首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C J Gimeno  P O Ljungdahl  C A Styles  G R Fink 《Cell》1992,68(6):1077-1090
Diploid S. cerevisiae strains undergo a dimorphic transition that involves changes in cell shape and the pattern of cell division and results in invasive filamentous growth in response to starvation for nitrogen. Cells become long and thin and form pseudohyphae that grow away from the colony and invade the agar medium. Pseudohyphal growth allows yeast cells to forage for nutrients. Pseudohyphal growth requires the polar budding pattern of a/alpha diploid cells; haploid axially budding cells of identical genotype cannot undergo this dimorphic transition. Constitutive activation of RAS2 or mutation of SHR3, a gene required for amino acid uptake, enhance the pseudohyphal phenotype; a dominant mutation in RSR1/BUD1 that causes random budding suppresses pseudohyphal growth.  相似文献   

2.
3.
4.
5.
The Saccharomyces cerevisiae genes ELM1, ELM2, and ELM3 were identified on the basis of the phenotype of constitutive cell elongation. Mutations in any of these genes cause a dimorphic transition to a pseudohyphal growth state characterized by formation of expanded, branched chains of elongated cells. Furthermore, elm1, elm2, and elm3 mutations cause cells to grow invasively under the surface of agar medium. S. cerevisiae is known to be a dimorphic organism that grows either as a unicellular yeast or as filamentous cells termed pseudohyphae; although the yeast-like form usually prevails, pseudohyphal growth may occur during conditions of nitrogen starvation. The morphologic and physiological properties caused by elm1, elm2, and elm3 mutations closely mimic pseudohyphal growth occurring in conditions of nitrogen starvation. Therefore, we propose that absence of ELM1, ELM2, or ELM3 function causes constitutive execution of the pseudohyphal differentiation pathway that occurs normally in conditions of nitrogen starvation. Supporting this hypothesis, heterozygosity at the ELM2 or ELM3 locus significantly stimulated the ability to form pseudohyphae in response to nitrogen starvation. ELM1 was isolated and shown to code for a novel protein kinase homolog. Gene dosage experiments also showed that pseudohyphal differentiation in response to nitrogen starvation is dependent on the product of CDC55, a putative B regulatory subunit of protein phosphatase 2A, and a synthetic phenotype was observed in elm1 cdc55 double mutants. Thus, protein phosphorylation is likely to regulate differentiation into the pseudohyphal state.  相似文献   

6.
7.
白念珠茵的致病性与其形态转变相关,白念珠茵的形态转换受各种外界信号和细胞内信号转导途径的调控。转录因子Flo8在酿酒酵母形态发生中起重要作用,我们将白念珠茵基因组文库导入flo8缺失株中,筛选能够校正flo8缺失株侵入生长缺陷的基因,分离得到一个与酿酒酵母蛋白磷酸酯酶甲基酯酶PPEI同源的基因,命名为CaPPEl。CaPPEl的基因编码区全长1083bp,推测编码一个361氨基酸的蛋白。在单倍体酿酒酵母中,CaPPE1基因的表达可以部分回复flo8缺失株的侵入生长缺陷,但是在MAPK途径缺失株中不能进行侵入生长。在双倍体酿酒酵母中,CaPPEl基因的表达可以部分激活MAPK途径成员缺失株的茵丝生长缺陷,但却只能在flo8缺失株中产生微弱的激活作用。结果表明CaPpel在酿酒酵母的假茵丝生长和侵入生长中参与的信号转导途径不同。  相似文献   

8.
白念珠菌的致病性与其形态转变相关,白念珠菌的形态转换受各种外界信号和细胞内信号转导途径的调控。转录因子Flo8在酿酒酵母形态发生中起重要作用,我们将白念珠菌基因组文库导入flo8缺失株中,筛选能够校正flo8缺失株侵入生长缺陷的基因,分离得到一个与酿酒酵母蛋白磷酸酯酶甲基酯酶PPEl同源的基因,命名为CaPPEl。CaPPEl的基因编码区全长1083bp,推测编码一个361氨基酸的蛋白。在单倍体酿酒酵母中,CaPPEl基因的表达可以部分回复flo8缺失株的侵入生长缺陷,但是在MAPK途径缺失株中不能进行侵入生长。在双倍体酿酒酵母中,CaPPEl基因的表达可以部分激活MAPK途径成员缺失株的菌丝生长缺陷,但却只能在flo8缺失株中产生微弱的激活作用。结果表明CaPpel在酿酒酵母的假菌丝生长和侵入生长中参与的信号转导途径不同。  相似文献   

9.
白色念珠菌在不同的生长条件下能发生显著的形态变化 ,这种变化由多种调控因子与信号转导途径所调控。酿酒酵母的G1期细胞周期蛋白Cln1和Cln2参与其形态发生 ,cln1/cln1、cln2 /cln2双缺失株不能形成菌丝。把白色念珠菌基因组文库导入cln1/cln1、cln2 /cln2缺失株 ,筛选能校正菌丝形成缺陷的基因 ,分离得到白色念珠菌中的CaBEM 1基因。从核苷酸序列推导 ,CaBEM1编码一种 6 32个氨基酸的蛋白质 ,氨基酸序列分析表明在其N端有 2个SH3结构域 ,中部有 1个PX结构域 ,C端有 1个PB1结构域 ;CaBem1的氨基酸序列与酿酒酵母的Bem1同源性达 38% ,与裂殖酵母的Scd2同源性达 32 %。在酿酒酵母的缺失株中异源表达CaBEM1,能够部分校正它们在氮源缺乏条件下的菌丝形成缺陷。这种菌丝形成的校正作用绕过MAPK途径和cAMP/PKA途径 ,表明CaBem1在菌丝形成中的作用可能位于这两条信号转导途径的下游  相似文献   

