首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data from small-angle X-ray and neutron scattering and ultracentrifugation experiments on solutions of malate dehydrogenase from Halobacterium maris mortui are analysed together to yield a model for the enzyme particle formed by the protein and its interactions with water and salt in the solvent. The halophilic enzyme is stable only in high concentrations of salt and the model has structural features that are absent from non-halophilic malate dehydrogenase. The complementarity of the information derived from the three experimental methods is discussed extensively and quantitatively. It derives from the fact that mass density (ultracentrifugation), electron density (X-rays) and neutron scattering density are independent of each other. Each method gives a different "view" of the same particle, and an analysis of the combined data provided thermodynamic and structural parameters with, apart from the chemical composition of the solutions, only one other assumption: a constant partial specific volume for water equal to 1.00 cm3 g-1. Both the insights gained by this novel approach and its limitations are carefully pointed out. In solvents between 1 M and 5 M-NaCl, the enzyme forms a particle of invariant volume, consisting of a protein dimer (87,000 g mol-1) with which are associated 0.87 g of water and 0.35 g of salt per gram of protein. The partial specific volume of the protein calculated from the combined experimental data is 0.753(+/- 0.030) cm3 g-1, in good agreement with the value calculated from the amino acid composition. The particle has a radius of gyration of 32 A and an equivalent Stokes radius of 43 A. By combining the data from the X-ray and neutron scattering studies, the radii of gyration of the protein moiety alone and of the associated water and salt distribution were calculated. They are 28 A and about 40 A, respectively. The large-angle scattering curves show that the shapes of the particle and of the protein moiety alone are similar. At very low resolution they can be approximated by an ellipsoid of axial ratio 1:1:0.6 (or 1:1:1.5). At higher resolution, it becomes apparent that the particle has a significantly larger interface with solvent than an homogeneous ellipsoid or globular protein. The model has a globular protein core similar to non-halophilic malate dehydrogenase, with about 20% of the protein extending loosely out of the core, forming the large interface with solvent. The main interactions with water and salt take place on this outer part.  相似文献   

2.
Stabilization of halophilic malate dehydrogenase   总被引:4,自引:0,他引:4  
Malate dehydrogenase from the extreme halophile, Halobacterium marismortui, is stable only in highly concentrated solutions of certain salts. Previous work has established that its physiological environment is saturated in KCl; it remains soluble is saturated NaCl or KCl solutions; also it unfolds in solutions containing less than 2.5 M-NaCl or -KCl, salt concentrations which are still relatively high. New data show that the structure of this enzyme can be stabilized in a range of high concentrations of Mg2+ or other "salting-in" ions, also with exceptional protein-solvent interactions. "Salting-in" ions, contrary to stabilizing protein structure, usually favour unfolding. These, and most other results concerning the structure, stability and solvent interactions of the protein cannot be understood in terms of the usual effects of salts on protein structure. In this paper, a novel stabilization model is proposed for halophilic malate dehydrogenase that can account for all observations so far. The model results from experiments on the protein in salt solutions chosen for their different effects on protein stability (potassium phosphate, a strongly "salting-out" agent, and MgCl2, which is "salting-in"), and previously published data from NaCl and KCl solutions (mildly "salting-out"). Enzymic activity and stability measurements were combined with neutron scattering, ultracentrifugation and quasi-elastic light-scattering experiments. The analysis showed that the structure of the protein in solution as well as the dominant stabilization mechanisms were different in different salt solutions in which this enzyme is active. Thus, in molar concentrations of phosphate ions, stabilization and hydration are similar to those of non-halophilic soluble proteins, in which the hydrophobic effect dominates. In high concentrations of KCl, NaCl or MgCl2, on the other hand, solution particles are formed in which the protein dimer interacts with large numbers of salt and water molecules (the mass of solvent molecules involved depends on the nature of the salt but it is approximately equivalent to the protein mass). It is proposed that, under these conditions, the hydrophobicity of the protein core is too weak to stabilize the folded structure and the main stabilization mechanism is the formation of co-operative hydrate bonds between the protein and hydrated salt ions. Model predictions are in agreement with all experimental results, such as the different numbers of solvent molecules found in the solution particles formed with different salts, the loss of the exceptional solvent interactions concomitant with unfolding at non-physiological salt concentrations, and the different temperature denaturation curves observed for different salt solutions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Malate dehydrogenase from the extreme halophile Halobacterium marismortui crystallizes in highly concentrated phosphate solution in space group 12 with cell dimensions a = 113.8 A, b = 122.8 A, c = 126.7 A, beta = 98.1 degrees. The halophilic enzyme was found to be unstable at lower concentrations of phosphate. It associates with unusually large amounts of water and salt, and the combined particle volume shows a tight fit in the unit cell.  相似文献   

