首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HIROSE  T. 《Annals of botany》1986,58(4):487-496
An empirical model of vegetative plant growth is presented.The model is based on experimental data on Polygonum cuspidatum,which showed (1) that the partitioning of dry matter and nitrogenamong organs was linearly related to the nitrogen concentrationof the whole plant and (2) that leaf thickness was negativelycorrelated with leaf nitrogen concentration. The model properlydescribes the behaviour of plants. Steady-state solutions ofthe model give the relative growth rate, specific leaf weight,and partitioning of dry matter and nitrogen among organs withthe net assimilation rate and the specific absorption rate asenvironmental variables. The effect of nitrogen removal on drymatter and nitrogen partitioning was examined as non-steady-statedynamic solutions of the model. The model predicted not onlyreduced leaf growth and enhanced root growth but also a fluxof nitrogen from the leaf to the root, which agreed with theexperimental results. Mathematical model, partitioning of dry matter and nitrogen, plant nitrogen, relative growth rate, shoot: root ratio, specific leaf weight  相似文献   

2.
Plants of the biennial Arctium tomentosum were grown from seedto seed-set in an open field under three different treatments:control plants receiving full light intensity, plants with aleaf area reduced by 45 per cent, and shaded plants receivingonly 20 per cent of natural illumination. At various stagesof development the youngest fully expanded leaf of one plantin each treatment was exposed to 14CO2 for half an hour. Subsequentdistribution of labelled assimilates in various plant partswas determined after eight hours. In the first year, the mostdominant sink was the tap root irrespective of variation inassimilate supply. During the production of new vegetative growthin the second season, a larger amount of radioactive photosynthatewas recovered from above ground parts, especially during formationof lateral branches. Seed filling consumed 80–90 per centof labelled carbon exported from the exposed leaf. In the secondyear, the most pronounced difference between treatments wasin the degree of apical dominance, being highest in shaded plantsand lowest in the plants with cut leaves. Results from 14C experimentsagreed fairly well with a ‘partitioning coefficient’derived from a growth analysis of plants grown independentlyunder the same experimental conditions. Reasons for discrepanciesbetween the 14C results and the partitioning coefficient arediscussed. Arctium tomentosum, burdock, variation in assimilate supply, assimilate distribution, 14CO2, labelling, growth analysis  相似文献   

3.
DELAP  ANNE V. 《Annals of botany》1964,28(4):591-605
Rooted one-year shoots were grown for one season by sprayingtheir roots with nutrient solution. Iron supplied as Fe-EDTAat four concentrations resulted in plants which were respectively(a) severely chlorotic, (b) mildly chlorotic, (c) dark greenand healthy (controls), and (d) dark green but with slight reductionin growth. Severely deficient plants showed 40–70 per cent reductionsin growth as measured by fresh weight, shoot length, diameterincrease, leaf area, net assimilation and relative growth-rates.Dry weights were reduced 70–80 per cent and of the totaldry-weight increment a greater proportion remained in the leaves,which had a lower dry weight and higher water content per unitarea. However, because the initial old stem formed a greaterproportion of the total dry weight, the leaf area ratio remainedabout 11 per cent lower than in the controls. Severely deficientplants had, per unit of chlorophyll, a higher dry-weight increaseand net assimilation rate than the controls. Mild deficiency caused 10–20 per cent reductions in growthand net assimilation rate; the leaf area ratio was normal. Possible mechanisms of the effects of low iron supply are discussed,while the small growth reduction at the highest Fe-EDTA concentrationis attributed to chelate toxicity  相似文献   

