共查询到20条相似文献,搜索用时 3 毫秒
1.
Walker JW Jijon HB Madsen KL 《Biochemical and biophysical research communications》2006,342(1):336-341
AMPK acts as a cellular fuel gauge and responds to decreased cellular energy status by inhibiting ATP-consuming pathways and increasing ATP-synthesis. The aim of this study was to examine the role of AMPK in modulating poly(ADP-ribose) polymerase (PARP), a nuclear enzyme involved in maintaining chromatin structure and DNA repair. HT-29 cells infected with constitutively active AMPK demonstrated increased PARP automodification and an increase in bioNAD incorporation. AMPK and PARP co-immunoprecipitated under basal conditions and in response to H(2)O(2), suggesting a physical interaction under both resting and stress-induced conditions. Incubation of PARP with purified AMPK resulted in the phosphorylation of PARP; and the inclusion of AMP as an AMPK activator potentiated PARP phosphorylation. Using immobilized PARP, the incorporation of bioNAD by PARP was dramatically increased following the addition of AMPK. These data suggest a novel role for AMPK in regulating PARP activity through a direct interaction involving phosphorylation. 相似文献
2.
3.
Treatment of alkylated HeLa cells with 3-aminobenzamide, an inhibitor of poly(ADP-ribose) polymerase, increased the number of DNA strand breaks but did not affect the rate of strand rejoining. This suggests that an increase in DNA incision, not a decrease in ligation, results from the inhibition ofpoly(ADP-ribose) polymerase in cells recovering from DNA damaged by alkylating agents. Poly(ADP-ribose) DNA strand break DNA repair 相似文献
4.
Functional association of poly(ADP-ribose) polymerase with DNA polymerase alpha-primase complex: a link between DNA strand break detection and DNA replication. 总被引:10,自引:2,他引:8 下载免费PDF全文
F Dantzer H P Nasheuer J L Vonesch G de Murcia J Mnissier-de Murcia 《Nucleic acids research》1998,26(8):1891-1898
Poly(ADP-ribose) polymerase (PARP) is an element of the DNA damage surveillance network evolved by eukaryotic cells to cope with numerous environmental and endogenous genotoxic agents. PARP has been found to be involved in vivo in both cell proliferation and base excision repair of DNA. In this study the interaction between PARP and the DNA polymerase alpha-primase tetramer has been examined. We provide evidence that in proliferating cells: (i) PARP is physically associated with the catalytic subunit of the DNA polymerase alpha-primase tetramer, an association confirmed by confocal microscopy, demonstrating that both enzymes are co-localized at the nuclear periphery of HeLa cells; (ii) this interaction requires the integrity of the second zinc finger of PARP and is maximal during the S and G2/M phases of the cell cycle; (iii) PARP-deficient cells derived from PARP knock-out mice exhibited reduced DNA polymerase activity, compared with the parental cells, a reduction accentuated following exposure to sublethal doses of methylmethanesulfonate. Altogether, the present results strongly suggest that PARP participates in a DNA damage survey mechanism implying its nick-sensor function as part of the control of replication fork progression when breaks are present in the template. 相似文献
5.
Zinc-binding domain of poly(ADP-ribose)polymerase participates in the recognition of single strand breaks on DNA 总被引:10,自引:0,他引:10
J Ménissier-de Murcia M Molinete G Gradwohl F Simonin G de Murcia 《Journal of molecular biology》1989,210(1):229-233
Poly(ADP-ribose)polymerase is a chromatin-associated enzyme of eukaryotic cell nuclei that catalyses the covalent attachment of ADP-ribose units from NAD+ to various nuclear acceptor proteins. This post-translational modification has been postulated to influence several chromatin functions, particularly those where nicking and rejoining of DNA occur. Poly(ADP-ribosyl)ation reactions are strictly dependent upon the presence of interruptions on DNA. We have recently demonstrated that the DNA-binding domain of the protein containing two putative "zinc-fingers" binds DNA in a zinc-dependent manner. The basis for the recognition of the DNA strand breaks by this enzyme, and more precisely, its 29,000 Mr N-terminal part, which contains the metal binding sites, needed to be clarified. DNA probes harbouring a single strand interruption at a defined position were constructed from synthetic oligonucleotides. DNase I protection studies show that poly(ADP-ribose)polymerase specifically binds to a DNA single-strand break by its metal-binding domain depending upon the presence of Zn(II). These results support the idea that the enzyme participates to the maintenance of DNA integrity in eukaryotes. 相似文献
6.
