首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glucose isomerase gene (xylA) from the Streptomyces sp. SK strain encodes a 386-amino-acid protein (42.7 kDa) showing extensive identities with many other bacterial glucose isomerases. We have shown by gel filtration chromatography and SDS-PAGE analysis that the purified recombinant glucose isomerase (SKGI) is a 180 kDa tetramer of four 43 kDa subunits. Sequence inspection revealed that this protein, present some special characteristics like the abundance of hydrophobic residues and some original amino-acid substitutions, which distinguish SKGI from the other GIs previously reported. The presence of an Ala residue at position 103 in SKGI is especially remarkable, since the same amino-acid was found at the equivalent position in the extremely thermostable GIs from Thermus thermophilus and Thermotoga neapolitana; whereas a Gly was found in the majority of less thermostable GIs from Streptomyces. The Ala103Gly mutation, introduced in SKGI, significantly decreases the half-life time at 90 degrees C from 80 to 50 min and also shifts the optimum pH from 6.5 to 7.5. This confirms the implication of the Ala103 residue on SKGI thermostability and activity at low pH. A homology model of SKGI based on the SOGI (that of Streptomyces olivochromogenes) crystal structure has been constructed in order to understand the mutational effects on a molecular scale. Hence, the Ala103Gly mutation, affecting enzyme properties, is presumed to increase molecular flexibility and to destabilize, in particular at elevated temperature, the 91-109 loop that includes the important catalytic residue, Phe94.  相似文献   

2.
A contiguous region of about 30 kbp of DNA putatively encoding reactions in daunomycin biosynthesis was isolated from Streptomyces sp. strain C5 DNA. The DNA sequence of an 8.1-kbp EcoRI fragment, which hybridized with actI polyketide synthase (PKS) and actIII polyketide reductase (PKR) gene probes, was determined, revealing seven complete open reading frames (ORFs), two in one cluster and five in a divergently transcribed cluster. The former two genes are likely to encode PKR and a bifunctional cyclase/dehydrase. The five latter genes encode: (i) a homolog of TcmH, an oxygenase of the tetracenomycin biosynthesis pathway; (ii) a PKS Orf1 homolog; (iii) a PKS Orf2 homolog (chain length factor); (iv) a product having moderate sequence identity with Escherichia coli beta-ketoacyl acyl carrier protein synthase III but lacking the conserved active site; and (v) a protein highly similar to several acyltransferases. The DNA within the 8.1-kbp EcoRI fragment restored daunomycin production to two dauA non-daunomycin-producing mutants of Streptomyces sp. strain C5 and restored wild-type antibiotic production to Streptomyces coelicolor B40 (act VII; nonfunctional cyclase/dehydrase), and to S. coelicolor B41 (actIII) and Streptomyces galilaeus ATCC 31671, strains defective in PKR activity.  相似文献   

3.
A gene coding for a thermostable extracellular alpha-amylase, carried by a 5.7 kb BamHI chromosomal DNA fragment isolated from Streptomyces thermoviolaceus strain CUB74, was cloned into Escherichia coli JM107 using, as a cloning vector, the high-copy-number plasmid pUC8. E. coli containing a recombinant plasmid pQR300 expressed the amylase gene and exported the enzyme into the periplasmic space and the culture medium. The amylase protein expressed by E. coli had the same molecular mass (50 kDa) as that expressed by the Streptomyces parent strain, which suggests that the enzyme is processed similarly by both strains. The amylase gene was also cloned into Streptomyces lividans TK24 using pIJ702 as vector. The enzyme was stable at 70 degrees C when CaCl2 was present.  相似文献   

4.
Two different agarase genes (pSW1, pSW3) were cloned from a marine bacterium Pseudomonas sp. W7 into E. coli JM83 using the multicopy plasmid vector pUC19. Two cloned strains of recombinant E. coli which showed the agarase activity were obtained and were named E. coli JM83/pSW1 and E. coli JM83/pSW3. These strains had the insert fragment of 3.7kb and 3.0kb, respectively. The N-terminal amino acid sequence of the agarase containing the recombinant plasmid pSW3 was determined and the sequence did not show homology to any other known agarases. The optimum pH and temperature of the agarases from the cloned strains, E. coli JM83/pSW1 and pSW3, were 6.0, 7.0 and 30°C, 40°C, respectively.  相似文献   