4.
To determine on a quantitative and mathematical basis the effectsof seasonal changes in the levels of daylight and temperatureon vegetative growth and development in two years pot experimentsin the open were carried out at successive weekly intervalsbetween May and September. So as to minimize errors arisingfrom ontogenetic drifts the procedure adopted was to sow atintervals of a few days throughout the season batches of potswith seed of Helianthus annuus and to select pots containingplants of a standard morphological status for the start of eachweekly experiment. At the beginning and end of the week halfthe pots were harvested, the plants divided into root, stem,and leaf, the leaf area estimated, and the dry weights determined.The diurnal changes in air temperature were continuously recordedwhile the amount of daylight, excluding infra-red and ultravioletradiation, was measured with a specially constructed integratingrecorder. From the biological data for each week twelve variables werecalculated, namely the relative growth rates of both the wholeplant and the individual parts, the proportion by dry weightof the individual parts (root-, stem-, and leaf-weight ratios),the ratio of leaf area to total plant weight (leaf-area ratio),the rate of leaf expansion, the ratio of leaf area to leaf weight,and the net assimilation rate on the criteria of leaf area andweight. The main independent variables considered were the meanweekly temperature, the mean daily maximum minus the mean nightlyminimum temperature, the total amount of light per week, andthe time of year when the individual experiment was undertaken. Multiple regression analyses showed that (i) save for the stem-weightratio the data for the two years could be pooled, (ii) the fluctuationin diurnal temperature was of little account, (iii) transformationof the light data to either logarithms or square roots did notimprove the fit and (iv) for some of the dependent variables,e.g. leaf-area ratio, the ‘time of year’ effectwas significant but could be eliminated if the equation wasmodified to predict the value at the end of the week, giventhe initial value and the light and temperature data. The final series of multiple regressions revealed that (i) theleaf-weight ratio is not controlled by either the amount oflight or mean temperature, (ii) the relative growth rate ofthe root and the root-weight ratio are positively linked onlywith temperature, (iii) the rate of leaf growth either in areaor weight together with the net assimilation rate (area basis)are positively dependent on light alone, (iv) the net assimilationrate (weight basis) and the relative growth rates of the wholeplant and the stem are directly and positively correlated withboth temperature and light, and (v) the leaf-area ratio, theratio of leaf area to leaf weight and the stem-weight ratioare depressed by increasing light but augmented by rising temperature.In the individual regressions for net assimilation rate (areaand weight), the relative growth rates of the whole plant, stemand leaf weight, and the ratios of stem weight and leaf areato leaf weight the percentage variation accounted for rangedfrom 47 to as high as 91 per cent. The implication of these findings in relation to experimentsin controlled environmental chambers are discussed.  相似文献   

5.
HEUVELINK  E. 《Annals of botany》1999,83(4):413-422
A dynamic simulation model for tomato crop growth and development,TOMSIM, is evaluated. Potential crop growth and daily crop grossassimilation rate (Pgc,d) is computed by integration of leafassimilation rates over total crop leaf area throughout theday. Crop growth results fromPgc,dminus maintenance respirationrate (Rm), multiplied by the conversion efficiency. Dry matterdistribution is simulated, based on the sink strength of theplant organs, which is quantified by their potential growthrate. Within the plant, individual fruit trusses and vegetativeunits (three leaves and stem internodes between two trusses)are distinguished. Sink strength of a truss or a vegetativeunit is described as a function of its developmental stage.In this paper, emphasis is on the interactions between the twosubmodels of, respectively, dry matter production and dry matterdistribution. Sensitivity analysis showed that global radiation,CO2concentration, specific leaf area (SLA) and the developmentalstage of a vegetative unit at leaf pruning had a large influenceon crop growth rate, whereas temperature, number of fruits pertruss, sink strength of a vegetative unit and plant densitywere less important. Leaf area index (LAI) was very sensitiveto SLA and the developmental stage of a vegetative unit at leafpruning. Temperature did not influence the simulated Rm, asincreased respiration rate per unit of biomass at higher temperatureswas compensated by a decrease in biomass. The model was validatedfor four glasshouse experiments with plant density and fruitpruning treatments, and on data from two commercially growncrops. In general, measured and simulated crop growth ratesfrom 1 month after planting onwards agreed reasonably well,average overestimation being 12%. However, crop growth ratesin the first month after planting were overestimated by 52%on average. Final crop dry mass was overestimated by 0–31%,due to inaccurate simulation of LAI, resulting partly from inaccurateSLA prediction, which is especially important at low plant densityand in a young crop.Copyright 1999 Annals of Botany Company Crop growth, dry matter production, glasshouse, leaf area,Lycopersicon esculentum, partitioning, simulation model, tomato, TOMSIM.  相似文献   

