various phenotypical risk markers revealed the expression of IL-2Rα as an independent prognostic indicator in patients with intermediate-risk cytogenetics. These findings were not observed in patients >60 years old. Our results indicate that several cytokine receptors were associated with certain cellular and clinical features, but IL-2Rα alone had prognostic value that provides an additional marker to improve current risk evaluation in AML patients ≤60 years old.  相似文献   

9.
Interleukin-31 (IL-31) is a T helper type 2 cell-derived cytokine tightly associated with inflammatory skin disorders. IL-31-induced signaling is mediated by a receptor complex composed of oncostatin M receptor β and the cytokine-specific receptor subunit IL-31Rα, of which there are several isoforms. The latter can be classified as long or short isoforms with respect to their intracellular domain. At present, the signaling capabilities of the different isoforms remain inchoately understood, and potential mechanisms involved in negative regulation of IL-31Rα signaling have so far not been studied in detail. Here, we show that both the long and short isoforms of IL-31Rα are capable of inducing STAT signaling. However, the presence of a functional JAK-binding box within IL-31Rα is an essential prerequisite for functional IL-31-mediated STAT3 signaling. Moreover, both the long and short isoforms require oncostatin M receptor β for their activity. We also show that IL-31 induces expression of four suppressor of cytokine signaling family members and provide evidence that SOCS3 acts as a potent feedback inhibitor of IL-31-induced signaling. Taken together, this study identifies crucial requirements for IL-31 signaling and shows its counter-regulation by SOCS3.  相似文献   

10.
11.
Th17 cells are critical in adaptive immunity and autoimmune disease. The polarized development of Th17, Th1 and Th2 cells is dependent on counterregulatory effects on each other. Whereas IFN-γ inhibits Th17 development, the effect of IL-17 in human Th1 development is not known. We report a novel negative regulatory role of IL-17 on IL-12Rβ2 expression associated with reduced IL-12 responsiveness. IL-17 decreased IL-12-induced IFN-γ expression in PBMC and developing Th1 cells, associated with a selective reduction in IL-12Rβ2, and not IL-23R, IL-12Rβ1 or T-bet. Counterregulatory effects of human Th17 on Th1 lineage cytokines may contribute to lineage divergence. In autoimmune disease, IL-17 may reinforce its own developmental programme by reducing IL-12 responsiveness, thus limiting inhibitory effects of IFN-γ on Th17 development.  相似文献   

12.
13.
The cytokines, interleukin-3 (IL-3), interleukin-5 (IL-5), and granulocyte-macrophage colony-stimulating factor (GM-CSF), exhibit overlapping activities in the regulation of hematopoietic cells. In humans, the common β (βc) receptor is shared by the three cytokines and functions together with cytokine-specific α subunits in signaling. A widely accepted hypothesis is that receptor activation requires heterodisulfide formation between the domain 1 D-E loop disulfide in human βc (hβc) and unidentified cysteine residues in the N-terminal domains of the α receptors. Since the development of this hypothesis, new data have been obtained showing that domain 1 of hβc is part of the cytokine binding epitope of this receptor and that an IL-3Rα isoform lacking the N-terminal Ig-like domain (the “SP2” isoform) is competent for signaling. We therefore investigated whether distortion of the domain 1-domain 4 ligand-binding epitope in hβc and the related mouse receptor, βIL-3, could account for the loss of receptor signaling when the domain 1 D-E loop disulfide is disrupted. Indeed, mutation of the disulfide in hβc led to both a complete loss of high affinity binding with the human IL-3Rα SP2 isoform and of downstream signaling. Mutation of the orthologous residues in the mouse IL-3-specific receptor, βIL-3, not only precluded direct binding of mouse IL-3 but also resulted in complete loss of high affinity binding and signaling with the mouse IL-3Rα SP2 isoform. Our data are most consistent with a role for the domain 1 D-E loop disulfide of hβc and βIL-3 in maintaining the precise positions of ligand-binding residues necessary for normal high affinity binding and signaling.  相似文献   

14.
15.
Activation of the Hedgehog (Hh) pathway is known to drive development of basal cell carcinoma and medulloblastomas and to associate with many other types of cancer, but the exact molecular mechanisms underlying the carcinogenesis process remain elusive. We discovered that skin tumors derived from epidermal expression of oncogenic Smo, SmoM2, have elevated levels of IL-11, IL-11Rα, and STAT3 phosphorylation at Tyr705. The relevance of our data to human conditions was reflected by the fact that all human basal cell carcinomas examined have detectable STAT3 phosphorylation, mostly in keratinocytes. The functional relevance of STAT3 in Smo-mediated carcinogenesis was revealed by epidermal specific knockout of STAT3. We showed that removal of STAT3 from mouse epidermis dramatically reduced SmoM2-mediated cell proliferation, leading to a significant decrease in epidermal thickness and tumor development. We also observed a significant reduction of epidermal stem/progenitor cell population and cyclin D1 expression in mice with epidermis-specific knockout of STAT3. Our evidence indicates that STAT3 signaling activation may be mediated by the IL-11/IL-11Rα signaling axis. We showed that tumor development was reduced after induced expression of SmoM2 in IL-11Rα null mice. Similarly, neutralizing antibodies for IL-11 reduced the tumor size. In two Hh-responsive cell lines, ES14 and C3H10T1/2, we found that addition of Smo agonist purmorphamine is sufficient to induce STAT3 phosphorylation at Tyr705, but this effect was abolished after IL-11Rα down-regulation by shRNAs. Taken together, our results support an important role of the IL-11Rα/STAT3 signaling axis for Hh signaling-mediated signaling and carcinogenesis.  相似文献   

