首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
为探明怀槐细胞生长、异黄酮染料木素合成与底物消耗间的关系,建立了怀槐细胞悬浮培养的结构化动力学模型。模型预测分析了胞内外的蔗糖代谢、胞内结构组分变化、胞内中间组分的变化、细胞呼吸损失以及胞内外异黄酮染料木素的合成情况。模型各参数灵敏度的分析表明kb1、kb2和kp是最为灵敏的参数,其调节10%时,目标函数变化的最大比例分别达12.8%、4.61%和2.54%,其它参数对目标函数变化的影响均小于0.5%。该模型预测值与实验值具有较好的吻合性。  相似文献   

2.
为探明怀槐细胞生长、异黄酮染料木素合成与底物消耗间的关系,建立了怀槐细胞悬浮培养的结构化动力学模型。模型预测分析了胞内外的蔗糖代谢、胞内结构组分变化、胞内中间组分的变化、细胞呼吸损失以及胞内外异黄酮染料木素的合成情况。模型各参数灵敏度的分析表明kMb1kb2kp是最为灵敏的参数,其调节10%时,目标函数变化的最大比例分别达12.8%、4.61%和2.54%,其它参数对目标函数变化的影响均小于0.5%。该模型预测值与实验值具有较好的吻合性。  相似文献   

3.
Plant cell suspensions of grape cells (Vitis vinifera L. cv. Gamay Fréaux) were grown in shake flasks operated both in the batch and semicontinuous mode. A mathematical model was developed to describe grape cell growth, sucrose uptake, and secondary metabolite (anthocyanin) production. Parameters were estimated from batch studies data. The model was able to predict results for semicontinuous experiments by only modifying the value of four of these parameters. The modified parameters (maximum specific rate of biomass production, maximum specific rate of substrate consumption for maintenance, maximum specific rate of anthocyanin production, and degradation constant of anthocyanins) were related to the kinetics rather than to the yield of the process. The model introduces the concept of primary and secondary metabolism substrate concentration-dependent competition for precursors. Further, the model was able to predict the evolution of the cell system when substrate is scarce, as the value of the different kinetic constants determines the portion of substrate that is used for biomass production, secondary metabolite production, and cell maintenance. (c) 1995 John Wiley & Sons, Inc.  相似文献   

4.
The aim of the present study was the development of a general simulation module for fermentation within the framework of existing chemical process simulators. This module has been applied to an industrial plant which produces ethanol from beet molasses and fresh beet juice by Saccharomyces cerevisiae. An unstructured mechanistic model has been developed with kinetic laws that are based on a chemically defined reaction scheme which satisfies stoichiometric constraints. This model can be applied to different culture conditions and takes into account secondary byproducts such as higher alcohols. These byproducts are of prime importance and need to be correctly estimated because a sequence of distillation columns follow the fermentor in the plant. Important measurement campaigns have been performed on the plant to validate the model. Plant operation has been successfully simulated using the same kinetic model for both continuous and fed-batch modes of production. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
Optimal substrate feeding strategy in bioreactor operation was investigated to increase the production of secondary metabolite in a high density culture of plant cell. It was accomplished by the previously proposed structured kinetic model that describes the cell growth and synthesis of the secondary metabolite, berberine, in a batch suspension culture ofThalictrum rugosum. Four types of operation strategies for sugar feeding intoT. rugosum culture were proposed based on the model, which were the periodic fedbatch operations to maintain the cell activity, the cell viability, and the specific production rate, and the perfusion operation to maintain the specific production rate. From the simulation results of these strategies, it could be found that the periodic fed-batch operation and the perfusion operation could achieve the higher volumetric production of berberine (mg berberine/L) and specific production yield (mg berberine/g dry cell weight) than those of batch cultures. Although the highest productivity (mg berberine/day) of berberine could be achieved by the periodic fed-batch operation to maintain the cell activity compared with the other strategies in the periodic fed-batch operations, the specific production yield was low due to the higher maximum dry cell weight than other cases. The periodic fed-batch operation to maintain cell viability resulted in the highest volumetric production of berberine and specific production yield compared with the other strategies. In the cases of maintaining the specific production rate, the per-formance of the periodic fed-batch operation was better than that of the perfusion operation in the respect of the volumetric production and productivity of berberine. In order to increase the volumetric production of berberine and to get the highest specific production yield, the periodic fed-batch operation to maintain cell viability could be chosen as the optimal operating strategy in high density, culture ofT. rugosum plant cell.  相似文献   

