首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The euryhaline green crab, Carcinus maenas, is a relatively strong osmotic and ionic regulator, being able to maintain its hemolymph osmolality as much as 300 mOsm higher than that in the medium when the crab is acclimated to low salinity. It makes the transition from osmoconformity to osmoregulation at a critical salinity of 26 ppt, and new acclimated concentrations of hemolymph osmotic and ionic constituents are reached within 12 h after transfer to low salinity. One of the central features of this transition is an 8-fold induction of the enzyme carbonic anhydrase (CA) in the gills. This induction occurs primarily in the cytoplasmic pool of CA in the posterior, ion-transporting gills, although the membrane-associated fraction of CA also shows some induction in response to low salinity. Inhibition of branchial CA activity with acetazolamide (Az) has no effect in crabs acclimated to 32 ppt but causes a depression in hemolymph osmotic and ionic concentrations in crabs acclimated to 10 ppt. The salinity-sensitive nature of the cytoplasmic CA pool and the sensitivity of hemolymph osmotic/ionic regulation to Az confirm the enzyme's role in ion transport and regulation in this species. CA induction is a result of gene activation, as evidenced by an increase in CA mRNA at 24 h after transfer to low salinity and an increase in protein-specific CA activity immediately following at 48 h post-transfer. CA gene expression appears to be under inhibitory control by an as-yet unidentified repressor substance found in the major endocrine complex of the crab, the eyestalk.  相似文献   

2.
Carbonic anhydrase (CA) activity in the gills of the euryhaline blue crab, Callinectes sapidus, was measured in response to acute low-salinity transfer and treatment with eyestalk ablation (ESA) in an attempt to elucidate potential regulatory mechanisms of salinity-mediated CA induction. ESA alone resulted in an approximate doubling of CA activity in the posterior, ion-transporting gills of crabs acclimated to 35 ppt. Transfer of intact crabs to 28 ppt, a salinity at which the blue crab is still an osmotic and ionic conformer, had no effect on CA activity, but treatment with ESA prior to transfer resulted in a 5-fold increase. Hemolymph osmolality was unaffected by ESA. There was a 7-fold induction of CA activity in posterior gills of intact crabs transferred from 35 to 15 ppt, and this was potentiated by about 100% by ESA. Hemolymph osmolality was slightly elevated in the ESA-treated crabs. CA activity in anterior gills did not increase in response to any treatment. Hemolymph concentrations of methyl farnesoate (MF) were measured for all experimental animals. MF concentrations were undetectable in all intact crabs, regardless of salinity. Treatment with ESA resulted in elevated levels of hemolymph MF, but these levels were still relatively low and unrelated to salinity. These results suggest that CA induction is under the control of a regulatory substance located in the eyestalk. This substance appears to be a CA repressor, keeping CA expression at low levels in the gills of crabs acclimated to high salinity. Exposure to low salinity, or treatment with ESA, removes the effects of this putative repressor and allows CA induction to occur.  相似文献   

3.
4.
The time course of induction of activity of carbonic anhydrase (CA) and Na/K ATPase, two enzymes that are central to osmotic and ionic regulation in the eyryhaline green crab, Carcinus maenas, was measured in response to a transfer from 32 to 10 ppt salinity. CA activity was low in all gills in crabs acclimated to high salinity. Activity was induced in the posterior three gills (G6-G9) starting at 96 hr following transfer to low salinity, with activity peaking at seven post-transfer. Na/K ATPase activity in posterior gills was already high in crabs acclimated to 32 ppt salinity, and it did not increase as a result of transfer to 10 ppt. Acclimation of crabs to hypersaline (40 ppt) conditions resulted in uniformly low levels of Na/K ATPase activity, and transfer from 40 ppt to 10 ppt stimulated a four-fold induction of activity in the posterior gills that was evident by seven days of low salinity exposure. Low salinity stimulates the activity of both enzymes, but a different degree of salinity change appears to be necessary to cause the induction of each enzyme. The Na/K ATPase activity is already high at a salinity (32 ppt) at which the crab is still an osmotic and ionic conformer. CA activity, however, even when expressed in low levels, is still present in excess of what is needed to supply counterions at a rate adequate to match the rate of active ion transport. It is possible that two strategies exist for the regulation of these two enzymes that coincide with the crab's intertidal and estuarine lifestyle: short-term modulation of activity of highly expressed enzyme (Na/K ATPase) and long-term modulation of enzyme concentration by changes in gene expression (CA). For all ranges of low salinity exposure, crabs undergo hemodilution, cell swelling, and subsequent cell volume readjustment as evidenced by the increase in concentration of TNPS in the hemolymph. This response takes place before the induction of enzyme activity, and it could serve as the initial signal in the induction pathway.  相似文献   

