首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The repression is mediated by binding between the SH2 domain and a C-terminal phosphotyrosine, and the SH3 domain is required for this interaction. However, the biochemical basis of functional SH2-SH3 interaction is unclear. Here, we demonstrate that when the SH2 and SH3 domains of p59fyn (Fyn) were present as adjacent domains in a single protein, binding of phosphotyrosyl peptides and proteins to the SH2 domain was enhanced, whereas binding of a subset of cellular polypeptide ligands to the SH3 domain was decreased. An interdomain communication was further revealed by occupancy with domain-specific peptide ligands: occupancy of the SH3 domain with a proline-rich peptide enhanced phosphotyrosine binding to the linked SH2 domain, and occupancy of the SH2 domain with phosphotyrosyl peptides enhanced binding of certain SH3-specific cellular polypeptides. Second, we demonstrate a direct binding between purified SH2 and SH3 domains of Fyn and Lck Src family kinases. Heterologous binding between SH2 and SH3 domains of closely related members of the Src family, namely, Fyn, Lck, and Src, was also observed. In contrast, Grb2, Crk, Abl, p85 phosphatidylinositol 3-kinase, and GTPase-activating protein SH2 domains showed lower or no binding to Fyn or Lck SH3 domains. SH2-SH3 binding did not require an intact phosphotyrosine binding pocket on the SH2 domain; however, perturbations of the SH2 domain induced by specific high-affinity phosphotyrosyl peptide binding abrogated binding of the SH3 domain. SH3-SH2 binding was observed in the presence of proline-rich peptides or when a point mutation (W119K) was introduced in the putative ligand-binding pouch of the Fyn SH3 domain, although these treatments completely abolished the binding to p85 phosphatidylinositol 3-kinase and other SH3-specific polypeptides. These biochemical SH2-SH3 interactions suggest novel mechanisms of regulating the enzymatic activity of Src kinases and their interactions with other proteins.  相似文献   

2.
pp60(c-src) is a prototypical nonreceptor tyrosine kinase and may play a role in diseases as diverse as cancer and osteoporosis. In Src, the SH3 domain (Src homology 3) binds proteins at specific, proline-rich sequences, while the SH2 domain (Src homology 2) binds phosphotyrosine-containing sequences. Inhibition of Src SH3 and SH2 domain function is of potential therapeutic value because of their importance in signaling pathways involved in disease states. We have developed dual-wavelength fluorescent peptide probes for both the Src SH3 and the Src SH2 domains, which allow the simultaneous measurement of compounds binding to each domain in assays based on the technique of fluorescence polarization. We demonstrate the utility of these probes in a dual-binding assay (suitable for high-throughput screening) to study the interactions of various peptides with these domains, including a sequence from the rat protein p130(CAS) which has been reported to bind simultaneously to both Src SH3 and SH2 domains. Utilizing this dual-binding assay, we confirm that sequences from p130(CAS) can simultaneously bind Src via both its SH3 and its SH2 domains. We also use the dual-binding assay as an internal control to identify substances which inhibit SH3 and SH2 binding via nonspecific mechanisms.  相似文献   

3.
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that activates Src family kinases via SH2- and SH3-mediated interactions. Specific FAK isoforms (FAK+), responsive to depolarization and neurotransmitters, are enriched in neurons. We analyzed the interactions of endogenous FAK+ and recombinant FAK+ isoforms containing amino acid insertions (boxes 6,7,28) with an array of SH3 domains and the c-Src SH2/SH3 domain tandem. Endogenous FAK+ bound specifically to the SH3 domains of c-Src (but not n-Src), Fyn, Yes, phosphtidylinositol-3 kinase, amphiphysin II, amphiphysin I, phospholipase Cgamma and NH2-terminal Grb2. The inclusion of boxes 6,7 was associated with a significant decrease in the binding of FAK+ to the c-Src and Fyn SH3 domains, and a significant increase in the binding to the Src SH2 domain, as a consequence of the higher phosphorylation of Tyr-397. The novel interaction with the amphiphysin SH3 domain, involving the COOH-terminal proline-rich region of FAK, was confirmed by coimmunoprecipitation of the two proteins and a closely similar response to stimuli affecting the actin cytoskeleton. Moreover, an impairment of endocytosis was observed in synaptosomes after internalization of a proline-rich peptide corresponding to the site of interaction. The data account for the different subcellular distribution of FAK and Src kinases and the specific regulation of the transduction pathways linked to FAK activation in the brain and implicate FAK in the regulation of membrane trafficking in nerve terminals.  相似文献   

