首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The X-ray diffraction patterns have been recorded from concentrated preparations of low-density serum lipoprotein (LDL). In one case a specimen gave rise to oriented diffraction: the 36 Å ring, which has previously been attributed to the cholesteryl esters in LDL, shows markedly oriented intensity; and of the other small-angle rings, which do not show oriented peak intensity, one nonetheless shows significant anisometry. The possibility cannot be ruled out that an artifactual structure has been created; however, it is calculated that the structure will, if exposed in an unoriented preparation, give rise to 36 A diffraction not obviously distinguishable from the native pattern. If valid for the native LDL particle, these observation suggest that the cholesteryl esters in the core of the particle may be arranged in simple planar, or else cylindrically concentric, layers and that the overall shape of the particle is not a uniform sphere.  相似文献   

2.
The ability to research individual cells has been seen as important in many kinds of biological studies. In the present study, cell impedance analysis is integrated into a single-cell trapping structure. For the purpose of precise positioning, a cell manipulation and measurement microchip, which uses an alternating current electrothermal effect (ACET) and a negative dielectrophoresis (nDEP) force to move a particle and cell on measurement electrodes, is developed. An ACET and an nDEP can be easily combined with subsequent analyses based on electric fields. A microwell presented in a previous study is separated into two parts, which are regarded as the measurement electrodes. The original structure is modified for precise positioning. Numerical simulations and analyses are conducted to compute and analyze the effects of the structural parameters. The results of simulations and analyses are used to obtain the optimum structure for the cell. The capture range of the microwell can be designed for cells of various sizes. In order to demonstrate the precision of the positioning, a particle is captured, measured, and released twice. The results show that the impedance error of the particle is about 3%. Finally, the developed structure is applied to trap and measure the impedance of a HeLa cell.  相似文献   

3.
14C]acetate metabolism in the peripheral nervous system   总被引:1,自引:0,他引:1  
A method for the complete and specific removal of histones H2A and H2B from nucleosome core particles is presented. Reconstitution of the separated products of depletion form a particle which has the same structure as native core particles as judged by a number of physical and biochemical criteria. The technique described also minimises the possibility of the formation of reconstituted core particles with different histone stoichiometries. These experiments are important as they demonstrate a procedure which can be extended to prepare core particles with selectively deuterated components while maintaining complete integrity of structure. When prepared, and studied by neutron scattering, selectively-deuterated core particles can give detailed information with respect to the relative positions and structure of the histone fractions within the core particle.  相似文献   

4.
Membrane proteins play important roles in cell functions such as neurotransmission, muscle contraction, and hormone secretion, but their structures are mostly undetermined. Several techniques have been developed to elucidate the structure of macromolecules; X-ray or electron crystallography, nuclear magnetic resonance spectroscopy, and high-resolution electron microscopy. Electron microscopy-based single particle reconstruction, a computer-aided structure determination method, reconstructs a three-dimensional (3D) structure from projections of monodispersed protein. A large number of particle images are picked up from EM films, aligned and classified to generate two-dimensional (2D) averages, and, using the Euler angle of each 2D average, reconstructed into a 3D structure. This method is challenging due to the necessity for close collaboration between classical biochemistry and innovative information technology, including parallel computing. However, recent progress in electron microscopy, mathematical algorithms, and computational ability has greatly increased the subjects that are considered to be primarily addressable using single particle reconstruction. Membrane proteins are one of these targets to which the single particle reconstruction is successfully applied for understanding of their structures. In this paper, we will introduce recently reconstructed channel-related proteins and discuss the applicability of this technique in understanding molecular structures and their roles in pathology.  相似文献   

5.
The projection structures of complex I and the I+III2 supercomplex from the C4 plant Zea mays were determined by electron microscopy and single particle image analysis to a resolution of up to 11 A. Maize complex I has a typical L-shape. Additionally, it has a large hydrophilic extra-domain attached to the centre of the membrane arm on its matrix-exposed side, which previously was described for Arabidopsis and which was reported to include carbonic anhydrase subunits. A comparison with the X-ray structure of homotrimeric gamma-carbonic anhydrase from the archaebacterium Methanosarcina thermophila indicates that this domain is also composed of a trimer. Mass spectrometry analyses allowed to identify two different carbonic anhydrase isoforms, suggesting that the gamma-carbonic anhydrase domain of maize complex I most likely is a heterotrimer. Statistical analysis indicates that the maize complex I structure is heterogeneous: a less-abundant "type II" particle has a 15 A shorter membrane arm and an additional small protrusion on the intermembrane-side of the membrane arm if compared to the more abundant "type I" particle. The I+III2 supercomplex was found to be a rigid structure which did not break down into subcomplexes at the interface between the hydrophilic and the hydrophobic arms of complex I. The complex I moiety of the supercomplex appears to be only of "type I". This would mean that the "type II" particles are not involved in the supercomplex formation and, hence, could have a different physiological role.  相似文献   