5.
Carbonic anhydrase (CA) was identified by differential display PCR analysis as one of the differentially expressed genes in the gills of low salinity stressed (transferred from 25 to 3 ppt) Penaeusmonodon. To further characterize the role of CA in the regulation of salinity stress, the cDNA sequence of P.monodon carbonic anhydrase (PmCA) was attained by rapid amplification of cDNA ends and found to have a total length of 1194 bp. The deduced amino acid of PmCA shares 73% sequence identity with the CA homologue recently isolated from the crab, Callinectessapidus. Real time RT-PCR and enzymatic activity analyses were employed to determine the changes in the PmCA mRNA expression and total CA activity, respectively, after shrimps were transferred from 25 to 3 ppt salinities for up to 2 weeks. Compared to the CA level in the control group (25 ppt), PmCA mRNA was significantly increased in shrimp gills at 24 h after hypo-osmotic stress. In contrast, the epipodites and antennal gland displayed decreased levels of mRNA expression. The gross CA enzymatic activity after hypo-osmotic stress was increased in the shrimp gills but remained stable in the epipodites and antennal gland.  相似文献   

6.
Carbonic anhydrase (CA) induction in the gills of the euryhaline blue crab, Callinectes sapidus, was measured in response to lowered environmental salinity. Simultaneous measurements of ornithine decarboxylase (ODC) activity were made in gills and nonbranchial tissues to determine whether ODC activity and the resultant synthesis of polyamines played a role in the initiation and regulation of CA induction. CA induction in the seventh gill pair (G7) was proportional to the decrease in ambient salinity, but activity in the third gill pair (G3) remained unchanged. Induction began by 24 hr after low salinity transfer, much earlier than previously reported, and peaked after 4 days. The magnitude of salinity change affected the magnitude of CA induction only, not the time course. A general cell volume regulatory response, as measured by the appearance of total ninhydrin-positive substances (TNPS) in the hemolymph, was initiated within 4 hr of low salinity transfer and was complete by 24 hr post-transfer. General cell swelling may be the initial signal in the pathway of CA induction. ODC activity in the gills of acclimated animals was not influenced by salinity. For crabs transferred from 35 to 25 ppt, ODC activity did not change significantly over the time course of acclimation. There was an early but transient increase in ODC activity in all tissues for crabs acclimated to 28 ppt and transferred to 15 ppt. Induction of ODC activity does not appear to be a precursor for CA induction; therefore, it does not appear that polyamines are substantially involved in the up-regulation of transport enzyme activity in low salinity. ODC, and resultant polyamine synthesis, may, however, have a role in cell volume regulation.  相似文献   

