首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In species with low levels of sexual size dimorphism, it may be relatively easy to detect the role of natural selection in the evolution of body size. Habitat primary production (HPP) appears to be a key factor in the divergence of size in the hartebeest clade ( Alcelaphus spp.), such that subspecies in less productive savannahs are smaller than those in richer ones. Here I test whether a similar pattern exists within the genus Damaliscus (topi and their allies). Basal skull length was used as a surrogate of body size and measured in the seven allopatric subspecies of Damaliscus . Means for each subspecies and sex were regressed against climatic factors as surrogates of HPP. Variation in skull length across Damaliscus taxa was less than in hartebeest. Two clusters were present in both sexes and corresponded to the distinction between the species, Damaliscus dorcas and Damaliscus lunatus . This may reflect differences in productivity between edaphic grasslands, occupied by all D. lunatus , and dry grasslands, occupied by D. dorcas . Mean annual rainfall was the best predictor of body size in males and showed a non-significant positive tendency in females. After accounting for phylogenetic effects, these correlations were both non-significant. Edaphic grasslands might be less dependent on precipitation for primary production because the impeded drainage of their soil prolongs water availability after the end of the rains. Furthermore, they are probably more consistent in productivity across African regions than secondary grasslands and savannah woodlands, which rely on rainfall for grass growth. These properties of edaphic grasslands may explain why size in Damaliscus appears to be less sensitive to variation in rainfall and less variable across subspecies than in Alcelaphus .  相似文献   

2.
    
The structure of body size and shape divergence among populations of Poecilia vivipara inhabiting quaternary lagoons in South-eastern Brazil was studied. This species is abundant throughout an environmental gradient formed by water salinity differences. The salinity gradient influences the habitat structure (presence of macrophytes) and the fish community (presence of large predators). Size and shape variation within and among populations was quantified by geometric morphometrics and analysed by indirect and direct gradient ordinations, using salinity and geography as a framework. Morphological divergence was associated with the salinity gradient. The evolutionary allometries observed were independent of within-group static allometries. Sexually dimorphic patterns were observed in size variation and within-population allometries. Specimens from freshwater (higher predation) sites presented smaller sizes, relatively longer caudal regions, lower anterior regions and a ventrally displaced eye. These features are consistent with an ecomorphological paradigm for aquatic organisms from populations subject to intense predation. A process of directional selection is postulated as the most likely force driving diversification among P. vivipara populations.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 799–812.  相似文献   

3.
    
Countergradient variation in norms of reaction can dampen the direct effects of environmental influences on phenotypic traits, allowing phenotypic similarity among populations despite exposure to different environmental conditions. Such norms of reaction may occur at any phase of the life‐history (e.g. growth rates during both embryonic and postembryonic stages may influence geographical variation in adult body size). We collected gravid female lizards (Sceloporus undulatus) from northern (Indiana), central (Mississippi), and southern (Florida) populations, spanning almost the full latitudinal range of the species. Adult females from the southern population were smaller. Intrinsic growth rates of hatchlings were higher for the central population than for the other two populations. This pattern does not parallel the countergradient variation previously found in embryonic developmental rates among these populations. Earlier hatching enhanced survival rates of juveniles to a similar degree among populations, although juvenile survival rates in the field generally increase with latitude in this species. Our data reveal geographical variation in the ways in which intrinsic developmental/growth rates and survival shift during ontogeny, and suggest that latitudinal patterns in adult body size (such as Bergmann's rule) can result from both faster growth, and longer periods of growth. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 202–209.  相似文献   