5.
6.
A partial genomic library was prepared in E. coli JM109 using pBR322 as vector and 2.4 kb Sau 3A I chromosomal fragment, encoding a nitroaryl reductase (nbr A) gene, from Streptomyces aminophilus strain MCMB 411. From the library, 2.4 kb fragment was recloned in E. coli JM109 and S. lividans TK64 using pUC18 and pIJ702 as vectors respectively. The recombinant plasmids pSD103 and pSD105 expressed the reductase gene and exported the enzyme in periplasmic space of E. coli and in cytoplasm of S. lividans TK64. The proteins expressed by E. coli and S. lividans had the same molecular mass (70 kD) as that expressed by parent strain, which suggested that the enzyme was processed similarly by all strains. Activities of the enzymes cloned in E. coli JM109 and S. lividans TK64 containing recombinant plasmids pSD103 and pSD105 respectively were optimum at 30 degrees C and pH 9 and requirement of cofactors was same as that of the parent strain.  相似文献   

7.
A plasmid transformation system for Rhodococcus sp. strain H13-A was developed by using an Escherichia coli-Rhodococcus shuttle plasmid constructed in this study. Rhodococcus sp. strain H13-A contains three cryptic indigenous plasmids, designated pMVS100, pMVS200, and pMVS300, of 75, 19.5, and 13.4 kilobases (kb), respectively. A 3.8-kb restriction fragment of pMVS300 was cloned into pIJ30, a 6.3-kb pBR322 derivative, containing the E. coli origin of replication (ori) and ampicillin resistance determinant (bla), as well as a Streptomyces gene for thiostrepton resistance, tsr. The resulting 10.1-kb recombinant plasmid, designated pMVS301, was isolated from E. coli DH1(pMVS301) and transformed into Rhodococcus sp. strain AS-50, a derivative of strain H13-A, by polyethylene glycol-assisted transformation of Rhodococcus protoplasts and selection for thiostrepton-resistant transformants. Thiostrepton-resistant transformants were also ampicillin resistant and were shown to contain pMVS301, which was subsequently isolated and transformed back into E. coli. The cloned 3.8-kb fragment of Rhodococcus DNA in pMVS301 contains a Rhodococcus origin of replication, since the hybrid plasmid was capable of replication in both genera. The plasmid was identical in E. coli and Rhodococcus transformants as determined by restriction analysis and was maintained as a stable, independent replicon in both organisms. Optimization of the transformation procedure resulted in transformation frequencies in the range of 10(5) transformants per micrograms of pMVS301 DNA in Rhodococcus sp. strain H13-A and derivative strains. The plasmid host range extends to strains of Rhodococcus erythropolis, R. globulerus, and R. equi, whereas stable transformants were not obtained with R. rhodochrous or with several coryneform bacteria tested as recipients. A restriction map demonstrated 14 unique restriction sites in pMVS301, some of which are potentially useful for molecular cloning in Rhodococcus spp. and other actinomycetes. This is the first report of plasmid transformation and of heterologous gene expression in a Rhodococcus sp.  相似文献   

8.
Abstract An internal fragment of the recA gene of Streptomyces cattleya was amplified by the polymerase chain reaction (PCR) employing degenerate oligonucleotide primers. Using this fragment as a hybridization probe, a recA homologous gene could be shown in each tested Streptomyces strain. A 4.4 kb Bam HI fragment which carried the complete recA gene was isolated from Streptomyces lividans TK24. Sequence analysis suggested that the coding region of the recA gene consists of 1122 bp. The highest similarity (∼78%) could be detected to the recA genes of Mycobacterium tuberculosis and Mycobacterium leprae . After fusion with an E. coli promoter the S. lividans recA gene could partially complement an Escherichia coli recA mutant.  相似文献   

9.
10.
Abstract Most enterohemorrhagic Escherichia coli O157:H7 strains harbor a large-sized (90 kb) plasmid designated pO157 and show an enterohemolytic phenotype. In this study the hemolytic activity of E. coli O157:H7 strain EDL933 was investigated. Curing of strain EDL933 from pO157 resulted in loss of its hemolytic activity. By transformation with Tn801-tagged pO157 (pSK3), the hemolysin-negative E. coli K-12 strains C600 and DH5 α became positive for hemolysin production. By transformation of recombinant plasmids carrying a 11.9 kb Bam HI fragment and a 5.3 kb Sal I fragment of pSK3 hemolytic activity is revealed when tranformed in E. coli C600 or DH5α DNA-hybridization of pO157 and subclones with the α-hemolysin specific DNA probe was only found under conditions of low stringency. No hybridization was found with enterohemolysin I (EHly1) and enterohemolysin II (EHly2) probes. Our results indicate that a hitherto not described hemolysin belonging to the α-hemolysin family is encoded by the 90 kb plasmid of E. coli O157 strains.  相似文献   