7.
The relationship between branchial carbonic anhydrase (CA) activity, CA gene expression and salinity, and potential mechanisms of regulation, was investigated in the euryhaline green crab, Carcinus maenas, acclimated to 33 ppt and transferred to 10 ppt, and the stenohaline rock crab, Cancer irroratus, acclimated to 32 ppt and transferred to 18 ppt. CA activity in green crabs acclimated to high and low salinity was a function of CA mRNA expression, with low salinity exposure resulting in an increase in both CA expression and activity. Eyestalk ablation (ESA) in green crabs acclimated to high salinity resulted in an increase in CA expression in the posterior, ion-transporting gills, in the absence of the low salinity stimulus. There were no changes in CA activity or expression in the anterior, respiratory gills. ESA also potentiated low salinity-stimulated CA induction, again, only in posterior gills. There were no changes in CA activity in any gills of Cancer irroratus, in response to either ESA or low salinity. These results suggest that CA expression in euryhaline, osmoregulating species, is under inhibitory regulation by a putative repressor found in the eyestalk, and that this mechanism is absent in stenohaline, osmoconforming species. CA expression is maintained at low, baseline levels in crabs acclimated to high salinity by the presence and action of this compound. The effects of the repressor appear to be reduced upon exposure to low salinity, allowing CA induction to occur.  相似文献   

8.
The euryhaline green crab, Carcinus maenas, undergoes an annual cycle of salinity exposure, having to adapt to low salinity during its annual spring migration into estuaries, and then having to re-adapt to high salinity when it moves off-shore at the end of summer. Most studies have focused on low salinity acclimation, the activation of osmoregulatory mechanisms, and the induction of transport protein and transport-related enzyme activity and gene expression. In this study we followed the changes in hemolymph osmolality, carbonic anhydrase activity, and mRNA expression of three proteins through a complete cycle of low (15 ppt) and high (32 ppt) salinity acclimation. One week of low salinity acclimation resulted in hemolymph osmoregulation and a four-fold induction of branchial carbonic anhydrase activity. Relative mRNA expression increased for two CA isoforms (CAc 100-fold, and CAg 7-fold) and the α-subunit of the Na/K-ATPase (8-fold). Upon re-exposure to high salinity, hemolymph osmolality increased to 32 ppt acclimated levels by 6 h, and mRNA levels returned to high salinity, baseline levels within 1 week. However, CA activity remained unchanged in response to high salinity exposure for the first week and then gradually declined to baseline levels over 4 weeks. The relative timing of these changes suggests that while whole-organism physiological adaptations and regulation at the gene level can be very rapid, changes at the level of protein expression and turnover are much slower. It is possible that the high metabolic cost of protein synthesis and/or processing could be the underlying reason for long biological life spans of physiologically important proteins.  相似文献   

9.
Survival, growth, haemolymph osmolality and tissue water of Penaeus chinensis (Osbeck) juveniles (0.11 ± 0.04 g) were investigated, after they were acclimated to 10, 20, 30 and 40 ppt from 33 ppt for 14 days at 24°C, and then acclimated to 12, 18, 24 and 30°C at each salinity for 14 days. The survival of shrimp was the lowest at 10 ppt and 12°C. Growth of shrimp increased with increased temperature in the range 12–24°C, with no significant difference among four salinity levels at 18, 24 and 30°C. Haemolymph osmolality increased with increased salinity, and decreased with increased temperature. The isosmotic point computed from the linear relationship between haemolymph osmolality and medium osmolality was 664, 632, 629 and 602 mOsm/kg which is equivalent to 25.2, 24.1, 24.0 and 23.1 ppt at 12, 18, 24 and 30°C, respectively. Tissue water decreased with increased medium osmolality and haemolymph osmolality. The slope obtained from the relationship between haemolymph osmolality and medium osmolality indicated that there is an impairment of osmoregulatory ability for the P. chinensis juveniles at 12°C.  相似文献   