4.
Theory predicts that genetic and phenotypic correlations among traits may direct the process of short-term evolution by limiting the directions of variation available to natural selection to act on. We studied correlations between 14 skeletal traits in 10 geographically distinct and relatively young greenfinch (Carduelis chloris) populations to unravel whether the divergence among populations has occurred into directions predicted by the within-population correlations (cf. drift/correlated responses models), or whether it is better explained by ‘adaptive’ models, which predict no necessary association between within- and among-population correlations (allometries). We found that the within-population character correlations (or covariances) did not predict character divergence between populations. This was because the first eigenvector of the among-population correlation/covariance matrix, summarizing the major dimension of divergence, was a bipolar body:beak dimension, and distinct from the (≈ isometric) first eigenvector of within-population matrix. Hence, as the divergence among greenfinch populations cannot be satisfactorily accommodated by drift/correlated response models, an adaptive basis for divergence is suggested. The second major axis of within-population variation was a classical ‘group size’ factor revealing that beak size was more or less free to vary independently of body size. Consequently, even if the divergence among populations cannot be simply accommodated to expectations of drift and correlated response models, it is striking that the most pronounced size-independent (nonallometric) changes had occurred along the second largest dimension of variance. This could mean that selection pressures which shape integration within populations are the same as those that cause divergence among populations. A relaxed beak:body integration could also occur as a result of species level selection favouring taxa in which independent evolution of beak and body is made possible.  相似文献   

5.
    
The effect of incubation temperature on embryonic development and offspring traits has been widely reported for many species. However, knowledge remains limited about how such effects vary across populations. Here, we investigated whether incubation temperature (26, 28, and 30 °C) differentially affects the embryonic development of Asian yellow pond turtle (Mauremys mutica) eggs originating from low‐latitude (Guangzhou, 23°06′N) and high‐latitude (Haining, 30°19′N) populations in China. At 26 °C, the duration of incubation was shorter in the high‐latitude population than in the low‐latitude population. However, this pattern was reversed at 30 °C. As the incubation temperature increased, hatching success increased in the low‐latitude population but slightly decreased in the high‐latitude population. Hatchlings incubated at 30 °C were larger and righted themselves more rapidly than those incubated at 26 °C in the low‐latitude population. In contrast, hatchling traits were not influenced by incubation temperature in the high‐latitude population. Overall, 30 °C was a suitable developmental temperature for embryos from the low‐latitude population, whereas 26 and 28 °C were suitable for those from the high‐latitude population. This interpopulation difference in suitable developmental temperatures is consistent with the difference in the thermal environment of the two localities. Therefore, similarly to posthatching individuals, reptile embryos from different populations might have evolved diverse physiological strategies to benefit from the thermal environment in which they develop. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 35–43.  相似文献   

6.
7.
    
Variation in natural selection across heterogeneous landscapes often produces (a) among‐population differences in phenotypic traits, (b) trait‐by‐environment associations, and (c) higher fitness of local populations. Using a broad literature review of common garden studies published between 1941 and 2017, we documented the commonness of these three signatures in plants native to North America's Great Basin, an area of extensive restoration and revegetation efforts, and asked which traits and environmental variables were involved. We also asked, independent of geographic distance, whether populations from more similar environments had more similar traits. From 327 experiments testing 121 taxa in 170 studies, we found 95.1% of 305 experiments reported among‐population differences, and 81.4% of 161 experiments reported trait‐by‐environment associations. Locals showed greater survival in 67% of 24 reciprocal experiments that reported survival, and higher fitness in 90% of 10 reciprocal experiments that reported reproductive output. A meta‐analysis on a subset of studies found that variation in eight commonly measured traits was associated with mean annual precipitation and mean annual temperature at the source location, with notably strong relationships for flowering phenology, leaf size, and survival, among others. Although the Great Basin is sometimes perceived as a region of homogeneous ecosystems, our results demonstrate widespread habitat‐related population differentiation and local adaptation. Locally sourced plants likely harbor adaptations at rates and magnitudes that are immediately relevant to restoration success, and our results suggest that certain key traits and environmental variables should be prioritized in future assessments of plants in this region.  相似文献   

8.
  总被引:3,自引:0,他引:3  
Studies of Bergmann's rule may encompass a non-random subsample of extant homeotherms. We examined patterns of correlation between skull length and geographical latitude in 44 species of carnivores in order to test the validity of Bergmann's rule in the Carnivora. Results were then compared to those of other studies. Significant positive correlation between skull length and latitude was found in 50% of carnivore species, while significant negative correlation was found in only 11% of species. These results indicate that the occurrence of Bergmann's rule in the Carnivora is less frequent than earlier published data suggest. Publication bias is not detected in published data. Therefore, previous studies of geographical size variation might be biased in favour of species known to follow Bergmann's rule.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 579–588.  相似文献   

9.
    
Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta‐analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection.  相似文献   

10.
    
Functional trait variation within and across populations can strongly influence population, community, and ecosystem processes, but the relative contributions of genetic vs. environmental factors to this variation are often not clear, potentially complicating conservation and restoration efforts. For example, local adaptation, a particular type of genetic by environmental (G*E) interaction in which the fitness of a population in its own habitat is greater than in other habitats, is often invoked in management practices, even in the absence of supporting evidence. Despite increasing attention to the potential for G*E interactions, few studies have tested multiple populations and environments simultaneously, limiting our understanding of the spatial consistency in patterns of adaptive genetic variation. In addition, few studies explicitly differentiate adaptation in response to predation from other biological and environmental factors. We conducted a reciprocal transplant experiment of first‐generation eastern oyster (Crassostrea virginica) juveniles from six populations across three field sites spanning 1000 km in the southeastern Atlantic Bight in both the presence and absence of predation to test for G*E variation in this economically valuable and ecologically important species. We documented significant G*E variation in survival and growth, yet there was no evidence for local adaptation. Condition varied across oyster cohorts: Offspring of northern populations had better condition than offspring from the center of our region. Oyster populations in the southeastern Atlantic Bight differ in juvenile survival, growth, and condition, yet offspring from local broodstock do not have higher survival or growth than those from farther away. In the absence of population‐specific performance information, oyster restoration and aquaculture may benefit from incorporating multiple populations into their practices.  相似文献   

11.
    
The geography of adaptive genetic variation is crucial to species conservation yet poorly understood in marine systems. We analyse the spatial scale of genetic variation in traits that broadly display adaptation throughout the range of a highly dispersive marine species. We conducted common garden experiments on the Atlantic silverside, Menidia menidia, from 39 locations along its 3000 km range thereby mapping genetic variation for growth rate, vertebral number and sex determination. Each trait displayed unique clinal patterns, with significant differences (adaptive or not) occurring over very small distances. Breakpoints in the cline differed among traits, corresponding only partially with presumed eco-geographical boundaries. Because clinal patterns are unique to each selected character, neutral genes or those coding for a single character cannot serve as proxies for the genetic structure as a whole. Conservation plans designed to protect essential genetic subunits of a species will need to account for such complex spatial structures.  相似文献   

12.
  总被引:3,自引:0,他引:3  
The trout (Salmo trutta) has been divided into three forms: sea-run trout, lake-run brown trout, and resident brown trout. They differ in their living environment, migratory behaviour, growth and appearance. As local trout populations are often isolated, and gene flow between them is minimal, differentiation between populations can be expected. The morphology of 1-year-old trout from ten populations representing all three forms was studied in a common-garden experiment. The fish were reared under similar environmental conditions, and 20 morphometric characters were measured from each individual fish. Marked morphological differentiation was found, and differences between populations were greater than differences between forms. The results suggest that the differences have a genetic basis, and they are likely to indicate adaptation to local environmental conditions in the native habitat of the trout.  相似文献   

13.
    