6.
A new learning-based approach is presented for particle detection in cryo-electron micrographs using the Adaboost learning algorithm. The approach builds directly on the successful detectors developed for the domain of face detection. It is a discriminative algorithm which learns important features of the particle's appearance using a set of training examples of the particles and a set of images that do not contain particles. The algorithm is fast (10 s on a 1.3 GHz Pentium M processor), is generic, and is not limited to any particular shape or size of the particle to be detected. The method has been evaluated on a publicly available dataset of 82 cryoEM images of keyhole lympet hemocyanin (KLH). From 998 automatically extracted particle images, the 3-D structure of KLH has been reconstructed at a resolution of 23.2 A which is the same resolution as obtained using particles manually selected by a trained user.  相似文献   

7.
The structure of the chromatin core particle in solution.   总被引:25,自引:15,他引:10       下载免费PDF全文
The shape and size of the nucleosomal core particle from chromatin has been examined by analysis of neutron and X-ray scattering data from dilute solutions. Calculations of scattering for many different models have been made and only one model was able to account for both the X-ray and neutron profiles. This model is an oblate structure with height about 50A and diameter 110A. The DNA is mainly confined to two annuli located at the top and bottom respectively of the core particle positioned on the outside of a compact protein core which has a height of about 40A and diameter about 73A.  相似文献   

8.
The helical model of the nucleosome core.   总被引:2,自引:2,他引:0       下载免费PDF全文
A model of the nucleosome core is proposed based on a topologically linear array of histones attached sequentially to DNA. The linear complex folds helically forming a spring-like particle. Different variants of the particle are discussed (cylindrical springs with and without histone-histone contacts between turns of the helix, solenoidal spring). The model is consistent with known data about the nucleosome structure. Histones H3 and H4 have a special role in the model which is related also to the superstructure of chromatin.  相似文献   

9.
The three-dimensional crystal structure of the bacteriophage phi29 connector has been solved and refined to 2.1A resolution. This 422 kDa oligomeric protein connects the head of the phage to its tail and translocates the DNA into the prohead during packaging. Each monomer has an elongated shape and is composed of a central, mainly alpha-helical domain that includes a three-helix bundle, a distal alpha/beta domain and a proximal six-stranded SH3-like domain. The protomers assemble into a 12-mer, propeller-like, super-structure with a 35 A wide central channel. The surface of the channel is mainly electronegative, but it includes two lysine rings 20 A apart. On the external surface of the particle a hydrophobic belt extends to the concave area below the SH3-like domain, which forms a crown that retains the particle in the head. The lipophilic belt contacts the non-matching symmetry vertex of the capsid and forms a bearing for the connector rotation. The structure suggests a translocation mechanism in which the longitudinal displacement of the DNA along its axis is coupled to connector spinning.  相似文献   

10.
We report the cryo-EM structure of bacteriophage lambda and the mechanism for stabilizing the 20-A-thick capsid containing the dsDNA genome. The crystal structure of the HK97 bacteriophage capsid fits most of the T = 7 lambda particle density with only minor adjustment. A prominent surface feature at the 3-fold axes corresponds to the cementing protein gpD, which is necessary for stabilization of the capsid shell. Its position coincides with the location of the covalent cross-link formed in the docked HK97 crystal structure, suggesting an evolutionary replacement of this gene product in lambda by autocatalytic chemistry in HK97. The crystal structure of the trimeric gpD, in which the 14 N-terminal residues required for capsid binding are disordered, fits precisely into the corresponding EM density. The N-terminal residues of gpD are well ordered in the cryo-EM density, adding a strand to a beta-sheet formed by the capsid proteins and explaining the mechanism of particle stabilization.  相似文献   

11.
Rat liver chromatin core particles digested with clostripain yield a structurally well-defined nucleoprotein particle with an octameric core made up of fragmented histone species (designated H'2A, H'2B, H'3 and H'4, respectively) after selective loss of a sequence segment located in the N-terminal region of each core histone. Sequential Edman degradation and carboxypeptidase digestion unambiguously establish that histones H2A, H2B, H3 and H4 are selectively cleaved at the carboxyl side of Arg 11, Lys 20, Arg 26 and Arg 19 respectively and that the C-terminal sequences remain unaffected. Despite the loss of the highly basic N-terminal regions, including approximately 17% of the total amino acids, the characteristic structural organization of the nucleosome core particle appears to be fully retained in the proteolyzed core particle, as judged by physicochemical and biochemical evidence. Binding of spermidine to native and proteolyzed core particles shows that DNA accessibility differs markedly in both structures. As expected the proteolyzed particle, which has lost all the in vivo acetylation sites, is not enzymatically acetylated, in contrast to the native particle. However, proteolyzed histones act as substrates of the acetyltransferase in the absence of DNA, as a consequence of the occurrence of potential acetylation sites in the core histones thus rendered accessible. The possible role of the histone N-terminal regions on chromatin structure and function is discussed in the light of the present observations with the new core particle obtained by clostripain proteolysis.  相似文献   