10.
To examine osmotic regulation during long-term acclimation to a hyperosmotic medium, hemolymph osmolality, [Na+] and total protein, tissue hydration, and free amino acid (FAA) pools in abdominal muscle, gills, central nervous tissue and hemolymph were quantified in the diadromous freshwater (FW) shrimp, Macrobrachium olfersii, during direct exposure to 21‰S seawater over a 20-day period. Hemolymph osmolality and [Na+] reach stable maxima within 24 h while total protein is unchanged. Muscle and nerve tissues rapidly lose water while gills hydrate; all tissues attain maximum hydration (+5%) by 5 days, declining to FW values except for gills. Total FAA are highest in muscle, reach a maximum by 2 days (+64%), declining to FW values. Gill FAA increase by 110% after 24 h, diminishing to FW values. Nerve FAA increase 187% within 24 h, and remain elevated. Hemolymph FAA decrease (-75%) after 24 h, stabilizing well below the FW concentration. During acclimation, muscle glycine (+247%), gill taurine (+253%) and proline (+150%), and nerve proline (+426%), glycine (+415%) and alanine (+139%) increase, while hemolymph leucine (-70%) decreases. Total FAA pools contribute 10-20% to intracellular (22-70 mmol/kg) and 0.5-2.4% to hemolymph (3-7 mOsm/kg) osmolalities during direct acclimation from FW. These data emphasize the modest participation of FAA pools in intracellular osmotic regulation during physiological adaptation by M. olfersii to osmotic challenge, accentuating the role of anisosmotic extracellular regulation, suggesting that, during the invasion of freshwater by the Crustacea, dependence on intracellular adjustment employing FAA as osmotic effectors, has become progressively reduced.  相似文献   

11.
To examine osmotic regulation during long-term acclimation to a hyperosmotic medium, hemolymph osmolality, [Na+] and total protein, tissue hydration, and free amino acid (FAA) pools in abdominal muscle, gills, central nervous tissue and hemolymph were quantified in the diadromous freshwater (FW) shrimp, Macrobrachium olfersii, during direct exposure to 21‰S seawater over a 20-day period. Hemolymph osmolality and [Na+] reach stable maxima within 24?h while total protein is unchanged. Muscle and nerve tissues rapidly lose water while gills hydrate; all tissues attain maximum hydration (+5%) by 5 days, declining to FW values except for gills. Total FAA are highest in muscle, reach a maximum by 2 days (+64%), declining to FW values. Gill FAA increase by 110% after 24?h, diminishing to FW values. Nerve FAA increase 187% within 24?h, and remain elevated. Hemolymph FAA decrease (?75%) after 24?h, stabilizing well below the FW concentration. During acclimation, muscle glycine (+247%), gill taurine (+253%) and proline (+150%), and nerve proline (+426%), glycine (+415%) and alanine (+139%) increase, while hemolymph leucine (?70%) decreases. Total FAA pools contribute 10–20% to intracellular (22–70?mmol/kg) and 0.5–2.4% to hemolymph (3–7?mOsm/kg) osmolalities during direct acclimation from FW. These data emphasize the modest participation of FAA pools in intracellular osmotic regulation during physiological adaptation by M. olfersii to osmotic challenge, accentuating the role of anisosmotic extracellular regulation, suggesting that, during the invasion of freshwater by the Crustacea, dependence on intracellular adjustment employing FAA as osmotic effectors, has become progressively reduced.  相似文献   

12.
  • 1.1. Osmolality and chloride concentrations in the hemolymph of Penaeus monodon became stable 1 day after molting in 32 ppt, while total protein and calcium concentrations remained stable throughout the molting cycle. When intermolt (≥ 36 hr postmolt) animals were transferred from control (32 ppt) to experimental (8–40 ppt) salinities, osmolality, chloride and total protein, but not calcium, concentrations in the hemolymph achieved steady state values 24–48 hr after transfer.
  • 2.2. The hemolymph osmolality was a linear function (slope = 0.28) of medium osmolality at salinities between 8 and 40 ppt. It was isosmotic to seawater at 698 mOsm (10 g prawns) and 752 mOsm (30 g), and was hyperosmotic to the medium below isosmotic concentrations, and hypoosmotic to those above.
  • 3.3. Hemolymph chloride concentration was isoionic to seawater at 334 mM, and was hyperregulated below isoionic concentrations, and hyporegulated to those above.
  • 4.4. P. monodon maintained its hemolymph calcium concentration between 6.4 and 10 mM when medium salinities increased from 8 to 40 ppt.
  • 5.5. Total protein concentration in the hemolymph was independent of medium salinity (8–40 ppt) and hemolymph osmolality (540–850 mOsm).
  相似文献   