6.
Optimization of cell culture processes can benefit from the systematic analysis of experimental data and their organization in mathematical models, which can be used to decipher the effect of individual process variables on multiple outputs of interest. Towards this goal, a kinetic model of cytosolic glucose metabolism coupled with a population-level model of Chinese hamster ovary cells was used to analyse metabolic behavior under batch and fed-batch cell culture conditions. The model was parameterized using experimental data for cell growth dynamics, extracellular and intracellular metabolite profiles. The results highlight significant differences between the two culture conditions in terms of metabolic efficiency and motivate the exploration of lactate as a secondary carbon source. Finally, the application of global sensitivity analysis to the model parameters highlights the need for additional experimental information on cell cycle distribution to complement metabolomic analyses with a view to parameterize kinetic models.  相似文献   

7.
The feasibility of operating a multistage continuous culture of plant cells was demonstrated for Nicotiana tabacum. Cells in the second stage of a two-stage chemostat were morphologically distinct from cells in the first stage or cells in a single-stage unit with a holding time equal to the combined holding times in the two-stage system. Cells in the second stage produced much higher levels of phenolics per unit weight of cells than cells in either the first-stage or single-stage unit. The steady-state was reproduced. When a glucose side stream was fed to the second stage, an increase in apparent cell division was observed with a simultaneous decrease in phenolics productivity. When the toxic precursor phenylalanine was pulsed into the reactor, the quantity of biomass decreased temporarily while phenolic productivity increased. These experiments demonstrate that multistage continuous culture may be useful in increasing secondary metabolite formation in cells and in exploring mechanisms controlling secondary metabolite formation.  相似文献   

8.
Plant cell biofactories offer great advantages for the production of plant compounds of interest, although certain limitations still need to be overcome before their maximum potential is reached. One obstacle is the gradual loss of secondary metabolite production during in vitro culture maintenance, which is an important impediment in the development of large‐scale production systems. The relationship between in vitro maintenance and epigenetic changes has been demonstrated in several plant species; in particular, methylation levels have been found to increase in in vitro cultures over time. Higher DNA methylation levels have been correlated with a low yield of secondary metabolites in in vitro plant cell cultures. The longer the period of subculturing, the more methylated cytosines were found throughout the genome, and secondary metabolism decreased significantly. This review summarizes different studies on epigenetic changes during the maintenance of in vitro cell cultures and the insights they provide on the mechanisms involved. It concludes by looking at the perspectives for new approaches designed to avoid declines in metabolite production.  相似文献   

9.
The production dynamics of yessotoxin (YTX) by Protoceratium reticulatum and phosphate uptake in culture were investigated in relation to cell growth. The equations used were: the reparametrized logistic for cell production, Luedeking–Piret model for yessotoxin production and maintenance energy model for phosphate consumption. Thus, the YTX formation rate was proportional to producer biomass at the end of the asymptotic phase of culture as a secondary metabolite. Moreover, the equations proposed showed a high accuracy to predict these bioproductions in different experimental conditions and culture scales.  相似文献   

10.
Plant cell suspension cultures of Catharanthus roseus and Nicotiana tabacum were grown in stirred tank bioreactors operated in batch and continuous mode. The stoichiometry of growth of both species in steady-state glucose limited chemostats was studied at a range of different dilution rates. A linear relation was applied to describe specific glucose uptake, oxygen consumption, and carbon dioxide production as a function of the growth rate. Specific respiration deviated greatly from the linear relation. An unstructured mathematical model, based on the observed stoichiometry in the glucose limited chemostats, was applied to describe the growth in batch culture. From a comparison between the observed growth pattern in batch fermentors and computer simulations it appeared that the stoichiometry of growth of the C. roseus culture was different under steady-state and dynamic conditions. It was concluded that a mathematical model for the growth of suspension culture plant cells in which the biomass is considered to be a single compound with an average chemical composition is of limited value because large changes in the conmposition of the biomass may occur. (c) 1992 John Wiley & Sons, Inc.  相似文献   

11.
A structured kinetic model was proposed to describe cell growth and synthesis of a secondary metabolite, berberine, in batch suspension culture ofThalictrum rugosum. The model was developed by representing the physiological state of the cell in terms of the activity and the viability, which can be estimated using the culture fluorescence measurement. In the proposed model, the cells were divided into three types; active-viable, nonactive-viable, and dead cells. The model was formulated in terms of cell growth (dry/fresh weight, activity, and viability), carbon source utilization (sucrose, glucose and fructose), and product formation (intracellular and extracellular berberine). The concept of cell expansion and the death phase were also included in this model to describe the sugar accumulation and the release of intracellular berberine into medium by cell lysis, respectively. The parameters used in this model were estimated based on the experimental results in conjunction with numerical optimization techniques. Satisfactory agreement between the model and experimental data was obtained. The proposed model could accurately predict cell growth and product synthesis as well as the distribution of the secondary metabolite between the cell and the medium. It is suggested that the proposed model could be extended as a useful framework for quantitative analysis of physiological characteristics in the other plant cell culture systems.  相似文献   

