首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In species with low levels of sexual size dimorphism, it may be relatively easy to detect the role of natural selection in the evolution of body size. Habitat primary production (HPP) appears to be a key factor in the divergence of size in the hartebeest clade ( Alcelaphus spp.), such that subspecies in less productive savannahs are smaller than those in richer ones. Here I test whether a similar pattern exists within the genus Damaliscus (topi and their allies). Basal skull length was used as a surrogate of body size and measured in the seven allopatric subspecies of Damaliscus . Means for each subspecies and sex were regressed against climatic factors as surrogates of HPP. Variation in skull length across Damaliscus taxa was less than in hartebeest. Two clusters were present in both sexes and corresponded to the distinction between the species, Damaliscus dorcas and Damaliscus lunatus . This may reflect differences in productivity between edaphic grasslands, occupied by all D. lunatus , and dry grasslands, occupied by D. dorcas . Mean annual rainfall was the best predictor of body size in males and showed a non-significant positive tendency in females. After accounting for phylogenetic effects, these correlations were both non-significant. Edaphic grasslands might be less dependent on precipitation for primary production because the impeded drainage of their soil prolongs water availability after the end of the rains. Furthermore, they are probably more consistent in productivity across African regions than secondary grasslands and savannah woodlands, which rely on rainfall for grass growth. These properties of edaphic grasslands may explain why size in Damaliscus appears to be less sensitive to variation in rainfall and less variable across subspecies than in Alcelaphus .  相似文献   

2.
Subspecific variation is widespread in vertebrates. Within Africa, several mammals have extensive geographic distributions with attendant morphological, ecological, and behavioural variations, which are often used to demarcate subspecies. In the present study, we use a primate species, the vervet monkey, Cercopithecus aethiops, as a case study for intraspecific divergence in widespread mammals, assessed through hard tissue morphology. We examine intraspecific differences in size, shape, and non‐allometric shape from a taxonomic perspective, and discuss the macroevolutionary implications of findings from microevolutionary analyses of geographic variation. A geometric morphometric approach was used, employing 86 three‐dimensional landmarks of almost 300 provenanced crania. Many of the taxonomic differences in skull morphology between vervet populations appear to be related to geographic proximity, with subspecies at opposite extremes of a west‐to‐east axis showing greatest divergence, and populations from central and south Africa being somewhat intermediate. The classification rate from discriminant analyses was lower than that observed in other African primate radiations, including guenons as a whole and red colobus. Nonetheless, taxonomic differences in shape were significant and not simply related to either geography or size. Thus, although shifts in size may be an important first step in adaptation and diversification, with size responding more quickly than shape to environmental change, the six vervet taxa currently recognized (either as species or subspecies) are not simply allometrically scaled versions of one another and are probably best viewed as subspecies. Holding allometry constant when examining inter‐population differences in shape may thus help to reveal the early stages of evolutionary divergence. The vervet case study presented here hence has relevance for future studies examining intraspecific differentiation in other large mammals, particularly through the methods used to identify small but biologically meaningful divergence, with attendant implications for conservation planning. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 823–843.  相似文献   

3.
Habitat‐associated trait divergence may vary across ontogeny if there are strong size‐related shifts in selection pressures. We quantified patterns of phenotypic divergence in Nile perch (Lates niloticus) from ecologically distinct wetland edge and forest edge habitats in Lake Nabugabo, Uganda, and we compared patterns of divergence across three size classes to determine whether trends are consistent through Nile perch ontogeny. We predicted that inter‐habitat variation in biotic (e.g. vegetation structure) and abiotic (e.g. dissolved oxygen concentration) variables may create divergent selective regimes. We compared body morphology using geometric morphometrics and found substantial differences between habitats, although not all trends were consistent across size classes. The most striking aspects of divergence in small Nile perch were in mouth orientation, head size, and development of the caudal region. Medium‐sized Nile perch also showed differences in mouth orientation. Differences in large individuals were related to eye size and orientation, as well as caudal length. The observed patterns of divergence are consistent with functional morphological predictions for fish across divergent trophic regimes, high and low predation environments, and complex and simple habitats. Although this suggests adaptive divergence, the source of phenotypic variation is unknown and may reflect phenotypic plasticity and/or genetic differences. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 449–465.  相似文献   