4.
Src homology 3 (SH3) domains mediate protein-protein interactions necessary for the coupling of cellular proteins involved in intracellular signal transduction. We previously established solution-binding conditions that allow affinity isolation of Src SH3-binding proteins from cellular extracts (Z. Weng, J. A. Taylor, C. E. Turner, J. S. Brugge, and C. Seidel-Dugan, J. Biol. Chem. 268:14956-14963, 1993). In this report, we identified three of these proteins: Shc, a signaling protein that couples membrane tyrosine kinases with Ras; p62, a protein which can bind to p21rasGAP; and heterogeneous nuclear ribonucleoprotein K, a pre-mRNA-binding protein. All of these proteins contain proline-rich peptide motifs that could serve as SH3 domain ligands, and the binding of these proteins to the Src SH3 domain was inhibited with a proline-rich Src SH3 peptide ligand. These three proteins, as well as most of the other Src SH3 ligands, also bound to the SH3 domains of the closely related protein tyrosine kinases Fyn and Lyn. However, Src- and Lyn-specific SH3-binding proteins were also detected, suggesting subtle differences in the binding specificity of the SH3 domains from these related proteins. Several Src SH3-binding proteins were phosphorylated in Src-transformed cells. The phosphorylation of these proteins was not detected in cells transformed by a mutant variant of Src lacking the SH3 domain, while there was little change in tyrosine phosphorylation of other Src-induced phosphoproteins. In addition, the coprecipitation of v-Src with two tyrosyl-phosphorylated proteins with M(r)s of 62,000 and 130,000 was inhibited by incubation with a Src SH3 peptide ligand, suggesting that the binding of these substrate proteins is dependent on interactions with the SH3 domain. These results strongly suggest a role for the Src SH3 domain in the recruitment of substrates to this protein tyrosine kinase, either through direct interaction with the SH3 domain or indirectly through interactions with proteins that bind to the SH3 domain.  相似文献   

5.
We have determined the human genome to contain 296 different Src homology-3 (SH3) domains and cloned them into a phage-display vector. This provided a powerful and unbiased system for simultaneous assaying of the complete human SH3 proteome for the strongest binding to target proteins of interest, without the limitations posed by short linear peptide ligands or confounding variables of more indirect methods for protein interaction screening. Studies involving three ligand proteins, human immunodeficiency virus-1 Nef, p21-activated kinase (PAK)2 and ADAM15, showed previously reported as well as novel SH3 partners with nanomolar affinities specific for them. This argues that SH3 domains may have a more dominant role in directing cellular protein interactions than has been assumed. Besides showing potentially important new SH3-directed interactions, these studies also led to the discovery of novel signalling proteins, such as the PAK2-binding adaptor protein POSH2 and the ADAM15-binding sorting nexin family member SNX30.  相似文献   