M Ikejima S Noguchi R Yamashita H Suzuki T Sugimura M Miwa 《Biochemical and biophysical research communications》1989,163(2):739-745
A cDNA for human poly(ADP-ribose) polymerase was inserted into a plasmid, transfected and expressed in E. coli. A lysate of the E. coli cells containing the expression plasmid reacted with antibody against human poly(ADP-ribose) polymerase and synthesized poly(ADP-ribose). The partially purified poly(ADP-ribose) polymerase expressed in E. coli had the same molecular weight and enzymological properties as human placental poly(ADP-ribose) polymerase, including affinity for NAD, turnover number and DNA-dependency for activity. This expression system should be useful for structure-function analysis of poly(ADP-ribose) polymerase. 相似文献
7.
The DNA-dependent protein kinase (DNA-PK) is a DNA-end activated protein kinase that is required for efficient repair of DNA double-strand breaks (DSBs) and for normal resistance to ionizing radiation. DNA-PK is composed of a DNA-binding subunit, Ku, and a catalytic subunit, DNA-PKcs (PRKDC). We have previously shown that PRKDC is activated when the enzyme interacts with the terminal nucleotides of a DSB. These nucleotides are often damaged when DSBs are introduced by anticancer agents and could therefore prevent recognition by DNA-PK. To determine whether DNA-PK could recognize DNA strand breaks generated by agents used in the treatment of cancer, we damaged plasmid DNA with anticancer drugs and ionizing radiation. The DNA breaks were tested for the ability to activate purified DNA-PK. The data indicate that DSBs produced by bleomycin, calicheamicin and two types of ionizing radiation ((137)Cs gamma rays and N(7+) ions: high and low linear energy transfer, respectively) activate DNA-PK to levels matching the kinase activation obtained with simple restriction endonuclease-induced DSBs. In contrast, the protein-linked DSBs produced by etoposide and topoisomerase II failed to bind and activate DNA-PK. Our findings indicate that DNA-PK recognizes DSBs regardless of chemical complexity but cannot recognize the protein-linked DSBs produced by etoposide and topoisomerase II. 相似文献
8.
9.
Inhibition of DNA binding by the phosphorylation of poly ADP-ribose polymerase protein catalysed by protein kinase C. 总被引:1,自引:0,他引:1
P I Bauer G Farkas L Buday G Mikala G Meszaros E Kun A Farago 《Biochemical and biophysical research communications》1992,187(2):730-736
Purified type II (beta) and type III (alpha) protein kinase C phosphorylates highly purified polyADP-ribose polymerase in vitro whereby 2 mols of phosphate are transferred from ATP to serine and threonine residues present in the 36 and 56 kDa polypeptide domains of the polymerase protein. Calf thymus DNA was a non-competitive inhibitor of the protein kinase C catalyzed phosphorylation of polyADP-ribose polymerase. Coincidental with the phosphorylation of the protein the polymerase activity and DNA binding capacity of polyADP-ribose polymerase were inhibited. These in vitro findings may have possible cell biological significance in cellular signal transduction. 相似文献
10.
