首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The catalytic cycle of heme peroxidases involves three processes: the formation of compound I, its conversion to compound II and regeneration of the native enzyme. Each of the processes consists of a reversible binding stage followed by an irreversible transformation stage. Our group has proposed a continuous, sensitive and reliable chronometric method for measuring the steady-state rate of peroxidase activity. Furthermore, we have derived an analytical expression for the steady-state rate and simplified it, taking into consideration the experimental values of the rate constants of some stages previously determined by other authors in stopped-flow assays. We determined the value of the constant for the transformation of a series of phenols and anilines by compound II, and found that it involves a deprotonation step and an electron transfer step. Study of the solvent deuterium isotope effect on the oxidation of phenol revealed the non-rate-limiting character of the deprotonation step in a proton inventory study. Usage of the Marcus equation showed that the electronic transfer step is rate-limiting in both cases, while phenols and anilines were oxidised at different rates for the same potentials. This can be attributed to the shorter electron-tunnelling distance for electron transfer to the iron ion in the phenols than in the anilines.  相似文献   

3.
The rates of reduction of horseradish peroxidase compound II by p-methoxyphenol (4-hydroxyanisole) have been studied from pH 6.0 to 10.5. The kinetics are influenced by an acid group of pKa 8.7 on compound II. The acidic form of compound II is reactive; the basic form is not. Only the electrically neutral, unionized form of p-methoxyphenol is reactive. Fifteen different phenols were reacted with compound II at either pH 7.6 or pH 7.0 (three of them at both pH's). Rate constants varied from zero for p-nitrophenol to 3.2 X 10(7) M-1 for p-aminophenol. The reactive m- and p-substituted phenols yield a rho value of -4.6 +/- 0.5 when plotted according to the Hammett relation. This compares to the rho value of -6.9 obtained for horseradish peroxidase compound I reactions with phenols (1976, D. Job and H. B. Dunford, Eur. J. Biochem. 66, 607). The difference in sensitivity of compounds I and II to electron donating substituents on the phenols can be explained in terms of the relative simplicity of the reactions. Electron donation occurs to the electron-deficient porphyrin pi-cation radical of compound I accompanied by single proton addition to the protein. For compound II the electron is fed to the ferryl group at the center of the porphyrin in a reaction accompanied by two proton additions to the ferryl oxygen atom, one from the protein and the other from the substrate or solvent. This is followed by loss of water from the inner coordination sphere of the ferric ion. The relative reactivities of three o-substituted phenols can be explained in terms of steric hindrance which is minimal for a single o-substituent.  相似文献   

4.
The light-induced oxygen evolution, photoreduction of 2,6-dichlorophenolindophenol (DPIP) and carotenoid photobleaching induced by carbonylcyanide m-chlorophenylhydrazone (CCCP) were investigated withspinach chloroplast fragments in the presence of H2O2. Oxygenevolution in the presence of H2O2 was not inhibited by CCCPand was only partially inhibited by 5 µM 3-(3,4-dichlorophenyl)-1,1-dimethylurea(DCMU) which completely inhibited the Hill reaction with DPIP.The degree of inhibition by DCMU was decreased by a simultaneousaddition of CCCP. Carotenoid photobleaching in the presenceof CCCP was stimulated by H2O2. The CCCP-induced carotenoidphotobleaching was completely inhibited by DCMU. However, itwas only partially inhibited by DCMU in the presence of H2O2.These data indicate that H2O2 donates electrons at a site betweenthe CCCP-sensitive site and the reaction center of photosystemII and is reduced at a site between the DCMU-blocked site andthe reaction center of photosystem II. 1Present address: Department of Biology, Kyushu Dental College,Kitakyushu 803, Japan. (Received June 20, 1974; )  相似文献   

