首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three Indian Brassica juncea cultivars were studied for embryogenic response of microspores, microspore embryo regeneration, ploidy assessment of microspore-derived plants and their diploidization. Genotype dependence for microspore totipotency was observed and a significant effect of genotype by bud size selection was established. The addition of activated charcoal in NLN medium containing 13% (w/v) sucrose and 10 μM silver nitrate resulted in a fourfold increase in microspore embryogenesis, ranging from 100 to 405 embryos per Petri dish corresponding to 2,700–10,935 embryos per 100 buds. Conversion/germination of embryos produced in presence or absence of activated charcoal was similar but air-drying of microspore embryos was essential. Incubation of microspore embryos at 4 ± 1°C for 10 days in dark resulted in 82.3% conversion. The majority of plants produced from these embryos was haploid. Treating microspore-derived plants at the 3–4 leaf growth stage with 0.34% colchicine for 2–3 h resulted in greatest survival (70%) and chromosome doubling (75%) frequencies. Doubled haploid plants were self-pollinated and grown to maturity under field conditions.  相似文献   

2.
 Male inflorescences, female inflorescences, and leaves collected from dormant buds of three sweetgum (Liquidambar styraciflua) trees were tested for induction of somatic embryogenesis following treatment with thidiazuron, naphthaleneacetic acid (NAA) or different combinations of the two. Explants were placed into culture either within a few days after collection or following 2 months of storage at –15  °C. Although embryogenic cultures were obtained from all three trees, embryogenesis induction was strongly affected by genotype (source tree), with 100% of the staminate inflorescence explants from one tree producing embryogenic cultures in one experiment. Embryogenesis induction was also influenced by explant type, with staminate inflorescences up to five times more likely to produce an embryogenic culture than female inflorescences. No embryogenic cultures were obtained from leaf explants. While treatment with plant growth regulators was not required for embryogenesis induction from inflorescence explants, culture on medium with NAA alone resulted in the highest production of repetitively embryogenic cultures and cultures producing proembryogenic masses. Dormant buds stored for 2 months at –15  °C were still able to produce embryogenic cultures, although frozen storage decreased this ability by over one-half for staminate inflorescences. Received: 20 January 1999 / Revision received: 18 April 1999 / Accepted: 29 April 1999  相似文献   

3.
Summary The influence of donor plant growth environment, microspore development stage, culture media and incubation conditions on microspore embryogenesis was studied in three Indian B. juncea varieties. The donor plants were grown under varying environments: field conditions, controlled conditions, or a combination of the two. The correlation analysis between the bud size and microspore development stage revealed that the bud size is an accurate marker for donor plants grown under controlled conditions, however, the same does not hold true for the field-grown plants. The buds containing late uninucleate microspores collected from plants grown under normal field conditions up to bolting stage and then transferred to controlled environment were observed to be most responsive with genotypic variability ranging from 10 to 35 embryos per Petri dish, irrespective of the other factors. NLN medium containing 13% sucrose was found to be most suitable for induction of embryogenesis The fortification of this medium with activated charcoal, polyvinylpyrrolidone, colchicine, or growth regulators (6-benzylaminopurine and 1-naphthaleneacetic acid) was observed to be antagonistic for microspore embryogenesis, while silver nitrate (10 μM) had a significant synergistic effect. A post-culture high-temperature incubation of microspores at 32.5±1°C for 10–15 d was found most suitable for high-frequency production of microspore embryos. The highest frequency of microspore embryogenesis (78 embryos per Petri dish) was observed from the late uninucleate microspores (contained in bud sizes 3.1–3.5 nm irrespective of genotype) cultured on NLN medium containing 13% sucrose and silver nitrate (10 μM), and incubated at 32.5°C for 10–15 d.  相似文献   