4.
5.
We have investigated the potential of sedimentation velocity analytical ultracentrifugation for the measurement of the second virial coefficients of proteins, with the goal of developing a method that allows efficient screening of different solvent conditions. This may be useful for the study of protein crystallization. Macromolecular concentration distributions were modeled using the Lamm equation with the approximation of linear concentration dependencies of the diffusion constant, D = D(o) (1 + k(D)c), and the reciprocal sedimentation coefficient s = s(o)/(1 + k(s)c). We have studied model distributions for their information content with respect to the particle and its non-ideal behavior, developed a strategy for their analysis by direct boundary modeling, and applied it to data from sedimentation velocity experiments on halophilic malate dehydrogenase in complex aqueous solvents containing sodium chloride and 2-methyl-2,4-pentanediol, including conditions near phase separation. Using global modeling for three sets of data obtained at three different protein concentrations, very good estimates for k(s) and s degrees and also for D degrees and the buoyant molar mass were obtained. It was also possible to obtain good estimates for k(D) and the second virial coefficients. Modeling of sedimentation velocity profiles with the non-ideal Lamm equation appears as a good technique to investigate weak inter-particle interactions in complex solvents and also to extrapolate the ideal behavior of the particle.  相似文献   

6.
Analysis of X-ray and neutron scattering from biomacromolecular solutions   总被引:3,自引:0,他引:3  
New developments in small-angle X-ray and neutron scattering studies of biological macromolecules in solution are presented. Small-angle scattering is rapidly becoming a streamline tool in structural molecular biology providing unique information about overall structure and conformational changes of native individual proteins, functional complexes, flexible macromolecules and assembly processes.  相似文献   

7.
C Ebel  P Faou  B Kernel  G Zaccai 《Biochemistry》1999,38(28):9039-9047
Halophilic malate dehydrogenase unfolds at low salt, and increasing the salt concentration stabilizes, first, the folded form and then, in some cases, destabilizes it. From inactivation and fluorescence measurements performed on the protein after its incubation in the presence of various salts in a large range of concentrations, the apparent effects of anions and cations were found to superimpose. A large range of ions was examined, including conditions that are in general not of physiological relevance, to explore the physical chemistry driving adaptation to extreme environments. The order of efficiency of cations and anions to maintain the folded form is, for the low-salt transition, Ca(2+) approximately Mg(2+) > Li(+) approximately NH(4)(+) approximately Na(+) > K(+) > Rb(+) > Cs(+), and SO(4)(2)(-) approximately OAc(-) approximately F(-) > Cl(-), and for the high-salt transition, NH(4)(+) approximately Na(+) approximately K(+) approximately Cs(+) > Li(+) > Mg(2+) > Ca(2+), and SO(4)(2)(-) approximately OAc(-) approximately F(-) > Cl(-) > Br(-) > I(-). If a cation or anion is very stabilizing, the effect of the salt ion of opposite charge is limited. Anions of high charge density are always the most efficient to stabilize the folded form, in accordance with the order found in the Hofmeister series, while cations of high charge density are the most efficient only at the lower salt concentrations and tend to denature the protein at higher salt concentrations. The stabilizing efficiency of cations and anions can be related in a minor way to their effect on the surface tension of the solution, but the interaction of ions with sites only present in the folded protein has also to be taken into account. Unfolding at high salt concentrations corresponds to interactions of anions of low charge density and cations of high charge density with the peptide bond, as found for nonhalophilic proteins.  相似文献   

8.
Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.  相似文献   

9.
Malate dehydrogenase from Halobacterium maris mortui exists in 4 M-NaCl as a stable protein dimer, with which are associated unusually large amounts of salt and water. In 1 M-NaCl at 25 degrees C, it denatures with a time-constant of about 0.5 h-1. Small-angle neutron scattering data from the protein under these conditions were monitored regularly over more than 12 hours during denaturation. They are quantitatively consistent with a model in which the protein dimer loses its exceptional salt and water-binding properties, and dissociates into monomers that partially unfold and have the interactions with solvent expected from their relatively charged amino acid composition. The exceptional salt and water-binding by the native enzyme, therefore, is associated with the native structure of the dimer.  相似文献   