6.
The recently described focal adhesion kinase (FAK) has been implicated in signal transduction pathways initiated by cell adhesion receptor integrins and by neuropeptide growth factors. To examine the mechanisms by which FAK relays signals from the membrane to the cell interior, we carried out a series of experiments to detect potential FAK interactions with proteins containing Src homology 2 (SH2) domains that are important intracellular signaling molecules. Using v-Src-transformed NIH3T3 cells, we showed that FAK was present in the immune-complex precipitated by anti-Src antibody, suggesting potential interaction of FAK with v-Src in vivo. We also showed potentially direct interaction of FAK with v-Src in vivo using the yeast two-hybrid system. Using recombinant FAK expressed in insect cells and bacterial fusion proteins containing Src SH2 domains, we showed direct binding of FAK to the Src SH2 domain but not to the SH3 domain in vitro. A kinase-defective mutant of FAK, which is not autophosphorylated, did not interact with the Src SH2 domain under the same conditions, suggesting the involvement of the FAK autophosphorylation sites. Treatment of FAK with a protein-tyrosine phosphatase decreased its binding to the Src SH2 domain, whereas autophosphorylation in vitro increased its binding. These results confirm the importance of FAK autophosphorylation sites in its interaction with SH2 domain-containing proteins. Taken together, these results suggest that FAK may mediate signal transduction events initiated on the cell surface by kinase activation and autophosphorylation that result in its binding to other key intracellular signaling molecules.  相似文献   

7.
Previous studies demonstrated that intra-domain interactions between Src family kinases (SFKs), stabilized by binding of the phosphorylated C-terminus to the SH2 domain and/or binding of the SH2 kinase linker to the SH3 domain, lock the molecules in a closed conformation, disrupt the kinase active site, and inactivate SFKs. Here we report that the up-regulation of N-methyl-D-aspartate receptors (NMDARs) induced by expression of constitutively active neuronal Src (n-Src), in which the C-terminus tyrosine is mutated to phenylalanine (n-Src/Y535F), is significantly reduced by dysfunctions of the SH2 and/or SH3 domains of the protein. Furthermore, we found that dysfunctions of SH2 and/or SH3 domains reduce auto-phosphorylation of the kinase activation loop, depress kinase activity, and decrease NMDAR phosphorylation. The SH2 domain plays a greater regulatory role than the SH3 domain. Our data also show that n-Src binds directly to the C-terminus of the NMDAR NR2A subunit in vitro, with a K(D) of 108.2 ± 13.3 nM. This binding is not Src kinase activity-dependent, and dysfunctions of the SH2 and/or SH3 domains do not significantly affect the binding. These data indicate that the SH2 and SH3 domains may function to promote the catalytic activity of active n-Src, which is important in the regulation of NMDAR functions.  相似文献   

8.
Specificity of the binding of synapsin I to Src homology 3 domains   总被引:3,自引:0,他引:3  
Synapsins are synaptic vesicle-associated phosphoproteins involved in synapse formation and regulation of neurotransmitter release. Recently, synapsin I has been found to bind the Src homology 3 (SH3) domains of Grb2 and c-Src. In this work we have analyzed the interactions between synapsins and an array of SH3 domains belonging to proteins involved in signal transduction, cytoskeleton assembly, or endocytosis. The binding of synapsin I was specific for a subset of SH3 domains. The highest binding was observed with SH3 domains of c-Src, phospholipase C-gamma, p85 subunit of phosphatidylinositol 3-kinase, full-length and NH(2)-terminal Grb2, whereas binding was moderate with the SH3 domains of amphiphysins I/II, Crk, alpha-spectrin, and NADPH oxidase factor p47(phox) and negligible with the SH3 domains of p21(ras) GTPase-activating protein and COOH-terminal Grb2. Distinct sites in the proline-rich COOH-terminal region of synapsin I were found to be involved in binding to the various SH3 domains. Synapsin II also interacted with SH3 domains with a partly distinct binding pattern. Phosphorylation of synapsin I in the COOH-terminal region by Ca(2+)/calmodulin-dependent protein kinase II or mitogen-activated protein kinase modulated the binding to the SH3 domains of amphiphysins I/II, Crk, and alpha-spectrin without affecting the high affinity interactions. The SH3-mediated interaction of synapsin I with amphiphysins affected the ability of synapsin I to interact with actin and synaptic vesicles, and pools of synapsin I and amphiphysin I were shown to associate in isolated nerve terminals. The ability to bind multiple SH3 domains further implicates the synapsins in signal transduction and protein-protein interactions at the nerve terminal level.  相似文献   