4.
Summary Using 15 Chinese and Japanese cultivars of sweetpotato, Ipomoea batatas (L.) Lam., we succeeded in developing an efficient plant regeneration system from embryogenic suspension cultures. The embryogenic callus derived from shoot apices of the 15 cultivars was used to initiate embryogenic suspension cultures in Murashige and Skoog (MS) medium containing 9.05 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Rapidly proliferating and well-dispersed embryogenic suspension cultures were established. Cell aggregates 0.7–1.1 mm in size from embryogenic suspension cultures were transferred to solid MS medium supplemented with 9.05 μM of 2,4-D and formed embryogenic callus with somatic embryos. The embryogenic callus with somatic embryos was further transferred to MS medium supplemented with 3.78 μM of abscisic acid, resulting in the germination of somatic embryos. Within 20 wk after the initiation, the frequencies of cell aggregates forming plantlets reached approximately 100% for the 15 tested cultivars. These plantlets, when transferred to soil, showed 100% survival. No morphological variations were observed.  相似文献   

5.
Microspore culture for the purpose of developing doubled haploid plants is routine for numerous plant species; however, the embryo yield is still very low compared with the total available microspore population. The ability to select and isolate highly embryogenic microspores would be desirable for high embryo yield in microspore culture. To maximize the efficiency of canola microspore culture, a combination of bud size selection and microspore fractionation using a Percoll gradient was followed. This approach has consistently given high embryo yields and uniform embryo development. Microspores isolated from buds 1.5 to 4.4 mm in length of Brassica napus genotypes Topas 4079, DH12075, Westar and 0025 formed embryos at different frequencies. The most embryogenic bud size range varied with each cultivar: Topas 4079 3.5–3.9 mm, DH12075 2.0–2.4 mm, and Westar and 0025 2.5–2.9 mm. When the microspores from 2.0 to 2.4 mm buds of DH12075 were carefully layered on top of a discontinuous Percoll gradient of 10, 20 and 40%, and subsequently spun through the Percoll layers by centrifugation, bands were formed containing populations of microspores of uniform developmental stage. The middle layer of the gradient contained the late uninucleate and early binucleate microspores that were the most embryogenic. In addition, the relationship between the bud size, developmental stage of isolated microspores, Percoll gradient concentration and the embryogenic frequency of each cultivar were studied. Optimization of these factors is required for each genotype evaluated.  相似文献   

6.
Somatic embryogenesis (SE) was induced in female flower buds from mature Schisandra chinensis cultivar ‘Hongzhenzhu’. Somatic embryo structures were induced at a low frequency from unopened female flower buds and excised unopened on Murashige and Skoog (MS) agar medium containing 4.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). Friable embryogenic calli were induced from somatic embryo structures after three to four subcultures on initiation medium. The frequencies of mature somatic embryo germination and plantlet conversion were low, but increased in the presence of gibberellic acid (GA3). Some germinated somatic embryos could form friable embryogenic calli on medium without plant growth regulators (PGRs). The germination and conversion frequencies of somatic embryos from embryogenic calli induced using PGR-free medium were higher than for somatic embryos from embryogenic calli induced on medium containing 2,4-D. Most somatic embryos from 2,4-D-induced embryogenic calli had trumpet-shaped embryos, and most somatic embryos from PGR-free medium–induced embryogenic calli had two or three cotyledons. Histological observation indicated that two- and three-cotyledon embryos had defined shoot primordia, but most of the trumpet-shaped embryos yielded plantlets that lacked or had poorly developed meristem tissue. Cytological and random amplification of polymorphic DNA (RAPD) analyses indicated no evidence of genetic variation in the plantlets of somatic embryo origin.  相似文献   

7.
The major advantage of doubled haploids in plant breeding is the immediate achievement of complete homozygosity. Desired genotypes are thus fixed in one generation, reducing time and cost for cultivar or inbred development. Among the different technologies to produce doubled haploids, microspore embryogenesis is by far the most common. It usually requires reprogramming of microspores by stress such as cold, heat, and starvation, followed by embryo development under stress-free conditions. We report here the development of a simple and efficient isolated microspore culture system for producing doubled haploid wheat plants in a wide spectrum of genotypes, in which embryogenic microspores and embryos are formed without any apparent stress treatment. Microspores were isolated from fresh spikes in a nutrient-free medium by stirring and cultured in medium A2 in the dark at 25°C. Once embryogenic microspores were formed, ovaries and phytohormones were added directly to the cultures without changing the medium. The cultures were incubated in the dark at 25–27°C until the formation of embryos and then the embryos were transferred to regeneration medium. The regeneration frequency and percentage of green plants increased significantly using this protocol compared to the shed microspore culture method.Communicated by W. Harwood  相似文献   