10.
Analytical ultracentrifugation and solution scattering provide different multi-parameter structural and compositional information on proteins. The joint application of the two methods supplements high resolution structural studies by crystallography and NMR. We summarise the procedures required to obtain equivalent ultracentrifugation and X-ray and neutron scattering data. The constrained modelling of ultracentrifugation and scattering data is important to confirm the experimental data analysis and yields families of best-fit molecular models for comparison with crystallography and NMR structures. This modelling of ultracentrifugation and scattering data is described in terms of starting models, their conformational randomisation in trial-and-error fits, and the identification of the final best-fit models. Seven applications of these methods are described to illustrate the current state-of-the-art. These include the determination of antibody solution structures (the human IgG4 subclass, and oligomeric forms of human IgA and its secretory component), the solution structures of the complement proteins of innate immunity (Factor H and C3/C3u) and their interactions with macromolecular ligands (C-reactive protein), and anionic polysaccharides (heparin). Complementary features of joint ultracentrifugation and scattering experiments facilitate an improved understanding of crystal structures (illustrated for C3/C3u, C-reactive protein and heparin). If a large protein or its complex cannot be crystallised, the joint ultracentrifugation-scattering approach provides a means to obtain an overall macromolecular structure.  相似文献   

11.
Small angle neutron scattering (SANS) method was used to study lysozyme solutions, with particular interest in an understanding of the crystallization process at the initial stage. It is found that (1) in the unsaturated solution, the protein molecules aggregate with a continuous increase in size when NaCl concentration is increased, and (2) in the supersaturated solution, an irreversible change, superimposed on the former process, occurs when the supersaturation is realized. These facts indicate the usefulness of SANS in detecting changes of protein molecules in solution on the nanometer scale. The reliability of the SANS results are indicated by (1) comparing them with those of small angle X-ray scattering (SAXS), and (2) comparing the effect of D(2)O and H(2)O as solvent. Since the interparticle interaction is essential in the crystallization process and a simple Guinier plot analysis is not allowed, a more rigorous framework of analyzing data with interference function is developed, through which both average interparticle distance and particle size are estimated.  相似文献   

12.
Madern D  Zaccai G 《Biochimie》2004,86(4-5):295-303
Malate dehydrogenase from the extreme halophilic bacterium, Salinibacter ruber (Sr MalDH) was purified and characterised as a tetramer by sedimentation velocity measurements, showing the enzyme belongs to the LDH-like group of MalDHs. In contrast to most other halophilic enzymes, which unfold when incubated at low salt concentration, Sr MalDH is completely stable in absence of salt. Its amino acid composition does not display the strong acidic character specific of halophilic proteins. The enzyme displays a strong KCl-concentration dependent variation in K(m) for oxaloacetate, but not for the NADH co-factor. Its activity is reduced by high salt concentration, but remains sufficient for the enzyme to sustain catalysis at approximately 30% of its maximal rates in 3 M KCl. The properties of the protein were compared with those from other LDH-like MalDHs of bacterial and archaeal origins, showing that Sr MalDH in fact behaves like a non-halophilic enzyme.  相似文献   

13.
14.
It was demonstrated that 0.2 M citric acid (pH 2.5) inactivates highly-purified malate dehydrogenase from tea leaves; the degree of inactivation depends on temperature and time of incubation. The enzyme activity is restored by certain inorganic salts, the degree of reactivation being dependent on pH, ionic strengths of salts and duration of enzyme incubation with both inactivating and reactivating agents. Urea and guanidine hydrochloride also have a reversibly inactivating effect on the enzyme. The degree of inactivation depends on their concentration and incubation time. In the latter case reactivation of enzyme is achieved by dialysis or 20-40-fold dilution of the enzyme preparation. A kinetic study demonstrated that inactivation of enzyme by the above-mentioned agents is due to the enzyme dissociation into 4 catalytically inactive subunits with molecular weights of 17 500 +/- 1000, which under certain conditions are capable of reassociating into an active molecule of enzyme with completely restored native conformation.  相似文献   

15.
Different homogeneously purified cytosolic malate dehydrogenases gave, on isoelectric focusing, several active bands. The phenomenon could not be assigned to differences in their molecular weights or to alterations in the enzyme preparations during the purification procedure. Resolution of the multiple malate dehydrogenase active bands was achieved by chromatofocusing. The aged isolated subforms always yielded the original electrofocusing pattern. This fact suggests that conformational isomerism is a likely explanation for the charge heterogeneity of the enzymes studied.  相似文献   