9.
The HIV-1 pathogenicity factor Nef enhances viral replication by modulation of multiple host cell transport and signaling pathways. Nef associates with membranes via an N-terminal Src homology 4 (SH4) domain, and membrane association is believed to be essential for its biological functions. At which subcellular site(s) Nef exerts its different functions and how kinetics of membrane interactions contribute to its biological activity are unknown. To address how specific characteristics of Nef membrane association affect its biological properties, the SH4 domain of Nef was replaced by heterologous membrane targeting domains. The use of a panel of heterologous SH4 domains resulted in chimeric Nef proteins with distinct steady state subcellular localization, membrane association efficiency, and anterograde transport routes. Irrespective of these modifications, cardinal Nef functions affecting host cell vesicular transport and actin dynamics were fully preserved. In contrast, stable targeting of Nef to the surface of mitochondria, peroxisomes, or the Golgi apparatus, and thus prevention of plasma membrane delivery, caused potent and broad loss of Nef activity. These results support the concept that Nef adopts its active conformation in the membrane-associated state but exclude that membrane-associated Nef simply acts by recruiting soluble factors independently of its local microenvironment. Rather than its steady state subcellular localization or membrane affinity, the ability to undergo dynamic anterograde and internalization cycles appear to determine Nef function. These results reveal that functional membrane interactions of Nef underlie critical spatiotemporal regulation and suggest that delivery to distinct subcellular sites via such transport cycles provides the basis for the multifunctionality of Nef.  相似文献   

10.
Microtubule-associated protein 2 (MAP2) and tau, which is involved in Alzheimer's disease, are major cytoskeletal proteins in neurons. These proteins are involved in microtubule assembly and stability. To further characterize MAP2, we took a strategy of identifying potential MAP2 binding partners. The low molecular weight MAP2c protein has 11 PXXP motifs that are conserved across species, and these PXXP motifs could be potential ligands for Src homology 3 (SH3) domains. We tested for MAP2 interaction with SH3 domain-containing proteins. All neuronal MAP2 isoforms bound specifically to the SH3 domains of c-Src and Grb2 in an in vitro glutathione S-transferase-SH3 pull-down assay. Interactions between endogenous proteins were confirmed by co-immunoprecipitation using brain lysate. All three proteins were also found co-expressed in neuronal cell bodies and dendrites. Surprisingly, the SH3 domain-binding site was mapped to the microtubule-binding domain that contains no PXXP motif. Src bound primarily the soluble, non-microtubule-associated MAP2c in vitro. This specific MAP2/SH3 domain interaction was inhibited by phosphorylation of MAP2c by the mitogen-activated protein kinase extracellular signal-regulated kinase 2 but not by protein kinase A. This phosphorylation-regulated association of MAP2 with proteins of intracellular signal transduction pathways suggests a possible link between cellular signaling and neuronal cytoskeleton, with MAP2 perhaps acting as a molecular scaffold upon which cytoskeleton-modifying proteins assemble and dissociate in response to neuronal activity.  相似文献   

11.
Nonreceptor protein tyrosine kinases of the Src family have been shown to play an important role in signal transduction as well as in regulation of microtubule protein interactions. Here we show that gamma-tubulin (gamma-Tb) in P19 embryonal carcinoma cells undergoing neuronal differentiation is phosphorylated and forms complexes with protein tyrosine kinases of the Src family, Src and Fyn. Elevated expression of both kinases during differentiation corresponded with increased level of proteins phosphorylated on tyrosine. Immunoprecipitation experiments with antibodies against Src, Fyn, gamma-tubulin, and with anti-phosphotyrosine antibody revealed that gamma-tubulin appeared in complexes with these kinases. In vitro kinase assays showed tyrosine phosphorylation of proteins in gamma-tubulin complexes isolated from differentiated cells. Pretreatment of cells with Src family selective tyrosine kinase inhibitor PP2 reduced the amount of phosphorylated gamma-tubulin in the complexes. Binding experiments with recombinant SH2 and SH3 domains of Src and Fyn kinases revealed that protein complexes containing gamma-tubulin bound to SH2 domains and that these interactions were of SH2-phosphotyrosine type. The combined data suggest that Src family kinases might have an important role in the regulation of gamma-tubulin interaction with tubulin dimers or other proteins during neurogenesis.  相似文献   