13.
Intertidal hermit crabs were stepwise acclimated to 10, 20, and 30‰ salinity (S) and 21 ± 1 °C. Hemolymph osmolality, sodium, chloride, and magnesium were isosmotic (isoionic) to ambient sea water at 30‰ and hyperosmotic (hyperionic) at 20 and 10‰ S, while hemolymph potassium was significantly hyperionic in all acclimation salinities. Total body water did not differ significantly at any acclimation salinity. Oxygen uptake rates were higher in summer-than winter-adapted crabs. No salinity effect on oxygen consumption occurred in winter-adapted individuals. Summer-adapted, 30‰ acclimated crabs had a significantly lower oxygen consumption rate than those acclimated 10 and 20‰ S. Crabs exposed to 30 10 30‰ and 10 30 10‰ semidiurnal (12 h) and diurnal (24.8 h) fluctuating salinity regimes showed variable osmoregulatory and respiratory responses. Hemolymph osmolality followed the osmolality of the fluctuating ambient sea water in all cases, but was regulated hyperosmotically. Hemolymph sodium, chloride, and magnesium concentrations were similar to hemolymph osmolality changes. Sodium levels fluctuated the least. Hemolymph potassium was regulated hyperionically during all fluctuation patters, but corresponded to sea water potassium only under diurnal conditions. The osmoregulatory ability of Clibanarius vittatus (Bosc) resembles that reported for several euryhaline brachyuran species. The time course of normalized oxygen consumption rate changed inversely with salinity under semidiurnal and diurnal 10 30 10‰ S fluctuations. Patterns of 30 10 30‰ S cycles had no effect on oxygen consumption rate time course changes. The average hourly oxygen consumption rates during both semidiurnal fluctuations were significantly lower than respective control rates, but no statistical difference was observed under diurnal conditions.  相似文献   

14.
The salinity of estuarine environments can vary widely, exposing resident organisms to considerable osmotic stress. The green crab Carcinus maenas is well known for its ability to osmoregulate in response to such stress. Therefore, we tested the relationship between osmoregulation and hemolymph levels of methyl farnesoate (MF), a compound previously shown to rise in response to various types of environmental stresses. When crabs were transferred from 100% seawater to dilute (hypo-osmotic) seawater, hemolymph osmolality dropped rapidly, reaching an acclimation level 48 h after transfer. Hemolymph levels of MF also rose in these animals after a delay of 6 h, and reached a maximum level at 48 h. MF levels remained elevated as long as the crabs were maintained in dilute seawater, and quickly returned to basal levels when the animals were returned to full strength seawater. In most (but not all) animals, MF levels were elevated when hemolymph osmolality fell below the isosmotic point (approx. 800 mOsm/kg). These data suggest that MF may have a role in osmoregulation by this species. In addition, the elevation of MF by hypo-osmotic seawater suggests an experimental strategy for manipulating MF levels in crustaceans.  相似文献   