12.
The nodavirus Flock house virus (FHV) has a bipartite, positive-sense RNA genome that is packaged into an icosahedral particle displaying T=3 symmetry. The high-resolution X-ray structure of FHV has shown that 10 bp of well-ordered, double-stranded RNA are located at each of the 30 twofold axes of the virion, but it is not known which portions of the genome form these duplex regions. The regular distribution of double-stranded RNA in the interior of the virus particle indicates that large regions of the encapsidated genome are engaged in secondary structure interactions. Moreover, the RNA is restricted to a topology that is unlikely to exist during translation or replication. We used electron cryomicroscopy and image reconstruction to determine the structure of four types of FHV particles that differed in RNA and protein content. RNA-capsid interactions were primarily mediated via the N and C termini, which are essential for RNA recognition and particle assembly. A substantial fraction of the packaged nucleic acid, either viral or heterologous, was organized as a dodecahedral cage of duplex RNA. The similarity in tertiary structure suggests that RNA folding is independent of sequence and length. Computational modeling indicated that RNA duplex formation involves both short-range and long-range interactions. We propose that the capsid protein is able to exploit the plasticity of the RNA secondary structures, capturing those that are compatible with the geometry of the dodecahedral cage.  相似文献   

13.
The structure of the 21 S latent activity dynein-1 (LAD-1) particle has been investigated by limited proteolytic cleavage with trypsin and with chymotrypsin. The A alpha and A beta heavy polypeptide chains show different characteristic digestion patterns which remain essentially unchanged whether the chains are components of the 21 S LAD-1 particle or are in the form of separated fractions, although changes in their relative digestion rates upon separation suggest that the A beta chain in the 21 S particle is partially protected from digestion by the presence of the A alpha chain and intermediate chains 2 and 3. The progressive digestion of the A chains and intermediate chains causes an eventual dissociation of the 21 S particle to smaller particles sedimenting in the range 10 to 14 S. Within this broad peak, the fragments from the A alpha chain peak in the 10 to 12 S region, while those from the A beta chain peak in the 12 to 14 S region. Digestion of whole axonemes to a stage at which the A alpha chain is substantially digested but the A beta chain remains mostly intact, enables a large amount of 21 S dynein-1 to be solubilized by 3 mM MgATP2(-) in the presence of 0.1 M NaCl, pH 7.0. This indicates that the affinity of the 0.6 M NaCl-sensitive bond of the outer arm to the A-tubule is diminished substantially by the early stages of digestion of the A alpha chain.  相似文献   

14.
H Mehlin  B Daneholt  U Skoglund 《Cell》1992,69(4):605-613
A specific premessenger ribonucleoprotein (RNP) particle in the salivary glands of the dipteran Chironomus tentans was studied with electron microscope tomography during translocation from the cell nucleus to the cytoplasm. The RNP particle consists of a thin RNP fiber tightly folded into a ribbon, which is bent into a ring-like structure. Upon translocation through the pore, the particle is first orientated in a specific manner at the pore entrance, and subsequently the bent ribbon is gradually straightened and transported through the pore with the 5' end of the RNA in the lead. Concomitantly, the elementary RNP fiber constituting the ribbon is gradually unpacked and will appear more or less extended on the cytoplasmic side of the pore complex. The ordered nature of the process suggests a specific recognition of the RNP particle at the nuclear pore.  相似文献   

15.
A short account is given of the physical and chemical studies that have led to an understanding of the structure of the tobacco mosaic virus particle and how it is assembled from its constituent coat protein and RNA. The assembly is a much more complex process than might have been expected from the simplicity of the helical design of the particle. The protein forms an obligatory intermediate (a cylindrical disk composed of two layers of protein units), which recognizes a specific RNA hairpin sequence. This extraordinary mechanism simultaneously fulfils the physical requirement for nucleating the growth of the helical particle and the biological requirement for specific recognition of the viral DNA.  相似文献   

16.
A single copy of apoB is the sole protein component of human LDL. ApoB is crucial for LDL particle stabilization and is the ligand for LDL receptor, through which cholesterol is delivered to cells. Dysregulation of the pathways of LDL metabolism is well documented in the pathophysiology of atherosclerosis. However, an understanding of the structure of LDL and apoB underlying these biological processes remains limited. In this study, we derived a 22 Å-resolution three-dimensional (3D) density map of LDL using cryo-electron microscopy and image reconstruction, which showed a backbone of high-density regions that encircle the LDL particle. Additional high-density belts complemented this backbone high density to enclose the edge of the LDL particle. Image reconstructions of monoclonal antibody-labeled LDL located six epitopes in five putative domains of apoB in 3D. Epitopes in the LDL receptor binding domain were located on one side of the LDL particle, and epitopes in the N-terminal and C-terminal domains of apoB were in close proximity at the front side of the particle. Such image information revealed a looped topology of apoB on the LDL surface and demonstrated the active role of apoB in maintaining the shape of the LDL particle.  相似文献   