12.
Nicotiana tabacum leaves are covered by trichomes involved in the secretion of large amounts of secondary metabolites, some of which play a major role in plant defense. However, little is known about the metabolic pathways that operate in these structures. We undertook a proteomic analysis of N. tabacum trichomes in order to identify their protein complement. Efficient trichome isolation was obtained by abrading frozen leaves. After homogenization, soluble proteins and a microsomal fraction were prepared by centrifugation. Gel-based and gel-free proteomic analyses were then performed. 2-DE analysis of soluble proteins led to the identification of 1373 protein spots, which were digested and analyzed by MS/MS, leading to 680 unique identifications. Both soluble proteins and microsomal fraction were analyzed by LC MALDI-MS/MS after trypsin digestion, leading to 858 identifications, many of which had not been identified after 2-DE, indicating that the two methods complement each other. Many enzymes putatively involved in secondary metabolism were identified, including enzymes involved in the synthesis of terpenoid precursors and in acyl sugar production. Several transporters were also identified, some of which might be involved in secondary metabolite transport. Various (a)biotic stress response proteins were also detected, supporting the role of trichomes in plant defense.  相似文献   

13.
苯丙氨酸前体饲喂分别和环糊精、葡聚糖、茉莉酸甲酯、黑曲霉和直喙镰孢菌提取液五种诱导子联合作用,其中以与茉莉酸甲酯的联合作用对葡萄细胞培养生产花青素的影响最大,可使单位鲜细胞花青素含量提高2.7倍,花青素产量提高3.4倍,实验证明两者在培养后第4天加入效果最好。在30μmol/L苯丙氨酸、218μmol/L茉莉酸甲酯和3000~4000lx光照条件下,不同花青素产量的细胞株都能显著提高花青素产量,但低产株VV06比高产株VV05具有更大的产率提高潜力。该条件下VV05和VV06花青素产量分别达到2975和4090CV/L,是对照组的2.5倍和5.2倍。  相似文献   

14.
The effects of pulsed electric field (PEF) on growth and secondary metabolite production by plant cell culture were investigated by using suspension cultures of Taxus chinensis as a model system. Cultured cells in different growth phases were exposed to a PEF (50 Hz, 10 V/m) for various periods of time. A significant increase in intracellular accumulation of taxuyunnanine C (Tc), a bioactive secondary metabolite, was observed by exposing the cells in the early exponential growth phase to a 30-min PEF. The Tc content (i.e., the specific production based on dry cell weight) was increased by 30% after exposure to PEF, without loss of biomass, compared with the control. The combination of PEF treatment and sucrose feeding proved useful for improving secondary metabolite formation. Production levels of reactive oxygen species, extracellular Tc, and phenolics were all increased, whereas cell capacitance was decreased with PEF treatment. The results show that PEF induced a defense response of plant cells and may have altered the cell/membrane's dielectric properties. PEF, an external stimulus or stress, is proposed as a promising new abiotic elicitor for stimulating secondary metabolite biosynthesis in plant cell cultures.  相似文献   

15.
《Genomics》2020,112(4):2794-2803
Grammothele lineata strain SDL-CO-2015-1, jute (Corchorus olitorius) endophyte has been reported to produce anti-cancer drug paclitaxel in culture condition. Here we investigated the genome using different bioinformatic tools to find its association with the production of commercially important compounds including taxol. Carbohydrate-active enzymes, proteases, and secretory proteins were annotated revealing a complex endophytic relationship with its plant host. The presences of a diverse range of CAZymes including numerous lignocellulolytic enzymes support its potentiality in biomass degradation. Genome annotation led to the identification of 28 clusters for secondary metabolite biosynthesis. Several biosynthesis gene clusters were identified for terpene biosynthesis from antiSMASH analysis but none could be specifically pinned to taxol synthesis. This study will direct us to understand the genomic organization of endophytic basidiomycetes with a potential for producing numerous commercially important enzymes and secondary metabolites taking G. lineata as a model.  相似文献   

16.
Natural products discovery from actinomycetes has been on the decline in recent years, and has suffered from a lack of innovative ways to discover new secondary metabolites within a background of the thousands of known compounds. Recent advances in whole genome sequencing have revealed that actinomycetes with large genomes encode multiple secondary metabolite pathways, most of which remain cryptic. One approach to address the expression of cryptic pathways is to first identify novel pathways by bioinformatics, then clone and express them in well-characterized hosts with known secondary metabolomes. This process should eliminate the tedious dereplication process that has hampered natural products discovery. Several laboratory and industrial production strains have been used for heterologous production of secondary metabolite pathways. This review discusses the results of these studies, and the pros and cons of using various Streptomyces and one Saccharopolyspora strain for heterologous expression. This information should provide an experimental basis to help researchers choose hosts for current application and future development to express heterologous secondary metabolite pathways in yields sufficient for rapid scale-up, biological testing, and commercial production.  相似文献   