15.
The effect of water salinity and ions on metallothionein-like proteins (MTLP) concentration was evaluated in the blue crab Callinectes sapidus. MTLP concentration was measured in tissues (hepatopancreas and gills) of crabs acclimated to salinity 30 ppt and abruptly subjected to a hypo-osmotic shock (salinity 2 ppt). It was also measured in isolated gills (anterior and posterior) of crabs acclimated to salinity 30 ppt. Gills were perfused with and incubated in an isosmotic saline solution (ISS) or perfused with ISS and incubated in a hypo-osmotic saline solution (HSS). The effect of each single water ion on gill MTLP concentration was also analyzed in isolated and perfused gills through experiments of ion substitution in the incubation medium. In vivo, MTLP concentration was higher in hepatopancreas than in gills, being not affected by the hypo-osmotic shock. However, MTLP concentration in posterior and anterior gills significantly increased after 2 and 24 h of hypo-osmotic shock, respectively. In vitro, it was also increased when anterior and posterior gills were perfused with ISS and incubated in HSS. In isolated and perfused posterior gills, MTLP concentration was inversely correlated with the calcium concentration in the ISS used to incubate gills. Together, these findings indicate that an increased gill MTLP concentration in low salinity is an adaptive response of the blue crab C. sapidus to the hypo-osmotic stress. This response is mediated, at least in part, by the calcium concentration in the gill bath medium. The data also suggest that the trigger for this increase is purely branchial and not systemic.  相似文献   

16.
We studied the participation of carbonic anhydrase (CA), V-H(+)-ATPase, and Cl(-)/HCO3- exchanger in electrogenic ion absorption through the gills of Chasmagnathus granulatus. CA activity was measured in anterior gills and posterior gills after acclimation to 2 per thousand, 10 per thousand, 30 per thousand (about seawater), and 45 per thousand salinity. The highest CA specific activity was detected in the microsomal fraction in anterior gills, and in the cytosolic fraction, in posterior ones. Both fractions were strongly induced by decreasing salinity only in posterior gills. Perfusion of posterior gills from crabs acclimated to either 2 per thousand or 10 per thousand with acetazolamide inhibited CA activity almost completely. In posterior gills from crabs acclimated to 2 per thousand and perfused with 20 per thousand saline (iso-osmotic for these crabs), acetazolamide reduced transepithelial potential difference (V(te)) by 47%, further addition of ouabain enhanced the effect to 88%. Acetazolamide had no effect in the same gills perfused with 30 per thousand saline (iso-osmotic for seawater acclimated crabs). Bafilomycin A1 and SITS (inhibitors of V-H(+)-ATPase and Cl(-)/HCO3-) reduced V(te) by 15-16% in gills perfused with normal 20 per thousand saline, and by 77% and 45%, respectively when they were applied in Na-free 20 per thousand saline, suggesting the participation of those transporters and cytosolic CA in electrogenic ion absorption.  相似文献   

17.
Fatty acid composition of cellular membranes can modify permeability and can modulate the activity of Na(+)/K(+)-ATPase. Although highly unsaturated fatty acids (HUFA) improve survival and osmoregulatory capacity to low salinities in penaeid shrimp, the possible mechanisms have not been established. For this purpose the influence of HUFA supplementation in diet (2.9 vs. 34% HUFA proportion to total fatty acids) on osmoregulatory responses of juvenile Litopenaeus vannamei submitted to an acute (15 h) or chronic exposure (21 days), to low (5 g L(-1)) and high salinities (50 g L(-1)) was analyzed. Shrimp fed the high-HUFA diet, had higher concentration of main HUFA (20:5n-3 and 22:6n-3) in polar lipids of gills. Osmotic pressure in hemolymph was significantly affected by salinity in acute (640, 751, 847 mOsm/kg for 5, 30 and 50 g L(-1), respectively), and chronic exposure (645, 713, 814 mOsm/kg), but variations between them were small compared to environmental salinity (206, 832, 1547 mOsm/kg), indicating that osmoregulation was achieved in a matter of hours. An increase in Na(+)/K(+)-ATPase activity was observed only after a chronic exposure to low salinity. Free amino acids (FAA), mainly alanine and arginine, were higher at 30 (control) and 50 g L(-1) in accordance to their role as organic osmolites. Neither osmotic pressure, Na(+)/K(+)-ATPase activity, nor FAA was affected by HUFA supplementation. However, higher water content in gills of shrimp exposed to low salinities was counteracted by increased HUFA content, which could be a result of changes in water permeability of gills. The osmoregulatory capacity of penaeid shrimp to low and high salinities was achieved within 15 h of acclimation and did not depend on HUFA supplementation in the diet.  相似文献   