16.
The mass densities, total cold neutron cross sections and small angle scattering of concentrated NaCl and KCl solutions in H2O or D2O (2H2O) were measured at 20 degrees C. The partial specific volumes of both salts increase with salt concentration and are significantly smaller in D2O than in H2O, showing that these salt solutions cannot be considered as isomorphous in H2O and D2O. As salt concentration increases for both salts, the total coherent cross sections for neutrons of the solutions also increase while the coherent small angle scattering decreases-observations that are consistent, respectively, with increasing correlations involving the ion and water components and a decrease in the particle number density and/or concentration fluctuations, in the solutions. Changes in incoherent scattering with salt concentration are essentially those expected from the solution compositions and densities.  相似文献   

17.
Experimental results obtained by neutron scattering of dilute solutions of myoglobin are compared with those obtained by X-ray scattering. X-ray scattering remains the more powerful technique at wider angles above 0.3 Å−1, where neutron experiments are less accurate because of low coherent scattering probability and high incoherent background. Neutron scattering is preferable at momentum transfers below 0.2 Å−1; the conditions for applying the contrast variation method for the evaluation of the three basic scattering functions, which are due to shape and internal structure, equation (3), are ideally fulfilled in this region. Furthermore, neutrons allow observation of the hydrogen-deuterium exchange within the protein.  相似文献   

18.
Isolated cell walls from maize (Zea mays L.) roots exhibited ionically and covalently bound NAD-specific malate dehydrogenase activity. The enzyme catalyses a rapid reduction of oxaloacetate and much slower oxidation of malate. The kinetic and regulatory properties of the cell wall enzyme solubilized with 1 M NaCl were different from those published for soluble, mitochondrial or plasma membrane malate dehydrogenase with respect to their ATP, Pi, and pH dependence. Isoelectric focusing of ionically-bound proteins and specific staining for malate dehydrogenase revealed characteristic isoforms present in cell wall isolate, different from those present in plasma membranes and crude homogenate. Much greater activity of cell wall-associated malate dehydrogenase was detected in the intensively growing lateral roots compared to primary root with decreased growth rates. Presence of Zn2+ and Cu2+ in the assay medium inhibited the activity of the wall-associated malate dehydrogenase. Exposure of maize plants to excess concentrations of Zn2+ and Cu2+ in the hydroponic solution inhibited lateral root growth, decreased malate dehydrogenase activity and changed isoform profiles. The results presented show that cell wall malate dehydrogenase is truly a wall-bound enzyme, and not an artefact of cytoplasmic contamination, involved in the developmental processes, and detoxification of heavy metals.  相似文献   

19.
A scheme of purification of malate dehydrogenase from Macromonas bipunctata strain D-405 and Vulcanithermus medioatlanticus DSM 14978T was developed. This scheme was used to obtain electrophoretically homogeneous enzyme preparations of the mesophilic bacterium M. bipunctata (specific activity, 26.9 ± 0.8 U/mg protein; yield, 10.9%) and the thermophilic bacterium V. medioatlanticus (specific activity, 5.0 ± 0.2 U/mg protein; yield, 19.2%). Using these high-purity enzymatic preparations, the physicochemical and regulatory properties of malate dehydrogenase were studied and the differences in kinetic characteristics and thermal stability of the preparations were determined.  相似文献   

20.
Nicotinamide adenine dinucleotide-linked malate dehydrogenase has been purified from Pseudomonas testosteroni (ATCC 11996). The purification represents over 450-fold increase in specific activity. The amino acid composition of the enzyme was determined and found to be quite different from the composition of the malate dehydrogenases from animal sources as well as from Escherichia coli. Despite this difference, however, the data show that the enzymatic properties of the purified enzyme are remarkably similar to those of other malate dehydrogenases that have been previously studied. The Pseudomonas enzyme has a molecular weight of 74,000 and consists of two subunits of identical size. In addition to L-malate, the enzyme slowly oxidizes other four-carbon dicarboylates having an alpha-hydroxyl group of S configuration such as meso- and (-) tartrate. Rate-determining steps, which differ from that of the reaction involving L-malate, are discussed for the reaction involving these alternative substrates. Oxidation of hydroxymalonate, a process previously undetected with other malate dehydrogenases, is demonstrated fluorometrically. Hydroxymalonate and D-malate strongly enhance the fluorescence of the reduced nicotinamide adenine dinucleotide bound to the enzyme. The enzyme is A-stereospecific with respect to the coenzyme. Malate dehydrogenase is present in a single form in the Pseudomonas. The susceptibility of the enzyme to activation or inhibition by its substrates-particularly the favoring of the oxidation of malate at elevated concentrations-strongly resembles the properties of the mitochondrial enzymes. The present study reveals that whereas profound variations in chemical composition have occurred between the prokaryotic and eukaryotic enzymes, the physical and catalytic properties of malate dehydrogenase, unlike lactate dehydrogenase, are well conserved during the evolutionary process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号