H. Thomassin C. Martins de Sa K. Scherrer C. Maniez P. Mandel 《Molecular biology reports》1988,13(1):35-44
Poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase activities were both investigated in chicken erythroblasts transformed by Avian Erythroblastosis Virus. Respectively 21% and 58% of these activities were found to be present in the post-mitochondrial supernatant (PMS). Fractionation of the PMS on sucrose gradients and poly(A+) mRNA detection by hybridization to [3H] poly(U) show that cytoplasmic poly(ADP-ribose) polymerase is exclusively localized in free mRNP. The glycohydrolase activity sedimented mostly in the 6 S region but 1/3 of the activity was in the free mRNP zone. Seven poly(ADP-ribose) protein acceptors were identified in the PMS in the Mr 21000–120000 range. The Mr 120000 protein corresponds to automodified poly(ADP-ribose) polymerase. A Mr 21000 protein acceptor is abundant in PMS and a Mr 34000 is exclusively associated with ribosomes and ribosomal subunits. The existence of both poly(ADP-ribose) polymerase and glycohydrolase activities in free mRNP argues in favour of a role of poly(ADP-ribosylation) in mRNP metabolism. A possible involvement of this post translational modification in the mechanisms of repression-derepression of mRNA is discussed.Abbreviations ADP-ribose
adenosine (5) diphospho(5)--D ribose
- poly(ADP-ribose)
polymer of ADP-ribose
- mRNP
messenger ribonucleoprotein particles
- PMSF
phenylmethylsulfonyl fluoride
- LDS
lithium dodecyl sulfate
- TCA
trichloroacetic acid 相似文献
11.
Requirement for the kinase activity of human DNA-dependent protein kinase catalytic subunit in DNA strand break rejoining 总被引:16,自引:0,他引:16 下载免费PDF全文
Kurimasa A Kumano S Boubnov NV Story MD Tung CS Peterson SR Chen DJ 《Molecular and cellular biology》1999,19(5):3877-3884
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an enormous, 470-kDa protein serine/threonine kinase that has homology with members of the phosphatidylinositol (PI) 3-kinase superfamily. This protein contributes to the repair of DNA double-strand breaks (DSBs) by assembling broken ends of DNA molecules in combination with the DNA-binding factors Ku70 and Ku80. It may also serve as a molecular scaffold for recruiting DNA repair factors to DNA strand breaks. This study attempts to better define the role of protein kinase activity in the repair of DNA DSBs. We constructed a contiguous 14-kb human DNA-PKcs cDNA and demonstrated that it can complement the DNA DSB repair defects of two mutant cell lines known to be deficient in DNA-PKcs (M059J and V3). We then created deletion and site-directed mutations within the conserved PI 3-kinase domain of the DNA-PKcs gene to test the importance of protein kinase activity for DSB rejoining. These DNA-PKcs mutant constructs are able to express the protein but fail to complement the DNA DSB or V(D)J recombination defects of DNA-PKcs mutant cells. These results indicate that the protein kinase activity of DNA-PKcs is essential for the rejoining of DNA DSBs in mammalian cells. We have also determined a model structure for the DNA-PKcs kinase domain based on comparisons to the crystallographic structure of a cyclic AMP-dependent protein kinase. This structure gives some insight into which amino acid residues are crucial for the kinase activity in DNA-PKcs. 相似文献
12.
《The Histochemical journal》1996,28(5):391-395
Summary Poly(ADP-ribose) polymerase catalyses the formation of ADP-ribose polymers covalently attached to various nuclear proteins,
using NAD+ as substrate. The activity of this enzyme is strongly stimulated upon binding to DNA single or double strand breaks. Poly(ADP-ribosyl)ation
is an immediate cellular response to DNA damage and is thought to be involved in DNA repair, genetic recombination, apoptosis
and other processes during which DNA strand breaks are formed. In recent years we and others have established cell culture
systems with altered poly(ADP-ribose) polymerase activity. Here we describe immunocytochemistry protocols based on the use
of antibodies against the DNA-binding domain of human poly(ADP-ribose) polymerase and against its reaction product poly(ADP-ribose).
These protocols allow for the convenient mass screening of cell transfectants with overexpression of poly(ADP-ribose) polymerase
or of a dominant-negative mutant for this enzyme, i.e. the DNA-binding domain. In addition, the immunocytochemical detection
of poly(ADP-ribose) allows screening for cells with altered enzyme activity. 相似文献
13.
An attempt was made to demonstrate poly (ADP-ribose) polymerase cytologically. In vitro incorporation from the nucleotide, [3H]NAD was detected in frozen sections of onion embryo and meristematic tissue by autoradiography. In meristematic tissue, there was a correlation between the number of cells displaying intensein vitro incorporation from [3H]NAD and cytological DNA polymerase activity. Performed enzymes effecting a distinct incorporation from [3H]NAd were localized in the nuclei of all tissues of the ungerminated seed except the endosperm. Evidence for poly (ADP-ribose) polymerase has been obtained for the first time from higher plant cells and localized cytologically. 相似文献
14.