8.
Summary Conditions favourable to embryogenesis from isolated microspores of Brassica rapa L. ssp. oleifera (canola quality) were identified. A population with enhanced responsiveness for microspore embryogenesis (C200) was synthesized by crossing individual plants showing microspore embryogenic potential. For optimal microspore embryogenesis, buds (2–3mm in length, containing mid-late uninucieate microspores) were collected from older plants (2 months old) and microspores isolated and washed in iron-free B5 medium. NLN medium with its iron content reduced to half was beneficial for initial microspore culture. An elevated temperature(33–35°C) during the first day of culture, followed by maintenance at 25°C resulted in dozens of embryos from each isolation (about 100 buds). Seeds were obtained from plants regenerated from microsporederived embryos after colchicine treatment.  相似文献   

9.
‘Touriga Nacional’ is the most important Portuguese grapevine cultivar used for Port wine, table wine and varietal wine production. In order to obtain a reproducible plant regeneration system that allows the application of biotechnological tools to grapevine breeding, embryogenic cultures were induced from immature flowers of three Touriga Nacional selected clones. Gynoecia and anthers were cultured on Nitsch and Nitsch (Science 163:85–87, 1969) basal medium supplemented with four combinations of the growth regulators 6-benzylaminopurine (BAP), 2,4-dichlorophenoxyacetic acid (2,4-D) and indole-3-acetyl-l-aspartic acid (IASP), at 28°C, in the dark. Primary callus, observed on anthers and gynoecia in all media, produced embryogenic callus when cultured on differentiation medium, at 24°C under light. The efficiency on induction of embryogenic callus ranged from 1.2 ± 4.7% to 7.9 ± 13.8% in anthers, and from 17.9 ± 24.9% to 25.3 ± 22.9% in gynoecia. Seven lines of embryogenic cultures were established from the three clones. Multiplication of embryogenic calluses was successfully obtained in maintenance medium, at 26°C, in the dark. These embryogenic calluses produced somatic embryos when subcultured on differentiation medium, under a 16 h photoperiod. Somatic embryos were isolated and cultured on germination medium to achieve conversion which ranged from 35.3 ± 48.5% to 72.7 ± 45.6%. The plantlets obtained were cultured in medium without growth regulators. Secondary embryogenesis was also frequently observed in the hypocotyl-root transition region of somatic embryos. Although some morphological variation occurred between somatic embryos, the regenerated plantlets had a normal phenotype. Maintenance of embryogenic cultures has been achieved since 2002.  相似文献   