12.
The functions of Src family kinases are tightly regulated through Src homology (SH) domain-mediated protein-protein interactions. We previously reported the biophysical characteristics of the apoptosis-linked gene 2-interacting protein X (Alix) in complex with the haemopoietic cell kinase (Hck) SH3 domain. In the current study, we have combined ITC, NMR, SAXS and molecular modeling to determine a 3D model of the complex. We demonstrate that Hck SH3 recognizes an extended linear proline-rich region of Alix. This particular binding mode enables Hck SH3 to sense a specific non-canonical residue situated in the SH3 RT-loop of the kinase. The resulting model helps clarify the mechanistic insights of Alix-Hck interaction.  相似文献   

13.
Src homology 2 (SH2) domains are the largest family of interaction modules encoded by the human genome to recognize tyrosine-phosphorylated sequences and thereby play pivotal roles in transducing and controlling cellular signals emanating from protein-tyrosine kinases. Different SH2 domains select for distinct phosphopeptides, and the function of a given SH2 domain is often dictated by the specific motifs that it recognizes. Therefore, deciphering the phosphotyrosyl peptide motif recognized by an SH2 domain is the key to understanding its cellular function. Here we cloned all 120 SH2 domains identified in the human genome and determined the phosphotyrosyl peptide binding properties of 76 SH2 domains by screening an oriented peptide array library. Of these 76, we defined the selectivity for 43 SH2 domains and refined the binding motifs for another 33 SH2 domains. We identified a number of novel binding motifs, which are exemplified by the BRDG1 SH2 domain that selects specifically for a bulky, hydrophobic residue at P + 4 relative to the Tyr(P) residue. Based on the oriented peptide array library data, we developed scoring matrix-assisted ligand identification (or SMALI), a Web-based program for predicting binding partners for SH2-containing proteins. When applied to SH2D1A/SAP (SLAM-associated protein), a protein whose mutation or deletion underlies the X-linked lymphoproliferative syndrome, SMALI not only recapitulated known interactions but also identified a number of novel interacting proteins for this disease-associated protein. SMALI also identified a number of potential interactors for BRDG1, a protein whose function is largely unknown. Peptide in-solution binding analysis demonstrated that a SMALI score correlates well with the binding energy of a peptide to a given SH2 domain. The definition of the specificity space of the human SH2 domain provides both the necessary molecular basis and a platform for future exploration of the functions for SH2-containing proteins in cells.  相似文献   

14.
Src family kinases (SFKs) play critical roles in the regulation of many cellular functions by growth factors, G-protein-coupled receptors and ligand-gated ion channels. Recent data have shown that SFKs serve as a convergent point of multiple signaling pathways regulating N-methyl-d-aspartate (NMDA) receptors in the central nervous system. Multiple SFK molecules, such as Src and Fyn, closely associate with their substrate, NMDA receptors, via indirect and direct binding mechanisms. The NMDA receptor is associated with an SFK signaling complex consisting of SFKs; the SFK-activating phosphatase, protein tyrosine phosphatase α; and the SFK-inactivating kinase, C-terminal Src kinase. Early studies have demonstrated that intramolecular interactions with the SH2 or SH3 domain lock SFKs in a closed conformation. Disruption of the interdomain interactions can induce the activation of SFKs with multiple signaling pathways involved in regulation of this process. The enzyme activity of SFKs appears 'graded', exhibiting different levels coinciding with activation states. It has also been proposed that the SH2 and SH3 domains may stimulate catalytic activity of protein tyrosine kinases, such as Abl. Recently, it has been found that the enzyme activity of neuronal Src protein is associated with its stability, and that the SH2 and SH3 domain interactions may act not only to constrain the activation of neuronal Src, but also to regulate the enzyme activity of active neuronal Src. Collectively, these findings demonstrate novel mechanisms underlying the regulation of SFKs.  相似文献   