10.
Most of the yeast strains used in fermented beverages and foods are classified as Saccharomyces cerevisiae. However, different strains are suitable for different fermentation processes. The purpose of this work is the proposal of a standardized methodology for the molecular genotyping of S. cerevisiae strains based on polymorphisms at microsatellite loci and/or single nucleotide polymorphisms (SNPs). Single nucleotide variants in the coding region of FLO8, a key regulator of flocculation and pseudohyphae formation, were analyzed in a subset of Uruguayan wine strains. Polymorphism analysis at nine microsatellite loci (selected from 33 loci tested) was performed in a collection of 120 strains, mostly wine strains, from different origins. From a total of 184 different alleles scored, 50 were exclusive alleles that could identify 29 strains. Four selected microsatellite loci are located within or near genes of putative enological interest. The Uruguayan strains are highly diverse and evenly distributed in the phylogenetic reconstructions, suggesting an evolutionary history previous to human use. The Saccharomyces cerevisiae Microsatellites and SNPs Genotyping Database is presented (www.pasteur.edu.uy/yeast). Comparison of standardized results from strains coming from different settings (industrial, clinical, environmental) will provide a reliable and growing source of information on the molecular biodiversity of S. cerevisiae strains.  相似文献   

11.
Fungi can grow in a variety of growth forms: yeast, pseudohyphae and hyphae. The human fungal pathogen Candida albicans can grow in all three of these forms. In this fungus, hyphal growth is distinguished by the presence of a Spitzenk?rper-like structure at the hyphal tip and a band of septin bars around the base of newly evaginated germ tubes. The budding yeast Saccharomyces cerevisiae grows as yeast and pseudohyphae, but is not normally considered to show hyphal growth. We show here that in mating projections of both C. albicans and S. cerevisiae a Spitzenk?rper-like structure is present at the growing tip and a band of septin bars is present at the base. Furthermore, in S. cerevisiae mating projections, Spa2 and Bni1 form a cap to the 3-dimensional ball of FM4-64 staining, exactly as previously observed in C. albicans hyphae, suggesting that the putative Spitzenk?rper may be a distinct structure from the polarisome. Taken together this work shows that mating projections of both S. cerevisiae and C. albicans show the key characteristics of hyphal growth.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Yeast Saccharomyces cerevisiae cells generally cannot synthesize biotin, a vitamin required for many carboxylation reactions. Although sake yeasts, which are used for Japanese sake brewing, are classified as S. cerevisiae, they do not require biotin for their growth. In this study, we identified a novel open reading frame (ORF) in the genome of one strain of sake yeast that we speculated to be involved in biotin synthesis. Homologs of this gene are widely distributed in the genomes of sake yeasts. However, they are not found in many laboratory strains and strains used for wine making and beer brewing. This ORF was named BIO6 because it has 52% identity with BIO3, a biotin biosynthesis gene of a laboratory strain. Further research showed that yeasts without the BIO6 gene are auxotrophic for biotin, whereas yeasts holding the BIO6 gene are prototrophic for biotin. The BIO6 gene was disrupted in strain A364A, which is a laboratory strain with one copy of the BIO6 gene. Although strain A364A is prototrophic for biotin, a BIO6 disrupted mutant was found to be auxotrophic for biotin. The BIO6 disruptant was able to grow in biotin-deficient medium supplemented with 7-keto-8-amino-pelargonic acid (KAPA), while the bio3 disruptant was not able to grow in this medium. These results suggest that Bio6p acts in an unknown step of biotin synthesis before KAPA synthesis. Furthermore, we demonstrated that expression of the BIO6 gene, like that of other biotin synthesis genes, was upregulated by depletion of biotin. We conclude that the BIO6 gene is a novel biotin biosynthesis gene of S. cerevisiae.  相似文献   

19.
M. J. Blacketer  P. Madaule    A. M. Myers 《Genetics》1995,140(4):1259-1275
A genetic analysis was undertaken to investigate the mechanisms controlling cellular morphogenesis in Saccharomyces cerevisiae. Sixty mutant strains exhibiting abnormally elongated cell morphology were isolated. The cell elongation phenotype in at least 26 of the strains resulted from a single recessive mutation. These mutations, designated generically elm (elongated morphology), defined 14 genes; two of these corresponded to the previously described genes GRR1 and CDC12. Genetic interactions between mutant alleles suggest that several ELM genes play roles in the same physiological process. The cell and colony morphology and growth properties of many elm mutant strains are similar to those of wild-type yeast strains after differentiation in response to nitrogen limitation into the pseudohyphal form. Each elm mutation resulted in multiple characteristics of pseudohyphal cells, including elongated cell shape, delay in cell separation, simultaneous budding of mother and daughter cells, a unipolar budding pattern, and/or the ability to grow invasively beneath the agar surface. Mutations in 11 of the 14 ELM gene loci potentiated pseudohyphal differentiation in nitrogen-limited medium. Thus, a subset of the ELM genes are likely to affect control or execution of a defined morphologic differentiation pathway in S. cerevisiae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号