5.
Sally Reinman  Paul Mathis 《BBA》1981,635(2):249-258
The influence of temperature on the rate of reduction of P-680+, the primary donor of Photosystem II, has been studied in the range 5–294 K, in chloroplasts and subchloroplasts particles. P-680 was oxidized by a short laser flash. Its oxidation state was followed by the absorption level at 820 nm, and its reduction attributed to two mechanisms: electron donation from electron donor D1 and electron return from the primary plastoquinone (back-reaction).Between 294 and approx. 200 K, the rate of the back-reaction, on a logarithmic scale, is a linear function of the reciprocal of the absolute temperature, corresponding to an activation energy between 3.3 and 3.7 kcal · mol?1, in all of the materials examined (chloroplasts treated at low pH or with Tris; particles prepared with digitonin). Between approx. 200 K and 5 K the rate of the back-reaction is temperature independent, with t12 = 1.6 ms. In untreated chloroplasts we measured a t12 of 1.7 ms for the back-reaction at 77 and 5 K.The rate of electron donation from the donor D1 has been measured in darkadapted Tris-treated chloroplasts, in the range 294–260 K. This rate is strongly affected by temperature. An activation energy of 11 kcal · mol?1 was determined for this reaction.In subchloroplast particles prepared with Triton X-100 the signals due to P-680 were contaminated by absorption changes due to the triplet state of chlorophyll a. This triplet state has been examined with pure chlorophyll a in Triton X-100. An Arrhenius plot of its rate of decay shows a temperature-dependent region (292–220 K) with an activation energy of 9 kcal · mol?1, and a temperature-independent region (below 200 K) with t12 = 1.1 ms.  相似文献   

6.
7.
The kinetics of the reduction of a copper(II) complex with a tetrabenzo(b, f, j, n) (1, 5, 9, 13)tetraazacyclohexadecine (TAAB) by ascorbic acid has been investigated in aqueous buffer solutions of pH 2.8 up to 5.0. The polarographic half-wave potential of Cu(TAAB)2+ reduction in aqueous media and acetonitrile and the acid equilibrium constant of Cu(TAAB)2+ have been determined. The rate constant of the outer-sphere electron-transfer reaction is discussed in terms of the Marcus theory. The previously reported self-exchange kinetic parameters per one-electron couples HA0/- and Cu(TAAB)2+/+ have been confirmed, and estimates of some other parameters of the electron self-exchange reactions and the cross-reactions are reported here.  相似文献   

8.
The interaction of three different c-type cytochromes with flavodoxin has been studied by computer graphics modelling and computational methods. Flavodoxin and each cytochrome can make similar hypothetical electron transfer complexes that are characterized by nearly coplanar arrangement of the prosthetic groups, close intermolecular contacts at the protein-protein interface, and complementary intermolecular salt linkages. Computation of the electrostatic free energy of each complex showed that all were electrostatically stable. However, both the magnitude and behavior of the electrostatic stabilization as a function of solution ionic strength differed for the three cytochrome c-flavodoxin complexes. Variation in the computed electrostatic stabilization appears to reflect differences in the surface distribution of all charged groups in the complex, rather than differences localized at the site of intermolecular contact. The computed electrostatic association constants for the complexes and the measured kinetic rates of electron transfer in solution show a remarkable similarity in their ionic strength dependence. This correlation suggests electrostatic interactions influence electron transfer rates between protein molecules at the intermolecular association step. Comparative calculations for the three cytochrome c-flavodoxin complexes show that these ionic strength effects also involve all charged groups in both redox partners.  相似文献   