Molecular interactions between purified poly(ADP-ribose) polymerase, whole thymus histones, histone H1, rat fibroblast genomic DNA, and closed circular and linearized SV40 DNA were determined by the nitrocellulose filter binding technique. Binding of the polymerase protein or histones to DNA was augmented greatly when both the enzyme protein and histones were present simultaneously. The polymerase protein also associated with histones in the absence of DNA. The cooperative or promoted binding of histones and the enzyme to relaxed covalently closed circular SV40 DNA was greater than the binding to the linearized form. Binding of the polymerase to SV40 DNA fragments in the presence of increasing concentrations of NaCl indicated a preferential binding to two restriction fragments as compared to the others. Polymerase binding to covalently closed relaxed SV40 DNA resulted in the induction of superhelicity. The simultaneous influence of the polymerase and histones on DNA topology were more than additive. Topological constraints on DNA induced by poly(ADP-ribose) polymerase were abolished by auto ADP-ribosylation of the enzyme. Benzamide, by inhibiting poly(ADP-ribosylation), reestablished the effect of the polymerase protein on DNA topology. Polymerase binding to in vitro-assembled core particle-like nucleosomes was also demonstrated. 相似文献
15.
Alvarez-Gonzalez Rafael Watkins Trent A. Gill Paramjit K. Reed Jason L. Mendoza-Alvarez Hilda 《Molecular and cellular biochemistry》1999,193(1-2):19-22
Here, we describe the latest developments on the mechanistic characterization of poly(ADP-ribose) polymerase (PARP) [EC 2.4.2.30], a DNA-dependent enzyme that catalyzes the synthesis of protein-bound ADP-ribose polymers in eucaryotic chromatin. A detailed kinetic analysis of the automodification reaction of PARP in the presence of nicked dsDNA indicates that protein-poly(ADP-ribosyl)ation probably occurs via a sequential mechanism since enzyme-bound ADP-ribose chains are not reaction intermediates. The multiple enzymatic activities catalyzed by PARP (initiation, elongation, branching and self-modification) are the subject of a very complex regulatory mechanism that may involve allosterism. For instance, while the NAD+ concentration determines the average ADP-ribose polymer size (polymerization reaction), the frequency of DNA strand breaks determines the total number of ADP-ribose chains synthesized (initiation reaction). A general discussion of some of the mechanisms that regulate these multiple catalytic activities of PARP is presented below. 相似文献
16.
Structure and function of poly(ADP-ribose) polymerase 总被引:22,自引:0,他引:22
Gilbert de Murcia Valérie Schreiber Miguel Molinete Bénédicte Saulier Olivier Poch Murielle Masson Claude Niedergang Josiane Ménissier de Murcia 《Molecular and cellular biochemistry》1994,138(1-2):15-24
Poly(ADP-ribose) polymerase (PARP) participates in the intricate network of systems developed by the eukaryotic cell to cope with the numerous environmental and endogenous genetoxic agents. Cloning of the PARP gene has allowed the development of genetic and molecular approaches to elucidate the structure and the function of this abundant and highly conserved enzyme. This article summarizes our present knowledge in this field. 相似文献
17.
Mechanisms of poly(ADP-ribose) polymerase catalysis; mono-ADP-ribosylation of poly(ADP-ribose) polymerase at nanomolar concentrations of NAD 总被引:4,自引:0,他引:4
Calf thymus and rat liver poly(ADP-ribose) polymerase enzymes, and the polymerase present in extracts of rat liver nuclei synthesize unstable mono-ADP-ribose protein adducts at 100 nM or lower NAD concentrations. The isolated enzyme-mono-ADP-ribose adduct hydrolyses to ADP-ribose and enzyme protein at pH values slightly above 7.0 indicating a continuous release of ADP-ribose from NAD through this enzyme-bound intermediate under physiological conditions. NH2OH at pH 7.0 hydrolyses the mono-ADP-ribose enzyme adduct. Desamino NAD and some other homologs at nanomolar concentrations act as 'forward' activators of the initiating mono-ADP-ribosylation reaction. These NAD analogs at micromolar concentrations do not affect polymer formation that takes place at micromolar NAD concentrations. Benzamides at nanomolar concentrations also activate mono-ADP-ribosylation of the enzyme, but at higher concentrations inhibit elongation at micromolar NAD as substrate. In nuclei, the enzyme molecule extensively auto-ADP-ribosylates itself, whereas histones are trans-ADP-ribosylated to a much lower extent. The unstable mono-ADP-ribose enzyme adduct represents an initiator intermediate in poly ADP-ribosylation. 相似文献
18.