6.
STEER  B. T. 《Annals of botany》1971,35(5):1003-1015
In Capsicum frutescens L. cv. California Wonder the specificleaf weight (dry weight per unit laminar area) at leaf unfoldingis three times higher in the eighth leaf than in the first leafproduced. Intermediate leaves exhibit a trend between the twoThe change in specific leaf weight during laminar expansionis greatest in leaf 1 and least (sometimes zero) in leaf 8.Large changes in specific leaf weight during laminar expansionare associated with a large degree of palisade cell expansion,while leaves showing smaller rates of change have less palisadecell expansion but cell division is more evident. At leaf unfoldingthe fraction I protein content per unit laminar area is higherin upper than in lower leaves. Ribulose diphosphate carboxylaseactivity per unit laminar area and 14CO2 fixation per unit laminararea have a similar pattern of development in all leaves andshow no correlation with the changes in specific leaf weight.The peak of activity in all leaves occurs when the laminar areais 10 cm2. These results are compared with previous data onlaminar expansion and are seen as in accord with current ideason leaf growth.  相似文献   

7.
Dry-matter Production by Pinus sylvestris L.   总被引:4,自引:0,他引:4  
OVINGTON  J. D. 《Annals of botany》1957,21(2):287-314
This paper contains the data for the gross weight and relativeproportions of canopy, bole, and roots in a series of twelveeven-aged forest stands. From these it is possible to describe the growth curves of treesof Pinus sylvestris in Britain under the observed conditionsand the production of dry matter per unit area of such standsof trees. The following general results are given: regressionsrelating weight to bole, height, and diameter; the relativegrowth of leaves, roots, and bole; annual increments of drymatter; relative growth-rates per unit leaf area or per unitdry weight per annum. Some comparative data are given for Pinus nigra (one plantation)which is more productive than Pinus sylvestris.  相似文献   

8.
9.
KREMER  E.; KROPFF  M. J. 《Annals of botany》1999,83(6):637-644
Effects of variation in light intensity on growth of plantsfrom five different populations of triazine-susceptible and-resistantSolanum nigrumwere studied in growth chambers at threelight levels. Plants were grown without intraspecific competitionand with optimal mineral nutrition. After 29 d, the mean biomassof resistant biotypes was about 25% less than that of susceptiblebiotypes at all light levels. Curve-fitting growth analysisshowed that this was the result of a lower initial biomass ofthe resistant biotype at the start of the experiment, as therelative growth rates (RGR) of the susceptible and resistantbiotypes in the early growth phase were equal. Specific leafarea (SLA) was higher for the resistant biotype but this wascompensated for by a lower net assimilation rate (NAR). Thefraction of dry matter invested in leaves was the same for bothbiotypes, but the resistant biotype produced more leaf areaper unit leaf weight. The equal RGR of the susceptible and resistantbiotypes in the early growth phase may have implications forthe competitive ability and population dynamics of a populationwith resistant biotypes.Copyright 1999 Annals of Botany Company Black nightshade, growth analysis, light level, management strategies, RGR, SLA,Solanum nigrum, triazine resistance, weed control.  相似文献   

10.
Summary Growth and nitrogen partitioning were investigated in the biennial monocarp Arctium tomentosum in the field, in plants growing at natural light conditions, in plants in which approximately half the leaf area was removed and in plants growing under 20% of incident irradiation. Growth quantities were derived from splined cubic polynomial exponential functions fitted to dry matter, leaf area and nitrogen data.Main emphasis was made to understanding of the significance of carbohydrate and nitrogen storage of a large tuber during a 2-years' life cycle, especially the effect of storage on biomass and seed yield in the second season. Biomass partitioning favours growth of leaves in the first year rosette stage. Roots store carbohydrates at a constant rate and increase storage of carbohydrates and nitrogen when the leaves decay at the end of the first season. In the second season the reallocation of carbohydrates from storage is relatively small, but reallocation of nitrogen is very large. Carbohydrate storage just primes the growth of the first leaves in the early growing season, nitrogen storage contributes 20% to the total nitrogen requirement during the 2nd season. The efficiency of carbohydrate storage for conversion into new biomass is about 40%. Nitrogen is reallocated 3 times in the second year, namely from the tuber to rosette leaves and further to flower stem leaves and eventually into seeds. The harvest index for nitrogen is 0.73, whereas for biomass it is only 0.19.  相似文献   