17.
Li C  Yuan YJ  Wu JC  Hu ZD 《Biotechnology letters》2003,25(16):1335-1343
A structured kinetic model was established to describe the process of Taxol formation in suspension cultures of Taxus chinesis var. mairei induced by an oligosaccharide from Fusarium oxysporum. In this model, the role of intracellular starch as a storage carbon source had to be taken into account. Substrate uptake, culture growth, cell respiration, and secondary metabolites, predicted by the model, agreed with those obtained experimentally. The effective factors of oligosaccharide elicitation, e,j, defined as the ratio of the parameter values in the system with oligosaccharide to those in control, reflected the effects of the oligosaccharide on cell growth and Taxol production.  相似文献   

18.
Withania somnifera (L.) Dunal (family: Solanaceae), commonly known as “Indian Ginseng”, is a medicinally and industrially important plant of the Indian subcontinent and other warmer parts of the world. The plant has multi-use medicinal potential and has been listed among 36 important cultivated medicinal plants of India that are in high demand for trade due to its pharmaceutical uses. The medicinal importance of this plant is mainly due to the presence of different types of steroidal lactones- withanolides in the roots and leaves. Owing to low seed viability and poor germination, the conventional propagation of W. somnifera falls short to cater its commercial demands particularly for secondary metabolite production. Therefore, there is a great need to develop different biotechnological approaches through tissue and organ culture for seasonal independent production of plants in large scale which will provide sufficient raw materials of uniform quality for pharmaceutical purposes. During past years, a number of in vitro plant regeneration protocols via organogenesis and somatic embryogenesis and in vitro conservation through synthetic seed based encapsulation technology have been developed for W. somnifera. Several attempts have also been made to standardize the protocol of secondary metabolite production via tissue/organ cultures, cell suspension cultures, and Agrobacterium rhizogenes-mediated transformed hairy root cultures. Employment of plant tissue culture based techniques would provide means for rapid propagation and conservation of this plant species and also provide scope for enhanced production of different bioactive secondary metabolites. The present review provides a comprehensive report on research activities conducted in the area of tissue culture and secondary metabolite production in W. somnifera during the past years. It also discusses the unexplored areas which might be taken into consideration for future research so that the medicinal properties and the secondary metabolites produced by this plant can be exploited further for the benefit of human health in a sustainable way.  相似文献   

19.
Dynamic model of CHO cell metabolism   总被引:1,自引:0,他引:1  
Fed-batch cultures are extensively used for the production of therapeutic proteins. However, process optimization is hampered by lack of quantitative models of mammalian cellular metabolism in these cultures. This paper presents a new kinetic model of CHO cell metabolism and a novel framework for simulating the dynamics of metabolic and biosynthetic pathways of these cells grown in fed-batch culture. The model defines a subset of the intracellular reactions with kinetic rate expressions based on extracellular metabolite concentrations and temperature- and redox-dependent regulatory variables. The simulation uses the rate expressions to calculate pseudo-steady state flux distributions and extracellular metabolite concentrations at discrete time points. Experimental data collected in this study for several different CHO cell fed-batch cultures are used to derive the rate expressions, fit the parameters, and validate the model. The simulations accurately predicted the effects of process variables, including temperature shift, seed density, specific productivity, and nutrient concentrations.  相似文献   

20.
曲均革  张卫  虞星炬 《生物工程学报》2011,27(11):1613-1622
为了深入研究植物细胞培养生产次生代谢产物不稳定性的机制,以葡萄细胞作为模式体系,研究悬浮培养过程中花青素合成的不稳定性。除了用常规的花青素总含量来表征花青素的生物合成之外,还采用HPLC测定花青素不同组分的含量。结果表明,在长期的继代培养过程中,不仅花青素的含量而且花青素的组成也表现出明显的不稳定性。首次采用了不稳定系数 (δ) 和因素得分 (Factor scores) 来表征植物细胞培养过程中次生代谢生产的不稳定性。培养条件对花青素生物合成的影响实验结果表明,继代周期和接种量均能诱发次生代谢的不稳定性表达,其中接种量的影响相对更大。在考察的 (6.5 d,2.00 g),(7 d,2.00 g),(7.5 d,2.00 g),(7 d,1.60 g) 和 (7 d,2.40 g) 五种不同的继代周期和接种量组合条件中,7 d继代周期和1.60 g接种量最有利于保持花青素的稳定生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号