17.
Norcum MT 《FEBS letters》1999,447(2-3):217-222
Several aminoacyl-tRNA synthetases in higher eukaryotes are consistently isolated as a multi-enzyme complex for which little structural information is yet known. This study uses computational methods for analysis of electron microscopic images of the particle. A data set of almost 2000 negatively stained images was processed through reference-free alignment and multivariate statistical analysis. Interpretable structural information was evident in five eigenvectors. Hierarchical ascendant classification extracted clusters corresponding to distinct image orientations. The class averages are consistent with rotations around and orthogonal to a central particle axis and provide particle measurements: approximately 25 nm in height, 30 nm at the widest point and 23 nm thick. The results also provide objective evidence in support of the working structural model and demonstrate the feasibility of obtaining the three dimensional structure of the multisynthetase complex by single particle reconstruction methods.  相似文献   

18.
The signal recognition particle (SRP) functions in conjunction with the SRP receptor to target nascent ectoplasmic proteins to the protein translocation machinery of the endoplasmic reticulum membrane. SRP is a ribonucleoprotein consisting of six distinct polypeptides and one molecule of 7SL RNA 300 nucleotides long. SRP has previously been visualized by a variety of electron microscopic techniques as a rod-shaped particle 24 nm long and 6 nm wide. We report here microanalysis by electron spectroscopic imaging which localizes the RNA molecule in SRP to primarily the two ends of the particle. These results suggest that the single 7SL RNA molecule spans the length of the particle. Micrographs from a scanning transmission electron microscope permit visualization of unstained SRP with low electron exposure, as well as the direct measurement of the mol. wt of the particle. These micrographs confirm our earlier suggestion that SRP is divided into three structural domains and allow discrimination of the two ends of the structure. The results of both techniques have been combined in a model for the structure of SRP in which we propose the basic orientation of the 7SL RNA. The structure proposed is consistent with the secondary structure predicted for the RNA and with biochemical data.  相似文献   

19.
Structural transitions in viral capsids play a critical role in the virus life cycle, including assembly, disassembly, and release of the packaged nucleic acid. Cowpea chlorotic mottle virus (CCMV) undergoes a well-studied reversible structural expansion in vitro in which the capsid expands by 10%. The swollen form of the particle can be completely disassembled by increasing the salt concentration to 1 M. Remarkably, a single-residue mutant of the CCMV N-terminal arm, K42R, is not susceptible to dissociation in high salt (salt-stable CCMV [SS-CCMV]) and retains 70% of wild-type infectivity. We present the combined structural and biophysical basis for the chemical stability and viability of the SS-CCMV particles. A 2.7-A resolution crystal structure of the SS-CCMV capsid shows an addition of 660 new intersubunit interactions per particle at the center of the 20 hexameric capsomeres, which are a direct result of the K42R mutation. Protease-based mapping experiments of intact particles demonstrate that both the swollen and closed forms of the wild-type and SS-CCMV particles have highly dynamic N-terminal regions, yet the SS-CCMV particles are more resistant to degradation. Thus, the increase in SS-CCMV particle stability is a result of concentrated tethering of subunits at a local symmetry interface (i.e., quasi-sixfold axes) that does not interfere with the function of other key symmetry interfaces (i.e., fivefold, twofold, quasi-threefold axes). The result is a particle that is still dynamic but insensitive to high salt due to a new series of bonds that are resistant to high ionic strength and preserve the overall particle structure.  相似文献   

20.
Accurately determining a cryoEM particle's alignment parameters is crucial to high resolution single particle 3-D reconstruction. We developed Multi-Path Simulated Annealing, a Monte-Carlo type of optimization algorithm, for globally aligning the center and orientation of a particle simultaneously. A consistency criterion was developed to ensure the alignment parameters are correct and to remove some bad particles from a large pool of images of icosahedral particles. Without using any a priori model, this procedure is able to reconstruct a structure from a random initial model. Combining the procedure above with a new empirical double threshold particle selection method, we are able to pick tens of best quality particles to reconstruct a subnanometer resolution map from scratch. Using the best 62 particles of rice dwarf virus, the reconstruction reached 9.6A resolution at which four helices of the P3A subunit of RDV are resolved. Furthermore, with the 284 best particles, the reconstruction is improved to 7.9A resolution, and 21 of 22 helices and six of seven beta sheets are resolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号