11.
EZE  J. M. O. 《Annals of botany》1973,37(2):315-329
Sand-culture experiments were carried out in full daylight atsuccessive weekly intervals between March and December 1969,to investigate the effects of seasonal changes in climatic factorson the growth of Helianthus annuus and Phaseolus vulgaris inFreetown. Values for a number of growth parameters were calculatedfrom the dry weights of the leaves, stems, and roots, and fromthe leaf areas. Simultaneously the diurnal changes in climaticfactors were recorded. Multiple regressions linking light, temperature, and relativehumidity with some of the growth parameters were calculated.The total variance accounted for in the regressions of relativegrowth-rate, net assimilation rate, and leaf weight ratio onlight, temperature, and relative humidity ranged from 51 to60 per cent in P. vulgaris. In H. annuus relative humidity wasless important; the percentage proportion of total varianceaccounted for in the regression of leaf weight ratio (and leafarea ratio in both species) on light and temperature was notsignificant. The results showed that H. annuus grew faster than P. vulgaris,but the latter's growth was depressed less by the dull weatherof the rainy season. The relative growth-rates of both specieswere positively dependent on light and temperature while theirnet assimilation rates were negatively dependent on relativehumidity, and their leaf area ratios negatively dependent onlight. All parameters used except leaf area ratio and leaf areato leaf weight ratio showed seasonal variations correspondingto dry and rainy seasons. The initial and final values of leafarea ratio and weight ratios were always different but did notvary in the same direction in both species. The results are discussed in relation to similar work done elsewhere.  相似文献   

12.
Sugar-beet and barley were grown in pots outdoors (environmentN) and, for five successive 4-week periods starting at sowing,batches of plants were transferred to three growth rooms whosetemperatures were either similar to the outdoor mean (environmentM), or 3° C hotter (environment H) or 3° C colder (environmentC). Some plants were harvested immediately after treatment;others were returned to environment N and harvested when mature. At the end of period 1, sugar-beet plants from environment Mhad more dry weight and leaf area than those outdoors. Immediatelyafter spending later periods in environment M, plants had smallerleaves and similar dry weight to those continuously outdoors.These differences disappeared by maturity. Warmth in the growthrooms (i.e. the difference H—C) during periods 1, 2, and3, while leaf area was increasing, increased the number andsize of leaves and usually also dry weight; in later periodsit had no effect. The effects induced during periods 2 and 3,but not period 1, persisted to maturity to give greater totaland root dry weight and yield of sugar. The final effects ondry weight were much larger than those immediately after treatment,and were the result of differences in growth outdoors aftertreatment which depended on differences in leaf area; the efficiencyof the leaves was not affected by previous treatment. Transferring barley to environment M from N had inconsistentimmediate effects on leaf area and dry weight which disappearedby the final harvest. Transfer during periods 2 and 3, beforethe ears had started emerging, increased shoot number and delayeddevelopment. The proportion of the ears that ripened and theyield of grain were usually less for plants that had spent aperiod in environment M than for plants permanently outdoors,which also had some green ears. Warmth in the growth rooms duringperiods 1 and 2 increased dry weight and leaf area immediately,but had negligible effects at maturity because the increasesin leaf area did not persist after ear emergence. Warmth laterhastened death of leaves, decreased total dry weight immediatelyand also at maturity, but increased the proportion of ears thatripened and hence usually grain weight. Variation in leaf areaduration after ear emergence (D), determined by effects on thetime the ears emerged and the rate the leaves died, accountedfor most of the variation in grain yield, but warmth after theears emerged decreased grain yield less than proportionallyto the decrease in D. Net assimilation rate (E) of sugar-beet was greater than ofbarley, and decreased less with age. E of both species was usuallygreater in environment M than outdoors in spite of less radiation.It was only slightly affected by temperature. Nitrogen and potassium uptake were increased by treatments thatincreased dry weight. The percentage contents suggest that extrauptake was a consequence and not a cause of the increase indry weight.  相似文献   