Presence of poly (ADP-ribose) polymerase and poly (ADP-ribose) glycohydrolase in the dinoflagellate Crypthecodinium cohnii 总被引:2,自引:0,他引:2
E Werner S Sohst F Gropp D Simon H Wagner H Kr?ger 《European journal of biochemistry》1984,139(1):81-86
Poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase have been detected in chromatin extracts from the dinoflagellate Crypthecodinium cohnii. Poly(ADP-ribose) glycohydrolase was detected by the liberation of ADP-ribose from poly(ADP-ribose). Poly(ADP-ribose) polymerase was proved by (a) demonstration of phosphoribosyl-AMP in the phosphodiesterase digest of the reaction product, (b) demonstration of ADP-ribose oligomers by fractionation of the reaction product on DEAE-Sephadex. The (ADP-ribose)-protein transfer is dependent on DNA; it is inhibited by nicotinamide, thymidine, theophylline and benzamide. The protein-(ADP-ribose bond is susceptible to 0.1 M NaOH (70%) and 0.4 M NH2OH (33%). Dinoflagellates, nucleated protists, are unique in that their chromatin lacks histones and shows a conformation like bacterial chromatin [Loeblich, A. R., III (1976) J. Protozool. 23, 13--28]; poly(ADP-ribose) polymerase, however, has been found only in eucaryotes. Thus our results suggest that histones were not relevant to the establishment of poly(ADP-ribose) during evolution. 相似文献
19.
Identification of minimal size requirements of DNA for activation of poly(ADP-ribose) polymerase 总被引:3,自引:0,他引:3
Poly(ADP-ribose) polymerase requires DNA as an essential enzyme activator. Using enzyme purified from lamb thymus and double-stranded deoxynucleotide oligomers of defined length, we conducted studies to identify the smallest size DNA fragment capable of successfully activating poly(ADP-ribose) polymerase. These studies revealed that a double-stranded hexadeoxynucleotide activated the enzyme 30% as effectively as highly polymerized calf thymus DNA and a double-stranded octadeoxynucleotide activated the enzyme even more effectively than calf thymus DNA. When histone H1 was also included in the reaction system, the enzyme could be activated by even smaller DNA fragments. Thus, in the presence of histone H1, a double-stranded tetradeoxynucleotide activated the enzyme 25% as effectively as calf thymus DNA, and a double-stranded hexadeoxynucleotide was equally as effective as calf thymus DNA. The time courses for activation and the stabilities of the products were identical when the enzyme was activated by a double-stranded hexadeoxynucleotide or by calf thymus DNA. Double-stranded oligodeoxynucleotides containing dephosphorylated termini were more effective activators than those containing 3'-phosphorylated termini which in turn were more effective than those containing 5'-phosphorylated termini. 相似文献
20.
The ability of poly(ADP-ribose)polymerase to bind damaged DNA was assessed by electrophoretic mobility shift assay. DNA binding domain of poly(ADP-ribose)polymerase (PARPDBD) binds to synthetic deoxyribonucleotide duplex 10-mer. However, the synthetic deoxyribonucleotide duplex containing cys-syn thymidine dimer which produces the unwinding of DNA helix structure lost its affinity to PARPDBD. It was shown that the binding of PARPDBD to the synthetic deoxyribonucleotide duplex was not affected by O6-Me-dG which causes only minor distortion of DNA helix structure. This study suggests that the stabilized DNA helix structure is important for poly(ADP-ribose)polymerase binding to DNA breaks, which are known to stimulate catalytic activity of poly(ADP-ribose)polymerase. 相似文献