15.
Mammalian synapse-associated protein SAP97, a structural and functional homolog of Drosophila Dlg, is a membrane-associated guanylate kinase (MAGUK) that is present at pre- and postsynaptic sites as well as in epithelial cell-cell contact sites. It is a multidomain scaffolding protein that shares with other members of the MAGUK protein family a characteristic modular organization composed of three sequential protein interaction motifs known as PDZ domains, followed by an Src homology 3 (SH3) domain, and an enzymatically inactive guanylate kinase (GK)-like domain. Specific binding partners are known for each domain, and different modes of intramolecular interactions have been proposed that particularly involve the SH3 and GK domains and the so-called HOOK region located between these two domains. We identified the HOOK region as a specific site for calmodulin binding and studied the dynamics of complex formation of recombinant calmodulin and SAP97 by surface plasmon resonance spectroscopy. Binding of various SAP97 deletion constructs to immobilized calmodulin was strictly calcium-dependent. From the rate constants of association and dissociation we determined an equilibrium dissociation constant K(d) of 122 nm for the association of calcium-saturated calmodulin and a SAP97 fragment, which encompassed the entire SH3-HOOK-GK module. Comparative structure-based sequence analysis of calmodulin binding regions from various target proteins predicts variable affinities for the interaction of calmodulin with members of the MAGUK protein family. Our findings suggest that calmodulin could regulate the intramolecular interaction between the SH3, HOOK, and GK domains of SAP97.  相似文献   

16.
Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched domains is a transmembrane adaptor protein primarily involved in negative regulation of T-cell activation by recruitment of C-terminal Src kinase (Csk), a protein tyrosine kinase which represses Src kinase activity through C-terminal phosphorylation. Recruitment of Csk occurs via SH2-domain binding to PAG pTyr317, thus, the interaction is highly dependent on phosphorylation performed by the Src family kinase Fyn, which docks onto PAG using a dual-domain binding mode involving both SH3- and SH2-domains of Fyn. In this study, we investigated Fyn SH3-domain binding to 14-mer peptide ligands derived from Cbp/PAG-enriched microdomains sequence using biochemical, biophysical and computational techniques. Interaction kinetics and dissociation constants for the various ligands were determined by SPR. The local structural impact of ligand association has been evaluated using CD, and molecular modelling has been employed to investigate details of the interactions. We show that data from these investigations correlate with functional effects of ligand binding, assessed experimentally by kinase assays using full-length PAG proteins as substrates. The presented data demonstrate a potential method for modulation of Src family kinase tyrosine phosphorylation through minor changes of the substrate SH3-interacting motif.  相似文献   

17.
Bruton's tyrosine kinase (Btk) is tyrosine phosphorylated and enzymatically activated following ligation of the B-cell antigen receptor. These events are temporally regulated, and Btk activation follows that of various members of the Src family of protein tyrosine kinases, thus raising the possibility that Src kinases participate in the Btk activation process. We have evaluated the mechanism underlying Btk enzyme activation and have explored the potential regulatory relationship between Btk and Src protein kinases. We demonstrate in COS transient-expression assays that Btk can be activated through intramolecular autophosphorylation at tyrosine 551 and that Btk autophosphorylation is required for Btk catalytic functions. Coexpression of Btk with members of the Src family of protein tyrosine kinases, but not Syk, led to Btk tyrosine phosphorylation and activation. Using a series of point mutations in Blk (a representative Src protein kinase) and Btk, we show that Src kinases activate Btk through an indirect mechanism that requires membrane association of the Src enzymes as well as functional Btk SH3 and SH2 domains. Our results are compatible with the idea that Src protein tyrosine kinases contribute to Btk activation by indirectly stimulating Btk intramolecular autophosphorylation.  相似文献   