13.
Vegetative crops of chrysanthemum were grown for 5 weeks inthree replicate daylit assimilation chambers. Weekly harvestswere made from each crop for growth analysis, and on seven occasionsduring the 5-week period continuous measurements of the netCO2 exchange rate of each crop were made over a 24 h period.A semi-empirical model for canopy photosynthesis was fittedto these data. The photosynthesis model was then incorporatedinto a simple, dynamic growth model. Using fitted values ofthe canopy photosynthesis parameters, the daily total radiationintegrals, and the experimentally observed relationship betweenthe leaf area index and crop dry matter per unit ground area,the crop growth model was used to simulate growth over the 5-weekperiod. The predicted and measured crop dry weights were inclose agreement over the whole period.  相似文献   

14.
S. L. Gulmon  C. C. Chu 《Oecologia》1981,49(2):207-212
Summary Plants of Diplacus aurantiacus, a successional shrub common in California chaparral, were grown under controlled conditions in which either quantum flux density or nitrogen availability was varied. Photosynthesis and leaf nitrogen content were determined on a leaf area and a leaf weight basis, and whole plant growth was monitored.There was a direct relationship between photosynthesis and leaf nitrogen content on both area and weight bases. Reduced light intensity of the growth environment resulted in reductions in light-saturated photosynthesis and nitrogen content on an area basis, but not on a weight basis. With reduced nitrogen availability, photosynthesis and leaf nitrogen content per unit leaf weight decreased.Resource use efficiency increased as the resource became more limiting. The results are consistent with a model of plant growth in which net carbon gain of the leaf is maximized. Abbreviations. For brevity, the following set of abbreviations is used in presenting and discussing the results. P/area and N/area are, respectively, photosynthesis and leaf nitrogen content per unit leaf area. P/wt and N/wt are the same quantities per unit leaf dry weight. SLW (specific leaf weight) is dry weight per unit leaf area. RGR (relative growth rate) is the relative rate of increase in shoot dry matter per day  相似文献   

15.
Summary Which factors cause fast-growing plant species to achieve a higher relative growth rate than slow-growing ones? To answer this question 24 wild species were grown from seed in a growth chamber under conditions of optimal nutrient supply and a growth analysis was carried out. Mean relative growth rate, corrected for possible ontogenetic drift, ranged from 113 to 356 mg g–1 day–1. Net assimilation rate, the increase in plant dry weight per unit leaf area and unit time, varied two-fold between species but no correlation with relative growth rate was found. The correlation between leaf area ratio, the ratio between total leaf area and total plant weight, and relative growth rate was very high. This positive correlation was mainly due to the specific leaf area, the ratio between leaf area and leaf weight, and to a lesser extent caused by the leaf weight ratio, the fraction of plant biomass allocated to the leaves. Differences in relative growth rate under conditions of optimum nutrient supply were correlated with the soil fertility in the natural habitat of these species. It is postulated that natural selection in a nutrient-rich environment has favoured species with a high specific leaf area and a high leaf weight ratio, and consequently a high leaf area ratio, whereas selection in nutrient-poor habitats has led to species with an inherently low specific leaf area and a higher fraction of root mass, and thus a low leaf area ratio.  相似文献   