Intraspecific phenotypic variation is a significant component of biodiversity. Body size, for example, is variable and critical for structuring communities. We need to understand how homogenous and variably sized populations differ in their ecological responses or effects if we are to have a robust understanding of communities. We manipulated body size variation in consumer (tadpole) populations in mesocosms (both with and without predators), keeping mean size and density of these consumers constant. Size‐variable consumer populations exhibited stronger antipredator responses (reduced activity), which had a cascading effect of increasing the biomass of the consumer's resources. Predators foraged less when consumers were variable in size, and this may have mediated the differential effects of predators on the community composition of alternative prey (zooplankton). All trophic levels responded to differences in consumer size variation, demonstrating that intrapopulation phenotypic variability can significantly alter interspecific ecological interactions. Furthermore, we identify a key mechanism (size thresholds for predation risk) that may mediate impacts of size variation in natural communities. Together, our results suggest that phenotypic variability plays a significant role in structuring ecological communities.  相似文献   

14.
Latitudinal variation in fitness-related traits has often been attributed to local adaptation to climates. In poikilotherms including fishes, lower temperatures and shorter reproductive seasons at high latitudes would be expected to cause a reduction in annual reproductive output of an individual. Theories of latitudinal compensation predict that organisms at high latitudes should evolve compensatory responses for these climatic effects. Therefore, latitudinal compensation in female reproductive rate (egg production rate), that individuals from high latitudes produce eggs at higher rates than those from lower latitudes, is likely to occur. I tested this hypothesis with a latitudinally widespread reef fish Pomacentrus coelestis that is a multiple batch spawner, from three different localities, from temperate to subtropical waters, within Japan. I used common-environment experiments at three different temperatures to compare reproductive capacity among local populations. In the experiments, average inter-spawning intervals were the shortest and average size-specific clutch weight was the heaviest in fish from the most northern locality across all temperatures, showing clear latitudinal clines. Thus, the northern fish can achieve higher reproductive output per unit time both by shortening inter-spawning intervals and increasing size-specific clutch weight. Additionally, faster egg production rate of the northern fish did not result from increased food consumption. This finding suggests that gross egg production efficiency was higher in the northern fish and that northern fish had a superior capacity for reproduction within a season. These results support the prediction that latitudinal compensation occurs in the female reproductive rate of P. coelestis. As the reproductive season of this species decreases drastically with increasing latitude, the observed cline in the reproductive rate must be an adaptive response to the local selective regime, i.e., length of the reproductive season. Such latitudinal compensation in female reproductive rates may be a common pattern in latitudinally widespread fishes.  相似文献   

15.
    
For the past several decades it has been proposed that birds show latitudinal variation in song complexity. How universal this variation may be and what factors generate it, however, are still largely unknown. Furthermore, while migration is confounded with latitude, migratory behaviour alone may also be associated with variation in song complexity. In this paper we review the literature to assess current ideas on how latitude and migratory behaviour may drive large‐scale geographical patterns of song complexity. At least seven distinct hypotheses have been proposed in 29 studies of the topic. Four of these hypotheses posit that sexual selection pressures co‐vary with latitude and/or migration, resulting in concordant changes in song. Other hypotheses suggest that mechanisms other than sexual selection, such as large‐scale changes in environmental sound transmission properties, may be at play. Sixteen studies found support for increased song complexity with increased latitude and/or migration, whereas 13 did not. Relatively few studies exist on this topic, and methodological differences between them and variable definitions of ‘complexity’ make it difficult to determine whether results are comparable and concordant. At a minimum, it is possible to conclude there is no strong evidence that song complexity increases with latitude and/or migration in all birds. Future work should focus on examining multiple hypotheses at once to further advance our understanding of how latitude, migration and song complexity may or may not be related.  相似文献   

16.
A study of the mating behaviour of males of the beewolf Philanthus zebratus revealed that in one population males display variability in mating tactics and that this variability is related to male body size. There was a tendency for large males to patrol the airspace above the nesting area while smaller males were territorial adjacent to it. The mean sizes of the two groups of males were significantly different, although the size ranges of the two groups overlapped. Only 2.5% of the males were observed to undertake both mating tactics, at different times. Observations are presented on daily and seasonal activity patterns and on the relative location of nests, territories, and patrolling males. A second population, with lower nest density, was observed for several days, revealing only territorial males. It is suggested that the presence of patrolling males is related to the higher nest density of the one population. The fact that patrolling males tend to be relatively large is possibly related to flight energetics or simply to the ability of large males to seize females, which are usually larger than males, in mid-air.  相似文献   

17.
    