9.
The temperature dependence of donor side reactions was analysed within the framework of the Marcus theory of nonadiabatic electron transfer. The following results were obtained for PS II membrane fragments from spinach: (1) the reorganisation energy of P680+? reduction by YZ is of the order of 0.5?eV in samples with a functionally fully competent water oxidising complex (WOC); (2) destruction of the WOC by Tris-washing gives rise to a drastic increase of λ to values of the order of 1.6?eV; (3) the reorganisation energies of the oxidation steps in the WOC are dependent, on the redox states S i with values of about 0.6?eV for the reactions YZ OX S 0→YZ S 1 and YZ OX S 1→YZ S 2, 1.6?eV for the reaction YZ OX S 2→YZ S 3 and 1.1?eV (above a characteristic temperature uc of about 6??°C) for the reaction YZ OX S 3→→YZ S 0+O2. Using an empirical rate constant-distance relationship, the van der Waals distance between YZ and P680 was found to be about 10?Å, independent of the presence or absence of the WOC, whereas the distance between YZ and the manganese cluster in the WOC was ≥15?Å. Based on the calculated activation energies the environment of YZ is inferred to be almost "dry" and hydrophobic when the WOC is intact but becomes enriched with water molecules after WOC destruction. Furthermore, it is concluded that the transition S 2S 3 is an electron transfer reaction gated by a conformational change, i.e. it comprises significant structural changes of functional relevance. Measurements of kinetic H/D isotope exchange effects support the idea that none of these reactions is gated by the break of a covalent O-H bond. The implications of these findings for the mechanism of water oxidation are discussed.  相似文献   

10.
The adverse effect of low intensity, small band UV-B irradiation (λ = 305 ± 5 nm, I = 300 mW m−2) on PS II has been studied by comparative measurements of laser flash-induced changes of the absorption at 325 nm, ΔA325(t), as an indicator of redox changes in QA, and of the relative fluorescence quantum yield, F(t)/Fo, in PS II membrane fragments. The properties of untreated control were compared with those of samples where the oxygen evolution rate under illumination with continuous saturating light was inhibited by up to 95%. The following results were obtained: a) the detectable initial amplitude (at a time resolution of 30 μs) of the 325 nm absorption changes, ΔA325, remained virtually invariant whereas the relaxation kinetics exhibit significant changes, b) the 300 μs kinetics of ΔA325 dominating the relaxation in UV-B treated samples was largely replaced by a 1.3 ms kinetics after addition of MnCl2, c) the extent of the flash induced rise of the relative fluorescence quantum yield was severely diminished in UV-B treated PS II membrane fragments but the relaxation kinetics remain virtually unaffected. Based on these results the water oxidizing complex (WOC) is inferred to be the primary target of UV-B impairment of PS II while the formation of the ‘stable’ radical pair P680QA −● is almost invariant to this UV-B treatment. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
In this work we present a kinetic study of the superoxide-mediated electron transfer reactions between rubredoxin-type proteins and members of the three different classes of superoxide reductases (SORs). SORs from the sulfate-reducing bacteria Desulfovibrio vulgaris (Dv) and D. gigas (Dg) were chosen as prototypes of classes I and II, respectively, while SOR from the syphilis spyrochete Treponema pallidum (Tp) was representative of class III. Our results show evidence for different behaviors of SORs toward electron acceptance, with a trend to specificity for the electron donor and acceptor from the same organism. Comparison of the different k app values, 176.9±25.0 min−1 in the case of the Tp/Tp electron transfer, 31.8±3.6 min−1 for the Dg/Dg electron transfer, and 6.9±1.3 min−1 for Dv/Dv, could suggest an adaptation of the superoxide-mediated electron transfer efficiency to various environmental conditions. We also demonstrate that, in Dg, another iron–sulfur protein, a desulforedoxin, is able to transfer electrons to SOR more efficiently than rubredoxin, with a k app value of 108.8±12.0 min−1, and was then assigned as the potential physiological electron donor in this organism.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

12.
Solid pyrimidine nucleic acid bases (cytosine, thymine, and uracil) were gamma-irradiated (50 KGy) and dissolved in deaerated solutions of adriamycin in water and dimethylsulfoxide (DMSO). Analogous experiments using unirradiated pyrimidines as controls were also performed. In water only gamma-irradiated cytosine showed a reaction with the adriamycin yielding a single ESR peak (g = 2.0033) consistent with the adriamycin semiquinone radical. Since the unirradiated cytosine gave no reaction, the result suggests an electron transfer from cytosine radicals (generated by gamma-radiolysis) to adriamycin. In DMSO the three gamma-irradiated and unirradiated pyrimidines reacted with adriamycin yielding the adriamycin semiquinone radical observed by ESR. These results suggest that in DMSO an electron is transferred to adriamycin from the pyrimidine radicals and from the parent pyrimidine molecules. However, the process is on the order of 10(5) times more efficient for the pyrimidine radicals. Superoxide radicals (O2-.) were formed following addition of oxygen to the deaerated DMSO solutions containing adriamycin semiquinone radicals. O2-. was spin trapped using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The results show a possible reaction sequence in which an electron transferred to adriamycin, by pyrimidine radicals and parent pyrimidine molecules, is subsequently transferred to dissolved oxygen.  相似文献   