18.
Growth hormone (GH) transgenic fish are at a critical step for possible approval for commercialization. Since this hormone is related to salinity tolerance in fish, our main goal was to verify whether the osmoregulatory capacity of the stenohaline zebrafish (Danio rerio) would be modified by GH-transgenesis. For this, we transferred GH-transgenic zebrafish (T) from freshwater to 11 ppt salinity and analyzed survival as well as relative changes in gene expression. Results show an increased mortality in T versus non-transgenic (NT) fish, suggesting an impaired mechanism of osmotic acclimation in T. The salinity effect on expression of genes related to osmoregulation, the somatotropic axis and energy metabolism was evaluated in gills and liver of T and NT. Genes coding for Na+, K+-ATPase, H+-ATPase, plasma carbonic anhydrase and cytosolic carbonic anhydrase were up-regulated in gills of transgenics in freshwater. The growth hormone receptor gene was down-regulated in gills and liver of both NT and T exposed to 11 ppt salinity, while insulin-like growth factor-1 was down-regulated in liver of NT and in gills of T exposed to 11 ppt salinity. In transgenics, all osmoregulation-related genes and the citrate synthase gene were down-regulated in gills of fish exposed to 11 ppt salinity, while lactate dehydrogenase expression was up-regulated in liver. Na+, K+-ATPase activity was higher in gills of T exposed to 11 ppt salinity as well as the whole body content of Na+. Increased ATP content was observed in gills of both NT and T exposed to 11 ppt salinity, being statistically higher in T than NT. Taking altogether, these findings support the hypothesis that GH-transgenesis increases Na+ import capacity and energetic demand, promoting an unfavorable osmotic and energetic physiological status and making this transgenic fish intolerant of hyperosmotic environments.  相似文献   

19.
20.
Activities of carbonic anhydrase (CA) and its distribution in the branchial cavity tissues were studied in European lobsters (Homarus gammarus) from ambient seawater (SW; salinity=38 ppt, 1126 mosmol/l) and acclimated to dilute seawater (DSW; salinity=20 ppt, 548 mosmol/l). Acetazolamide inhibited dose dependently the activity of CA in homogenates of epipodites, where the inhibition constant (IC50=0.12 μM) did not differ significantly from that of membrane vesicles and cytosolic fraction. In DSW-acclimated lobsters, almost 70% of total CA in tissues of the branchial cavity was found in epipodites (E) and the rest was equally distributed between branchiostegites (B) and gills (G). Upon acclimation to dilute seawater, CA activity in membrane fractions of E and B was increased 6-fold and in homogenates, respectively 5- and 13-fold compared to SW-acclimated lobsters. Exposure to DSW enhanced cytosolic CA in E (8-fold) and B (7-fold) over SW-acclimated animals. Slight activation of CA in homogenates and in partially purified membranes of G was not confirmed as a statistically significant difference between SW and DSW groups. In DSW, cytosol specific activity of CA was increased compare to the SW cytosol. These results indicate the importance of E and B in CA induction when lobsters are acclimated to DSW. In subcellular fractions from DSW-acclimated lobsters, the main proportion of 75.8% (E), 61.0% (B) of total CA activity in each of these tissues remained in cytosol portion. Partially purified membranes contained 6.8% (E) and 16.2% (B) and the remainder of 15% (E) and 27% (B) was found in mitochondrial and nuclear fractions. In gills, 49.2% and 9.0 % of total gill CA activity was found respectively in cytosol and partially purified vesicles and the rest in mitochondrial and nuclear fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号