16.
Dry Matter Production in a Tomato Crop: Measurements and Simulation   总被引:8,自引:1,他引:8  
Heuvelink  E. 《Annals of botany》1995,75(4):369-379
Simulation of dry matter production by the explanatory glasshousecrop growth model SUKAM (Gijzen, 1992, Simulation Monographs),based on SUCROS87 (Spitters, Van Keulen and Van Kraalingen,1989, Simulation and systems management in crop protection),was validated for tomato. In the model, assimilation rates arecalculated separately for shaded and sunlit leaf area at differentcumulative leaf area in the canopy, taking into account thedifferent interception of direct and diffuse components of light.Daily crop gross assimilation rate (Pgd) is computed by integrationof these rates over total crop leaf area and over the day. Leafphotochemical efficiency and potential gross assimilation rateat saturating light depend on temperature and CO2 concentrationand are approximated as being identical in the whole canopy.Crop growth results from Pgd minus maintenance respiration rate(Rm; dependent on temperature and crop dry weight), multipliedby the conversion efficiency (carbohydrates to structural drymatter; Cf). Growth experiments (periodic destructive harvest) with differentplanting dates and plant densities and two data-sets from commerciallygrown crops, were used for model validation. Hourly averagesfor global radiation outside the glasshouse, glasshouse temperatureand CO2 concentration, together with measured leaf area index,dry matter distribution (for calculation of Cf) and organ dryweights (for calculation of Rm) were the inputs to the model. Dry matter production (both level and dynamic behaviour) wassimulated reasonably well for most experiments, but final drymatter production was under-estimated by about 27% for the commerciallygrown crops. At low irradiance and with large crop dry weight,growth rate was under-estimated, probably as a result of over-estimationof Rm. This could almost completely explain the large under-estimationfor the commercially grown crops, which had large dry weight.Final dry matter production was over-estimated by 7-11% if dailyaverages instead of hourly input of climatic data were used. It is concluded that SUKAM is a reliable model for simulatingdry matter production in a tomato crop, except for those situationswhere Rm has a large influence on crop growth rate (low irradianceand large crop dry weight). An improved estimate of Rm wouldtake into account the influence of metabolic activity. A preliminaryattempt to relate maintenance costs to relative growth rate(a measure for metabolic activity), showed promising results.Copyright1995, 1999 Academic Press Crop growth, dry matter production, glasshouse, maintenance respiration, metabolic activity, model, relative growth rate, respiration, simulation, tomato, model validation  相似文献   

17.
The relation between interspecific variation in relative growth rate and carbon and nitrogen economy was investigated. Twentyfour wild species were grown in a growth chamber with a nonlimiting nutrient supply and growth, whole plant photosynthesis, shoot respiration, and root respiration were determined. No correlation was found between the relative growth rate of these species and their rate of photosynthesis expressed on a leaf area basis. There was a positive correlation, however, with the rate of photosynthesis expressed per unit leaf dry weight. Also the rates of shoot and root respiration per unit dry weight correlated positively with relative growth rate. Due to a higher ratio between leaf area and plant weight (leaf area ratio) fast growing species were able to fix relatively more carbon per unit plant weight and used proportionally less of the total amount of assimilates in respiration. Fast growing species had a higher total organic nitrogen concentration per unit plant weight, allocated more nitrogen to the leaves and had a higher photosynthetic nitrogen-use efficiency, i.e. a higher rate of photosynthesis per unit organic nitrogen in the leaves. Consequently, their nitrogen productivity, the growth rate per unit organic nitrogen in the plant and per day, was higher compared with that of slow growing species.  相似文献   

18.
Dunn, R., Thomas, S. M., Keys, A. J. and Long, S. P. 1987. Acomparison of the growth of the C4 grass Spartina anglica withthe C3 grass Lolium perenne at different temperatures.—J.exp. Bot. 38: 433–441. S. anglica is one of the few C4 species which occurs naturallyin cool temperate zones. It is known to attain photosyntheticrates which equal or exceed those of C3 grasses over the temperaturerange typical of the spring and summer in cool temperate climates.This study examines whether S. anglica can also attain comparablegrowth rates at these temperatures. Seedlings of S. anglicaand L. perenne cv. S23 were grown in controlled environmentsat 10,15,20 and 25 °C. Quantitative growth analysis wasconducted by taking frequent harvests to determine the progressionsof leaf area and plant weight of individual plants with time.Quadratic regressions were found to describe these progressionswell. Instantaneous derived growth parameters were calculatedfrom the fitted regressions. Both absolute and relative growthrates of S. anglica were significantly lower than for L. perenne,this being largely attributable to a lower ratio of leaf areaproduction per unit of plant dry weight. Although the amountof dry matter invested into leaves was similar, the leaf areaper unit of leaf dry weight was lower in S. anglica. In comparisonto L. perenne, the rate of dry matter accumulation per unitof leaf area (ULR) was higher in S. anglica at 25 °C andinitially equal at 10 °C. Prolonged exposure to 10 °Csteadily reduced ULR in S. anglica which approached zero at80 d. Although growth in S. anglica is reduced more by low temperaturethan it is in L. perenne, by comparison to other C4 speciesthe assimilatory capacity of S. anglica is more tolerant oflow temperature exposure. Key words: C4 photosynthesis, temperature, quantitative growth analysis  相似文献   