11.
Intergeneric conjugal transfer of plasmid DNA from Escherichia coli to Streptomyces circumvents problems such as host-controlled restriction and instability of foreign DNA during the transformation of Streptomyces protoplasts. The anthracycline antibiotic-producing strains Streptomyces peucetius and Streptomyces sp. strain C5 were transformed using E. coli ET12567(pUZ8002) as a conjugal donor. When this donor species, carrying pSET152, was mated with Streptomyces strains, the resident plasmid was mobilized to the recipient and the transferred DNA was also integrated into the recipient chromosome. Analysis of the exconjugants showed stable integration of the plasmid at a single chromosomal site (attB) of the Streptomyces genome. The DNA sequence of the chromosomal integration site was determined and shown to be conserved. However, the core sequence, where the crossover presumably occurred in C5 and S. peucetius, is TTC. These results also showed that the phiC31 integrative recombination is active and the phage attP site is functional in S. peucetius as well as in C5. The efficiency and specificity of phiC31-mediated site-specific integration of the plasmid in the presence of a 3.7-kb homologous DNA sequence indicates that integrative recombination is preferred under these conditions. The integration of plasmid DNA did not affect antibiotic biosynthesis or biosynthesis of essential amino acids. Integration of a single copy of a mutant chiC into the wild-type S. peucetius chromosome led to the production of 30-fold more chitinase.  相似文献   

12.
A thermophilic Streptomyces megasporus strain SD5, could secrete a new fibrinolytic (actinokinase) at 55 degrees C. The gene (ackS) encoding actinokinase was isolated from the chromosomal DNA of S. megasporus SD5 and cloned in different hosts and vectors. The expression was obtained in E. coli JM109 using Cla I linearized pBR322 as vector (pSR 500). The recombinant E. coli containing pSR 500 expressed active actinokinase but the expression was low and the recombinant was unstable in liquid culture. Deletion analysis revealed that removal of Bam H I-Sal I fragment from down stream and Cla I-EcoRI from upsream enhanced the stability and expression of ackS in both solid and liquid media. For over expresion, the ackS gene was cloned in E. coli C 600 using Bam HI linearized pT7-7. This seemed to be the most suitable host vector system. The recombinant and native form of actinokinase exhibited similar characteristics. Actinokinase was the first thrombolytic enzyme from a thermophile to be cloned and over expressed in a mesophilic heterologous expression system.  相似文献   

13.
Monoacylglycerol lipase [MGLP, EC 3.1.1.23] is produced intracellularly by the moderately thermophilic Bacillus sp. strain H-257. The gene encoding MGLP was cloned, sequenced, and expressed in Escherichia coli. A genomic library of Bacillus sp. strain H-257, prepared in the plasmid vector pACYC184, was screened with a 0.2-kbp DNA fragment amplified by the polymerase chain reaction (PCR) with oligonucleotide primers designed based on the amino acid sequence of a purified MGLP. The plasmid pMGLP31, identified by hybridization with the amplified DNA fragment, contained a 5.3-kbp insert from Bacillus sp. strain H-257 DNA. Sequence analysis of the MGLP gene revealed an open reading frame encoding MGLP consisting of 250 amino acids, with a calculated molecular mass of 27.4 kDa. The deduced amino acid sequence of MGLP contained the consensus pentapeptide (-Gly-Xaa-Ser-Xaa-Gly-), which is conserved among lipases, esterases, and serine proteases. The MGLP is homologous to a putative esterase/lipase from Streptomyces coelicolor (41.8% homology). When pMGLP31 was introduced into E. coli DH1, the transformants produced MGLP intracellularly as an active form to an approximately 13.8-fold greater extent than Bacillus sp. strain H-257. The purified recombinant MGLP was shown to be identical to the native enzyme in terms of chromatographic behavior, isoelectric point, and physicochemical and catalytic properties.  相似文献   