10.
High frequency embryogenesis in immature zygotic embryos of sunflower   总被引:2,自引:0,他引:2  
In the present investigation, nutritional requirements for induction of a high frequency of well formed somatic embryos (SEs) from zygotic embryos (ZEs) of sunflower were assessed. Variables like genotype, embryo size (0.5–10 mm), sucrose concentration (30–240 g l−1), carbohydrate source (sucrose, glucose, maltose), agar strength (0.2–1.0%), basal media (MS, Gamborg, Nitsch, White), photoperiod (light/dark) and temperature (20–36°C) were tested. All these variables except photoperiod had significant effect on the frequency of embryogenesis. Highest frequency of embryogenesis was facilitated by Gamborg basal salt media, 120–210 g l−1 sucrose, 0.8–1.0% agar, smaller sized embryos (0.5–2 mm) and incubation temperature of 28–32°C. In addition to these, growth regulator combinations (2,4-D, 2,4-D+kinetin, BA+NAA) in varying concentrations were tried. Media supplemented with 2,4-D promoted direct embryogenesis, BA+NAA facilitated formation of single/multiple shoots while there was no response on 2,4-D+kinetin supplemented media. Zygotic embryos with well differentiated embryos were transferred to growth regulator free half strength MS medium for whole plantlet development. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Summary Calluses from five asparagus genotypes G14, G32, G171, G203, and G447 and hybrid Jersey Giant (JG) were incubated at three temperature regimes (24, 27, and 30°C) on embryo induction medium to assess somatic embryo development and conversion to plantlets. The calluses from three genotypes (G14, G32, and G171) were not responsive, failing to produce somatic embryos at any temperature regime. For three responsive genotypes (G203, G447, and JG), both incubation temperature and genotype significantly affected the numbers of somatic embryos produced. The calluses produced the most and the least numbers of total, bipolar, and globular embryos when incubated at 27°C and 24°C, respectively. When incubated at 27°C, G203 produced the highest numbers of total and globular embryos, 178 g−1 callus and 142 g−1 callus, respectively while G447 produced the highest number of bipolar embryos, 77 g−1 callus. Incubation temperature but not genotype significantly affected the conversion of somatic embryos to plantlets. The somatic embryos recovered from the three responsive genotypes incubated at 27°C also converted to plantlets at the highest frequencies, 60–63% of the bipolar embryos and 42–43% of the globular embryos converted to plantlets, while the somatic embryos recovered from the calluses incubated at 24°C converted to plantlets at the lowest frequencies.  相似文献   

12.
Summary Wheat (Triticum aestivum L.) haploids and doubled haploids have been used in breeding programs and genetic studies. Wheat haploids and doubled haploids via anther culture are usually produced by a multiple step culture procedure. We improved a wheat haploid and doubled haploid production system via anther culture in which plants are produced from microspore-derived embryos using one medium and one culture environment. In the improved protocol, tillers of donor plants were pretreated at 4°C for 1–2 wk before anthers were plated on a modified 85D12 basal medium with phenylacetic acid (PAA) and zeatin and cultured at 30°C with a 12-h daylength (43 μEs−1m−2) in an incubator. Microspore-derived embryos developed in 2–3 wk and the plants were produced 3–4 wk after anther plating. In the improved system, as much as 53% of the anthers of Pavon 76 were responsive with multiple embryos. For plant regeneration, as many as 22 green and 25 albino plants were produced from 100 anthers. Sixty-five green plants were grown to maturity and 32 (49%) plants were fertile and produced seeds (indicating spontaneous chromosome doubling) while 33 plants did not produce seed. Of five Nebraska breeding lines tested using the protocol, NE96675 was very responsive and the other lines less so, indicating that the protocol is genotype-dependent.  相似文献   

13.
A microspore culture protocol for Brassica oleracea of Indonesian origin (cv. ‘Kemeh’) has been successfully established. A high number of embryos formed with high microspore density i.e. 15 × 104 cells/ml. Embryo formation was improved by using flower buds (4.5–4.6 mm in length) as explants, a temperature treatment at 30.5°C for 48 h and then transfer to 25°C continuously until embryos formed. A total of 295 embryos were obtained from 189 buds, 30% of which were abnormal (i.e. with an abnormal cotyledon or lacking hypocotyls). All normal embryos that grew and survived, 165 in total, were successfully transferred to soil and grew well in plastic bags (15 cm in diameter) containing a mixture of burned-rice husk and organic manure (1:1, v/v).  相似文献   

14.
Microspores of several genotypes of Brassica campestris ssp. parachinensis have been cultured in vitro and induced to undergo embryogenesis and plant formation. Conditions favourable for embryogenesis in this species include a bud size of 2–2.9 mm, NLN-13 culture medium (Nitsch and Nitsch 1967; Lichter 1981, 1982; Swanson 1990), and an induction through exposure to 32°C for a period of 48 h. Longer periods of an elevated temperature for induction of embryogenesis resulted in embryo abortion at early developmental stages. With the protocol developed here, microspores of 60–80% of donor plants could be induced to produce embryos, although embryo yields were low, i.e. 2–5 embryos per 10 buds. Some genotypes responded to culture conditions with high numbers of embryo formation (100–150 embryos per 10 buds) but most of these subsequently failed to mature. The pattern of cell division and morphological changes of the microspores in culture were studied using various microscopic techniques.  相似文献   