13.
Bruce Diner 《BBA》1974,368(3):371-385
1. Spinach chloroplasts, but not whole Chlorella cells, show an acceleration of the Photosystem II turnover time when excited by non-saturating flashes (exciting 25 % of centers) or when excited by saturating flashes for 85–95 % inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Following dark adaptation, the turnover is accelerated after a non-saturating flash, preceded by none or several saturating flashes, and primarily after a first saturating flash for 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibition. A rapid phase (t12 approx. 0.75 s) is observed for the deactivation of State S2 in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea.2. These accelerated relaxations suggest that centers of Photosystem II are interconnected at the level of the primary electron transfer and compete for primary oxidizing equivalents in a saturating flash. The model in best agreement with the experimental data consists of a paired interconnection of centers.3. Under the conditions mentioned above, an accelerated turnover may be observed following a flash for centers in S0, S1 or S2 prior to the flash. This acceleration is interpreted in terms of a shift of the rate-limiting steps of Photosystem II turnover from the acceptor to the donor side.  相似文献   

14.
Electron paramagnetic resonance (EPR) spectroscopy reveals functional and structural similarities between the reaction centres of the chlorophyll d-binding photosystem I (PS I) and chlorophyll a-binding PS I. Continuous wave EPR spectrometry at 12K identifies iron-sulphur centres as terminal electron acceptors of chlorophyll d-binding PS I. A transient light-induced electron spin echo (ESE) signal indicates the presence of a quinone as the secondary electron acceptor (Q) between P(740)(+) and the iron-sulphur centres. The distance between P(740)(+) and Q(-) was estimated within point-dipole approximation as 25.23+/-0.05A, by the analysis of the electron spin echo envelope modulation.  相似文献   

15.
Utschig LM  Tiede DM  Poluektov OG 《Biochemistry》2010,49(45):9682-9684
Electron paramagnetic resonance (EPR) was used to study light-induced electron transfer in Photosystem I-flavodoxin complexes. Deuteration of flavodoxin enables the signals of the reduced flavin acceptor and oxidized primary donor, P(700)(+), to be well-resolved at X- and D-band EPR. In dark-adapted samples, photoinitiated interprotein electron transfer does not occur at 5 K. However, for samples prepared in dim light, significant interprotein electron transfer occurs at 5 K and a concomitant loss of the spin-correlated radical pair P(+)A(1A)(-) signal is observed. These results indicate a light-induced reorientation of flavodoxin in the PSI docking site that allows a high quantum yield efficiency for the interprotein electron transfer reaction.  相似文献   

16.
Rochaix J  Fischer N  Hippler M 《Biochimie》2000,82(6-7):635-645
The photosystem I (PSI) complex is a multisubunit protein-pigment complex embedded in the thylakoid membrane which acts as a light-driven plastocyanin/cytochrome c(6)-ferredoxin oxido-reductase. The use of chloroplast transformation and site-directed mutagenesis coupled with the biochemical and biophysical analysis of mutants of the green alga Chlamydomonas reinhardtii with specific amino acid changes in several subunits of PSI has provided new insights into the structure-function relationship of this important photosynthetic complex. In particular, this molecular-genetic analysis has identified key residues of the reaction center polypeptides of PSI which are the ligands of some of the redox cofactors and it has also provided important insights into the orientation of the terminal electron acceptors of this complex. Finally this analysis has also shown that mutations affecting the donor side of PSI are limiting for overall electron transfer under high light and that electron trapping within the terminal electron acceptors of PSI is highly deleterious to the cells.  相似文献   