14.
A proteolytic thermophilic bacterial strain, designated as strain SF03, was isolated from sewage sludge in Singapore. Strain SF03 is a strictly aerobic, Gram stain-positive, catalase-positive, oxidase-positive, and endospore-forming rod. It grows at temperatures ranging from 35 to 65°C, pH ranging from 6.0 to 9.0, and salinities ranging from 0 to 2.5%. Phylogenetic analyses revealed that strain SF03 was most similar to Saccharococcus thermophilus, Geobacillus caldoxylosilyticus, and G. thermoglucosidasius, with 16S rRNA gene sequence identities of 97.6, 97.5 and 97.2%, respectively. Based on taxonomic and 16S rRNA analyses, strain SF03 was named G. caldoproteolyticus sp. nov. Production of extracellular protease from strain SF03 was observed on a basal peptone medium supplemented with different carbon and nitrogen sources. Protease production was repressed by glucose, lactose, and casamino acids but was enhanced by sucrose and NH4Cl. The cell growth and protease production were significantly improved when strain SF03 was cultivated on a 10% skim-milk culture medium, suggesting that the presence of protein induced the synthesis of protease. The protease produced by strain SF03 remained active over a pH range of 6.0–11.0 and a temperature range of 40–90°C, with an optimal pH of 8.0–9.0 and an optimal temperature of 70–80°C, respectively. The protease was stable over the temperature range of 40–70°C and retained 57 and 38% of its activity at 80 and 90°C, respectively, after 1 h.  相似文献   

15.
Highest overexpression of an esterase from Streptomyces diastatochromogenes (EstA) cloned into E. coli was achieved using a rhamnose-inducible promotor. Highest activity (175 U/ml) was observed 5 h after induction. The lyophilized enzyme had a specific activity of 150 U/mg towards p-nitrophenyl acetate and 48 U/mg towards ethyl acetate. EstA was active in a wide range of pH (optimal 7.5) and temperature (optimal 44°C ) but became unstable above 50°C. EstA exibited modest enantioselectivity in the hydrolysis of -phenylethyl acetate.  相似文献   

16.
The nucleotide sequence of the gene coding for xylose isomerase from Ampullariella sp. strain 3876, a gram-positive bacterium, has been determined. A clone of a fragment of strain 3876 DNA coding for a xylose isomerase activity was identified by its ability to complement a xylose isomerase-defective Escherichia coli strain. One such complementation positive fragment, 2,922 nucleotides in length, was sequenced in its entirety. There are two open reading frames 1,182 and 1,242 nucleotides in length, on opposite strands of this fragment, each of which could code for a protein the expected size of xylose isomerase. The 1,182-nucleotide open reading frame was identified as the coding sequence for the protein from the sequence analysis of the amino-terminal region and selected internal peptides. The gene initiates with GTG and has a high guanine and cytosine content (70%) and an exceptionally strong preference (97%) for guanine or cytosine in the third position of the codons. The gene codes for a 43,210-dalton polypeptide composed of 393 amino acids. The xylose isomerase from Ampullariella sp. strain 3876 is similar in size to other bacterial xylose isomerases and has limited amino acid sequence homology to the available sequences from E. coli, Bacillus subtilis, and Streptomyces violaceus-ruber. In all cases yet studied, the bacterial gene for xylulose kinase is downstream from the gene for xylose isomerase. We present evidence suggesting that in Ampullariella sp. strain 3876 these genes are similarly arranged.  相似文献   

17.
An -amylase from a hyper-producing strain of Bacillus (sp. E2) was stable at 70°C for 30 min but was quickly inactivated at higher temperatures. In the presence of 10mm Ca2+ and starch (20% w/v), however, the enzyme was stable at 90°C for 10 min and after 30 min at 100°C still retained 26% of its initial activity.  相似文献   

18.
A biosynthetic pathway for poly(3-hydroxybutyrate) [P(3HB)] was developed in Escherichia coli and Corynebacterium glutamicum by an acetoacetyl-coenzyme A (CoA) synthase (AACS) recently isolated from terpenoid-producing Streptomyces sp. strain CL190. Expression of AACS led to significant productions of P(3HB) in E. coli (10.5 wt %) and C. glutamicum (19.7 wt %).  相似文献   

19.
Abstract The gene coding for a thermostable pullulanase from a thermophile, Thermus sp. strain AMD-33, was cloned in Escherichia coli using pDR540 as a vector. A restriction map was determined for the plasmid pTPS131 which contained the fragment carrying the pullulanase gene. DNA-DNA hybridisation analysis showed that the DNA fragment contained the gene from Thermus sp. strain AMD-33. The strain of E. coli harbouring the plasmid pTPS131 produced most of the pullulanase protein cellularly, whereas Thermus sp. strain AMD-33 produced pullulanase extracellularly. Comparative studies of the enzyme from the thermophile and the plasmid-encoded enzyme in E. coli demonstrated that the optimum temperature and pH of the enzymes were closely similar.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号