19.
COCKSHULL  K. E. 《Annals of botany》1966,30(4):791-806
Plants of Callistephus chinensis were grown in eight hours ofdaylight per day and received either uninterrupted dark periodsor dark periods interrupted by one hour of low-intensity light.The growth in area and the accumulation of dry matter was followedfor leaves at different heights of insertion on the stem. Lightinterruption treatment caused more rapid surface expansion ofindividual leaves. The rate of accumulation of dry matter wasalso increased but less in proportion to the increase in areaso that the area per unit weight of leaf material, i.e. thespecific leaf area, was greater. The final areas and dry weightsof leaves were also considerably greater than in the uninterruptednight treatment. When plants were transferred from uninterruptedto interrupted nights, a similar response was obtained fromthose leaves which began to expand rapidly after the commencementof the treatment. The reciprocal transfer into uninterrupted nights immediatelyretarded the rate of leaf expansion and final leaf areas wereless. The rate of accumulation of dry matter was not affectedso rapidly and the area per unit weight of leaf material fellbelow that recorded from leaves which had always received uninterruptednights. Within any one treatment and on any one occasion thespecific leaf area was almost constant, regardless of heightof insertion and therefore also of leaf size and degree of development. It is postulated that a promotor of leaf growth is producedin the light interruption treatment and that this regulatormay increase cell expansion. Transfer to uninterrupted nightsmay halt the synthesis of this regulator and may also lead tothe production of an inhibitor of leaf expansion. Finally, it is concluded from a survey of the literature, that,in general, where a response to photoperiod exists, leaf areais greater in long days than in short days.  相似文献   

20.
Vegetative crops of chrysanthemum were grown for 5 or 6 weekperiods in daylit assimilation chambers. Crop responses to differentradiation levels and temperatures were analysed into effectson dry matter partitioning, specific leaf area, leaf photosynthesisand canopy light interception. The percentage of newly formed dry matter partitioned to theleaves was almost constant, although with increasing radiationor decreasing temperature, a greater percentage of dry matterwas partitioned to stem tissue at the expense of root tissue.There was a positive correlation between the percentage of drymatter in shoot material and the overall carbon: dry matterratio. Canopy photosynthesis was analysed assuming identical behaviourfor all leaves in the crop. Leaf photochemical efficiency wasonly slightly affected by crop environment. The rate of grossphotosynthesis per unit leaf area at light saturation, PA (max),increased with increasing radiation integral, but the same parameterexpressed per unit leaf dry matter, Pw (max) was almost unaffectedby growth radiation. In contrast, PA (max) was hardly affectedby temperature but Pw (max) increased with increasing growthtemperature. This was because specific leaf area decreased withdecreasing temperature and increased with decreasing radiation.There was a positive correlation between canopy respirationintegral and photosynthesis integral, and despite a four-foldchange in crop mass during the experiments, the maintenancecomponent of canopy respiration remained small and constant. Canopy extinction coefficient showed no consistent variationwith radiation integral but was negatively correlated with temperature.This decrease in the efficiency of the canopy at interceptingradiation exactly cancelled the increase in specific carbonassimilation rate that occurred with increasing growth temperature,giving a growth rate depending solely on the incident lightlevel. Chrysanthemum, dry matter partitioning, photosynthesis, specific leaf area  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号