16.
17.
The receptor binding to interleukin (IL)-13 is composed of the IL-13 receptor α1 chain (IL-13Rα1) and the IL-4 receptor α chain (IL-4Rα). In order to investigate the interaction of IL-13 with IL-13Rα1 and IL-4Rα, the DNA fragments coding the extracellular regions of human IL-13Rα1 and the IL-4Rα (containing a cytokine receptor homologous region) were fused with mouse Fc and expressed by a silkworm–baculovirus system. The expressed receptors were successfully purified by affinity chromatography using protein A, and the Fc region was removed by thrombin digestion. After further purification with anion-exchange chromatography, these receptors were used to investigate the ligand–receptor interaction. Size exclusion chromatography and SPR analysis revealed that mixture of IL-13 and IL-13Rα1 showed predominant affinity to IL-4Rα, although neither detectable affinity of IL-13 nor IL-13Rα1 was observed against IL-4Rα. Combining these data with the moderate affinity of IL-13 to IL-13Rα1, this indicates that IL-13 first binds to IL-13Rα1 and recruits consequently to IL-4R.  相似文献   

18.
Complexes [M(η12-C8H12OMe)((2,6-(R)2---C6H3)N=C(R′)---C(R′)=N((2,6-(R)2---C6H3))]PF6 (where M=Pd, R=H and R′2=Me2 (1), M=Pd, R=Me and R′2=Me2 (2), M=Pd, R=Et and R′2=Me2 (3), M=Pd, R=iPr and R′2=Me2 (4), M=Pd, R=iPr and R′2=An (5), M=Pt, R=iPr and R′2=An (6)) were synthesized by the reaction of [M(η12-C8H12OMe)Cl]2 with the appropriate α-diimine ligand in the presence of NH4PF6. Their ion pair structure in solution was investigated by detecting dipolar interactions between protons belonging to the cation and fluorine nuclei of the anion (interionic contacts) in the 19F, 1H-HOESY NMR spectra. In complexes 14, the anion in solution is located close to the peripheral protons of the α-diimine ligand and it interacts with the R′ protons and with the R protons that point toward the R′ groups. The steric protection of apical position exerted by the R substituents is clearly illustrated by the absence of interionic contacts between any protons of the cycloctenylmethoxy-moiety and the anion for R≥Me in 14. In complexes 5 and 6 the interactions between the anion and the peripheral N,N protons also predominate but other anion–cation orientations are significantly present and, consequently, the interionic structure is less specific.  相似文献   

19.
The cytokine interleukin-3 (IL-3) is a critical regulator of inflammation and immune responses in mammals. IL-3 exerts its effects on target cells via receptors comprising an IL-3-specific α-subunit and common β-subunit (βc; shared with IL-5 and granulocyte-macrophage colony-stimulating factor) or a β-subunit that specifically binds IL-3 (βIL-3; present in mice but not humans). We recently identified two splice variants of the α-subunit of the IL-3 receptor (IL-3Rα) that are relevant to hematopoietic progenitor cell differentiation or proliferation: the full length (“SP1” isoform) and a novel isoform (denoted “SP2”) lacking the N-terminal Ig-like domain. Although our studies demonstrated that each mouse IL-3 (mIL-3) Rα isoform can direct mIL-3 binding to two distinct sites on the βIL-3 subunit, it has remained unclear which residues in mIL-3 itself are critical to the two modes of βIL-3 recognition and whether the human IL-3Rα SP1 and SP2 orthologs similarly instruct human IL-3 binding to two distinct sites on the human βc subunit. Herein, we describe the identification of residues clustering around the highly conserved A-helix residue, Glu23, in the mIL-3 A- and C-helices as critical for receptor binding and growth stimulation via the βIL-3 and mIL-3Rα SP2 subunits, whereas an overlapping cluster was required for binding and activation of βIL-3 in the presence of mIL-3Rα SP1. Similarly, our studies of human IL-3 indicate that two different modes of βc binding are utilized in the presence of the hIL-3Rα SP1 or SP2 isoforms, suggesting a possible conserved mechanism by which the relative orientations of receptor subunits are modulated to achieve distinct signaling outcomes.  相似文献   

20.
To study the function of the B cell signal transduction molecule α4 (IGBP1), we isolated a human α4 (IGBP1) gene that has sequence similarity to the yeast protein (TAP42) involved in the rapamycin-sensitive signal transduction pathway. The human α4 has sequence identities with murine α4 of 83.4% nucleotide and 82.9% amino acid sequence, and a stretch of consensus motifs in the carboxyl terminal is conserved among the related genes of human, mouse, yeast, and rice. The gene is expressed as a 1.4-kb mRNA in the spleen, lymph node, thymus, appendix, peripheral blood leukocytes, bone marrow, fetal liver, heart, brain, placenta, skeletal muscle, kidney, and pancreas. The anti-human α4 antibody detected a 45-kDa protein in human lymphoid cell lines. Moreover, human α4 (IGBP1) gene is located at q13.1–q13.3 on chromosome X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号