15.
Summary Plants of European chestnut (Castanea sativa) have been consistently recovered from cryopreserved in vitro-grown shoot apices by using the vitrification procedure. Factors found to influence the success of cryopreservation include the source of the shoot tips (terminal buds or axillary buds), their size, the duration of exposure to the cryoprotectant solution, and the composition of the post-cryostorage recovery medium. The most efficient protocol for shoot regrowth employed 0.5–1.0 mm shoot tips isolated from 1 cm-long terminal buds that had been excised from 3–5-wk shoot cultures and cold hardened at 4°C for 2 wk. The isolated shoot tips were precultured for 2d at 4°C on solidified Gresshoff and Doy medium (GD) supplemented with 0.2M sucrose, and were then treated for 20 min at room temperature with a loading solution (2M glycerol+0.4M sucrose) and for 120 min at 0°C with a modified PVS2 solution before rapid immersion in liquid nitrogen (LN). After 1 d in LN, rapid rewarming and unloading in 1.2M sucrose solution for 20 min, the shoot tips were plated on recovery medium consisting of GD supplemented with 2.2 μM benzyladenine, 2.9 μM 3-indoleacetic acid, and 0.9 μM zeatin. This protocol achieved 38–54% shoot recovery rates among five chestnut clones (three of juvenile origin and two of mature origin), and in all cases plant regeneration was also obtained.  相似文献   

16.
Summary An efficient system for the regeneration of plants from protoplasts was developed in Alstroemeria. Friable embryogenic callus (FEC) proved to be the best source for protoplast isolation and culture when compared with leaf tissue and compact embryogenic callus. Protoplast isolation was most efficient when FEC was cultured under vacuum for 5 min in an enzyme solution consisting of 4% cellulase, 0.5% Driselase and 0.2% Macerozyme, followed by culture for 12–16h in the dark at 24°C. Cell wall formation and colony formation were better in a liquid medium than on a semi-solid agarose medium. Micro-calluses were formed after 4 wk of culture. Ninety percent of the micro-calluses developed into FEC after 12wk of culture on proliferation medium. FEC cultures produced somatic embryos on a regeneration medium and half of these somatic embryos developed shoots. Protoplast-derived plants showed more somaclonal variation than vegetatively propagated control plants.  相似文献   

17.
Summary The development of embryo sacs (ES) in vitro and induction of gynogenesis were studied in onion flower bud culture. Explants were divided into three groups according to their size at inoculation: (a) small flower buds (2.3–3.0 mm in diameter); (b) medium flower buds (3.1–3.7 mm); and (c) large flower buds (3.8–4.4 mm). For histological study, excised ovaries were fixed at inoculation and then at 3-d intervals until day 12, and after 2 and 3 wk of culture. Some explants were cultured until embryo emergence, i.e., 3–5 mo. In total, 2592 ovules were examined histologically. At inoculation, 83% of ovules in small flower buds contained a megaspore mother cell; in 17% of ovules, two-nucleate ES occurred. In medium flower buds two-nucleate, four-nucleate, and mature ES were present at frequencies of 15%, 46%, and 40%, respectively. In large flower buds, only mature ES occurred. In vitro conditions did not disturb meiosis and megagametophyte development in non-degenerated ovules. Regardless of the developmental stage at inoculation, only mature ES occurred on day 12. Gynogenic embryos were found after 2 wk of culture, indicating that embryos developed in mature ES exclusively. Embryos were detected in 5.4% of histological studied ovules; however, the number of embryos after 3–5 mo. was higher (12.4%). The parthenogenetic origin of the embryos is discussed. In addition, ES containing endosperm only (6.5%) and both endosperm and embryo (0.4%) were observed.  相似文献   