17.
W.L. Butler  M. Kitajima 《BBA》1975,396(1):72-85
A model for the photochemical apparatus of photosynthesis is presented which accounts for the fluorescence properties of Photosystem II and Photosystem I as well as energy transfer between the two photosystems. The model was tested by measuring at ?196 °C fluorescence induction curves at 690 and 730 nm in the absence and presence of 5 mM MgCl2 which presumably changes the distribution of excitation energy between the two photosystems. The equations describing the fluorescence properties involve terms for the distribution of absorbed quanta, α, being the fraction distributed to Photosystem I, and β, the fraction to Photosystem II, and a term for the rate constant for energy transfer from Photosystem II to Photosystem I,kT(II→I). The data, analyzed within the context of the model, permit a direct comparison of α andkT(II→I) in the absence (?) and presence (+) of Mg2+:α/?α+= 1.2andk/?T(II→I)k+T(II→I)= 1.9. If the criterion thatα + β = 1 is applied absolute values can be calculated: in the presence of Mg2+,a+ = 0.27 and the yield of energy transfer,φ+T(II→I) varied from 0.065 when the Photosystem II reaction centers were all open to 0.23 when they were closed. In the absence of Mg2+? = 0.32 andφT(II→I) varied from 0.12 to 0.28.The data were also analyzed assuming that two types of energy transfer could be distinguished; a transfer from the light-harvseting chlorophyll of Photosystem II to Photosystem I,kT(II→I), and a transfer from the reaction centers of Photosystem II to Photosystem I,kt(II→I). In that caseα/?α+= 1.3,k/?T(II→I)k+T(II→I)= 1.3 andk/?t(II→I)k+(tII→I)= 3.0. It was concluded, however, that both of these types of energy transfer are different manifestations of a single energy transfer process.  相似文献   

18.
The effect of such flavonoid as quercetin and its oxidized from on electron transfer was studied in subchloroplast preparations of the Photosystem II (PS(2) and Photosystem I (PS(1)). Quercetin and its oxidized form are shown to inhibit the electron transfer in the PS(2) acceptor and donor sites, respectively. They also function as an electron donor or and electron acceptor in PS(1)), respectively  相似文献   

19.
Kennett EC  Kuchel PW 《IUBMB life》2003,55(7):375-385
Plasma membrane electron transport systems appear to be ubiquitous. These systems are implicated in hormone signal transduction, cell growth and differentiation events as well as protection from oxidative stress. The red blood cell is constantly exposed to oxidative stress; protection against the reactive species generated during this process may be the main role of its membrane electron transport systems. Membrane redox activity has been studied for over three-quarters of a century, and yet many questions remain regarding its identity and likely roles: are electron transfers by distinct and specific mechanisms; what are the physiological donors and acceptors; and how do these systems affect metabolism? Current evidence suggests that the human erythrocyte membrane contains a number of distinct electron transfer systems, some of which, at least, involve membrane proteins, and NADH or ascorbate as electron donors. The activity of these systems appears to be closely related to the metabolic state of the cell, suggesting that mediation of reducing equivalents across the plasma membrane allows redox buffering of each environment, intra- and extracellular, by the other. We have decided to study this from a new perspective, NMR spectroscopy the area of our own technical expertise, hence this review is slanted towards this more recent analysis.  相似文献   

20.
Examination of a growing range of electron transfer proteins is clarifying what design elements are and are not naturally selected. Intraprotein electron transfer between natural redox centers is generally engineered to be robust and resistant to mutational changes and thermal fluctuations, by using chains of redox centers connected by electron tunneling distances of 14 A or less. This assures that tunneling rates are faster than the typical millisecond bond-breaking at catalytic sites. Interprotein electron transfer addresses the potential problem of slow diffusion by designing attractive docking sites that permit a conformational search for short tunneling distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号