Uganda lies within the drier end of the natural distribution range of Coffea canephora and contains unexplored genetic material that could be drought-adapted and useful for developing climate-resilient varieties. Using water treatment: (i) ample and (ii) restricted-water, the response of 148 genotypes were studied comprising wild, feral and cultivated C. canephora. Biomass allocation, standing leaf area and leaf area growth data were collected. Linear mixed effect models and PCA were used to the analyze effect of water treatment on genotypes from different: (i) cultivation status, (ii) genetic groups and (iii) locations. We also assessed the relationship between drought tolerance for relative growth rate in leaf area (RGRA), total number of leaves (TNL), total leaf area (TLA) and total leaf dry weight (TLDW) of genotypes at final harvest. Restricted-water reduced RGRA across genetic groups (3.2–32.5%) and locations (7.1–36.7%) but not cultivation status. For TNL, TLA and TLDW, genotypes that performed well in ample-water performed worse under restricted-water, indicating growth-tolerance trade-off. Drought tolerance in RGRA and TNL were negatively correlated with wetness index suggesting some degree of adaptation to local climate. Findings indicate a growth-tolerance trade-off within this tropical tree species and drought tolerance of Uganda's C. canephora is somewhat associated with local climate.  相似文献   

18.
    
As a classical example of a sexually selected trait, the horns of male bovids offer a prime opportunity to identify predictors of the intensity of sexual selection. Here I use the comparative method to quantify sexual and natural selection pressures behind interspecific variation in horn length. I show that male horn length depends on factors proposed to affect the mean mate number per mating male, correlating positively with group size and negatively with male territoriality. This suggests that whereas group size increases the opportunity for sexual selection, territoriality reduces it because territorial males are unable to follow and monopolize female groups as effectively as males in nonterritorial species. Sexual body size dimorphism also correlates positively with group size and negatively with territoriality, corroborating these factors as predictors of the intensity of sexual selection on males. Female horn length was unaffected by the factors related to mating system, suggesting that this trait is mainly under natural selection. Using female horn length as a proxy for forces of natural selection revealed a negative effect on male horn length. Thus where natural selection favors female horns, possibly as effective weapons against predators, a similar selection pressure on males might prevent them from evolving too elaborate horns through sexual selection. There was no correlation found between horn length and latitude, thus providing no support for the hypothesis that horns have a thermoregulatory function.  相似文献   

19.
20.
    
  1. Shifts in the fundamental and realised niche of individuals during their ontogeny are ubiquitous in nature, but we know little about what aspects of the niche change and how these changes vary across species within communities. However, this knowledge is essential to predict the dynamics of populations and communities and how they respond to environmental change.
  2. Here I introduce a range of metrics to describe different aspects of shifts in the realised trophic niche of individuals based on stable isotopes. Applying this multi-variate approach to 2,272 individuals from 13 taxonomic and functional distinct species (Amphibia, Hemiptera, Coleoptera, Odonata) sampled in natural pond communities allowed me to: (1) describe and quantify the diversity of trophic niche shift patterns over ontogeny in multi-dimensional space, and (2) identify what aspects of ontogenetic shifts vary across taxa, and functional groups.
  3. Results revealed that species can differ substantially in which aspects of the trophic niche change and how they change over ontogeny. Interestingly, patterns of ontogenetic niche shifts grouped in distinct taxonomic clusters in multi-variate space, including two distinct groups of predators (Hemiptera versus Odonata). Given the differences in traits (especially feeding mode) across groups, this suggests that differences in ontogenetic niche shifts across species could at least partially be explained by variation in traits and functional roles of species.
  4. These results emphasise the importance of a multivariate approach to capture the large diversity of trophic niche shifts patterns possible in natural communities and suggest that differences in ontogenetic niche shifts follow general patterns.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号