18.
Multiple SH2-mediated interactions in v-src-transformed cells.   总被引:7,自引:0,他引:7       下载免费PDF全文
The Src homology 2 (SH2) domain is a noncatalytic region which is conserved among a number of signaling and transforming proteins, including cytoplasmic protein-tyrosine kinases and Ras GTPase-activating protein (GAP). Genetic and biochemical data indicate that the SH2 domain of the p60v-src (v-Src) protein-tyrosine kinase is required for full v-src transforming activity and may direct the association of v-Src with specific tyrosine-phosphorylated proteins. To test the ability of the v-Src SH2 domain to mediate protein-protein interactions, v-Src polypeptides were expressed as fusion proteins in Escherichia coli. The bacterial v-Src SH2 domain bound a series of tyrosine-phosphorylated proteins in a lysate of v-src-transformed Rat-2 cells, including prominent species of 130 and 62 kDa (p130 and p62). The p130 and p62 tyrosine-phosphorylated proteins that complexed v-Src SH2 in vitro also associated with v-Src in v-src-transformed Rat-2 cells; this in vivo binding was dependent on the v-Src SH2 domain. In addition to binding soluble p62 and p130, the SH2 domains of v-Src, GAP, and v-Crk directly recognized these phosphotyrosine-containing proteins which had been previously denatured and immobilized on a filter. In addition, the SH2 domains of GAP and v-Crk bound to the GAP-associated protein p190 immobilized on a nitrocellulose membrane. These results show that SH2 domains bind directly to tyrosine-phosphorylated proteins and that the Src SH2 domain can bind phosphorylated targets of the v-Src kinase domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The protein tyrosine kinase c-Src is negatively regulated by phosphorylation of Tyr527 in its carboxy-terminal tail. A kinase that phosphorylates Tyr527, called Csk, has recently been identified. We expressed c-Src in yeast to test the role of the SH2 and SH3 domains of Src in the negative regulation exerted by Tyr527 phosphorylation. Inducible expression of c-Src in Schizosaccharomyces pombe caused cell death. Co-expression of Csk counteracted this effect. Src proteins mutated in either the SH2 or SH3 domain were as lethal as wild type c-Src, but were insensitive to Csk, even though they were substrates for Csk in vivo. Peptide binding experiments revealed that Src proteins with mutant SH3 domains adopted a conformation in which the SH2 domain was not interacting with the tail. These data support the model of an SH2 domain-phosphorylated tail interaction repressing c-Src activity, but expand it to include a role for the SH3 domain. We propose that the SH3 domain contributes to the maintenance of the folded, inactive configuration of the Src molecule by stabilizing the SH2 domain-phosphorylated tail interaction. Moreover, the system we describe here allows for further study of the regulation of tyrosine kinases in a neutral background and in an organism amenable to genetic analysis.  相似文献   

20.
Qin C  Wavreille AS  Pei D 《Biochemistry》2005,44(36):12196-12202
Src homology-2 (SH2) domains recognize specific phosphotyrosyl (pY) proteins and promote protein-protein interactions. In their classical binding mode, the SH2 domain makes specific contacts with the pY residue and the three residues immediately C-terminal to the pY, although for a few SH2 domains, residues N-terminal to pY have recently been shown to also contribute to the overall binding affinity and specificity. In this work, the ability of an SH2 domain to bind to the N-terminal side of pY has been systematically examined. A pY peptide library containing completely randomized residues at positions -5 to -1 (relative to pY, which is position 0) was synthesized on TentaGel resin and screened against the four SH2 domains of phosphatases SHP-1 and SHP-2. Positive beads that carry high-affinity ligands of the SH2 domains were identified using an enzyme-linked assay, and the peptides were sequenced by partial Edman degradation and matrix-assisted laser desorption ionization mass spectrometry. The N-terminal SH2 domain of SHP-2 binds specifically to peptides of the consensus sequence (H/F)XVX(T/S/A)pY. Further binding studies with individually synthesized pY peptides show that pY and the five residues N-terminal to pY, but not any of the C-terminal residues, are important for binding. The other three SH2 domains also bound to the library beads, albeit more weakly, and the selected peptides did not show any clear consensus. These results demonstrate that at least some SH2 domains can bind to pY peptides in an alternative mode by recognizing only the residues N-terminal to pY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号