18.
Summary In vitro seedlings of Lilium × formolongi Hort. evs. Norikula, RaiZen No. 1, RaiZen No. 3, RaiZen Early, and Bailansa were used to induce callus by variously modified Murashige and Skoog (MS) media, using protocols for flask culture and bioreactor culture. Green embryogenic callus proliferated from roots near the base of bulblets of five varieties on media containing 0.53–5.3 μM α-naphthaleneacetic acid (NAA), and 28 cell lines were obtained by subcultures on the same medium. For flask culture, the fresh weight (FW) of embryogenic cell clumps doubled every 4 wk on MS basal salts supplemented with 0.53°M NAA and 30 g l−1 sucrose. The maximum frequency of somatic embryos that developed into plantlets was 76.67±17% when plated onto solid MS basal medium without plant growth regulators (PGRs). Among the treatments using four types of bioreactors, the best cell growth and regeneration rate (74±0.14%) of somatic embryos was in a modified 2–1 bioreactor. Cells incubated in the other three bioreactors furned brown and died. Histological study revealed that regeneration was by somatic embryogenesis. The regenerants showed normal growth and flowering after 8–9 mo, in the field. A cell line of cv. Norikula has been subcultured in MS basal salts containing 0.53 μM NAA every 2 mo. for 6 yr. The cell aggregates became more synchronous and many typical embryogenic cells with dense cytoplasm were observed under a light microscope. The long-term embryogenic cells plated on MS basal medium still gave rise to numerous somatic embryos and converted into plantlets.  相似文献   

19.
Regeneration of Acacia mangium through somatic embryogenesis   总被引:2,自引:0,他引:2  
 Somatic embryogenesis and whole plant regeneration were achieved in callus cultures derived from immature zygotic embryos of Acacia mangium. Embryogenic callus was induced on MS medium containing combinations of TDZ (1–2 mg/l), IAA (0.25–2 mg/l) and a mixture of amino acids. Globular embryos developed on embryogenic callus cultured on the induction medium. Nearly 42% of embryogenic cultures with globular embryos produced torpedo- and cotyledonary-stage embryos by a two-step maturation phase. The first stage occurred on 1/2-strength MS basal medium containing 30 g/l sucrose and 5 mg/l GA3 followed by the second stage on 1/2-strength MS basal medium containing 50 g/l sucrose. Of the cotyledonary-stage somatic embryos, 11% germinated into seedlings that could be successfully transferred to pots. Light- and scanning electron microscopy showed that the somatic embryos originated from single cells of the embryogenic callus. Further, a single cell layer could be detected beneath the developing somatic embryos that appeared to be a demarcation layer isolating the somatic proembryonic structure from the rest of the maternal callus. A suspensor-like structure connected the globular embryos to the demarcation layer. This is the first successful report of plant regeneration through somatic embryogenesis for this economically important tropical forest species. Received: 20 January 2000 / Revision received: 28 September 2000 / Accepted: 29 September  相似文献   

20.
Various factors affect the induction of somatic embryogenesis in peach palm (Bactris gasipaes Kunth). Among these, both the type and level of auxins had the greatest influence on in vitro responses, although the genotype and the developmental stage of the explants also influenced results. Younger inflorescences were more competent to respond to SE induction than more mature inflorescences and the use of a pre-treatment with 2,4-D (200 μM) in liquid MS culture medium also increased the embryogenic capacity, and diminished the development of flower buds. Higher oxidation rates were observed in explants maintained on 2,4-D-supplemented culture medium, while on 300 μM or 600 μM Picloram and Dicamba lower oxidation rates were observed. The progression from floral meristem to flower bud occurred at high frequency when low concentrations of auxins were used, independent of the type. Higher concentrations of Picloram or Dicamba reduced or even inhibited flower bud development. Picloram also enhanced the embryogenic induction rate more than 2,4-D and Dicamba, and among the concentrations evaluated 300 μM Picloram enhanced induction for both genotypes, with significant differences between genotypes. The best combination of variables used the least mature inflorescence (Infl1) from genotype I with the 2,4-D pre-treatment and 300 μM Picloram to generate 5 embryogenic calli from 18 explants; 26 embryos were obtained on average from each embryogenic callus. From these, eighteen embryos converted to plantlets and six of these survived transfer to the greenhouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号