4.
5.
We analysed the ecomorphological relationships in four species of Anolis lizard that occur in the Choco' region in Colombia. The region is one of the most diverse of the Neotropical lowlands. The species were assigned to traditionally recognized Greater Antillean ecomorph categories based on habitat use data. Principal component analyses were carried out to examine correlations between the morphological traits, body size, and habitat use. We found that species are separated in morphological space principally by body size and lamella number. Upon removal of the effect of body size, correlations between morphology and habitat use became apparent. However, when compared with Greater Antillean ecomorphs, we found little evidence of morphological convergence in species occupying similar habitats. The species of the Choco' region are, however, clearly separated in the multidimensional morphological space from the Antillean taxa, and appear to form a separate cluster differentiating principally in body size and the number of lamellae. Mainland species clearly constitute an ecomorphological radiation but apparently this is independent of that of the West Indian fauna. More studies are needed to understand the causes for the independence of evolutionary trajectories on the mainland and the Greater Antilles, and to obtain a better understanding of the ecological and evolutionary processes underlying the radiation of these faunas.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 29–39.  相似文献   

6.
Animals rely on auditory cues to relay important information between individuals regarding territoriality, mating status, and individual condition. The efficacy of acoustic signals can depend on many factors, including the transmitter, the receiver, and the signalling environment. In the present study, we evaluate the effect of body size and habitat on the evolution of learned vocal displays across the tanagers (Aves: Thraupidae), a group that comprises nearly 10% of all songbird species. We find that body size affects tanager vocalizations, such that nine out of ten song characters and scores from two principal component axes were correlated with mass. More specifically, larger tanagers tended to produce slower‐paced, lower‐pitched vocal displays within narrower bandwidths. In contrast, habitat was correlated with only three out of ten song characters, and only one of these characters corroborated the directional predictions of the acoustic adaptation hypothesis. Thus, morphological characters, such as body mass, may play a more important role than variation among signalling environments in the evolution of avian vocal displays. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 538–551.  相似文献   

7.
Environmental differences influence the evolutionary divergence of mating signals through selection acting either directly on signal transmission (“sensory drive”) or because morphological adaptation to different foraging niches causes divergence in “magic traits” associated with signal production, thus indirectly driving signal evolution. Sensory drive and magic traits both contribute to variation in signal structure, yet we have limited understanding of the relative role of these direct and indirect processes during signal evolution. Using phylogenetic analyses across 276 species of ovenbirds (Aves: Furnariidae), we compared the extent to which song evolution was related to the direct influence of habitat characteristics and the indirect effect of body size and beak size, two potential magic traits in birds. We find that indirect ecological selection, via diversification in putative magic traits, explains variation in temporal, spectral, and performance features of song. Body size influences song frequency, whereas beak size limits temporal and performance components of song. In comparison, direct ecological selection has weaker and more limited effects on song structure. Our results illustrate the importance of considering multiple deterministic processes in the evolution of mating signals.  相似文献   

8.
The small size and apparent external morphological similarity of the minute salamanders of the genus Thorius have long hindered evolutionary studies of the group. We estimate gene and species trees within the genus using mitochondrial and nuclear DNA from nearly all named and many candidate species and find three main clades. We use this phylogenetic hypothesis to examine patterns of morphological evolution and species coexistence across central and southern Mexico and to test alternative hypotheses of lineage divergence with and without ecomorphological divergence. Sympatric species differ in body size more than expected after accounting for phylogenetic relationship, and morphological traits show no significant phylogenetic signal. Sympatric species tend to differ in a combination of body size, presence or absence of maxillary teeth, and relative limb or tail length, even when they are close relatives. Sister species of Thorius tend to occupy climatically similar environments, which suggests that divergence across climatic gradients does not drive species formation in the genus. Rather than being an example of cryptic species formation, Thorius more closely resembles an adaptive radiation, with ecomorphological divergence that is bounded by organism‐level constraints. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 622–643.  相似文献   

9.
10.
Lacerta perspicillata is a north-west African lacertid lizard that shows considerable intraspecific variation, with three subspecies described on the basis of colour pattern and body size. Recent observations of a population containing two morphological forms and more than one deep genetic lineage, as well as an apparent lack of concordance between forms and genetic lineages, suggest that the complexity is greater than previously thought. To analyse and quantify this variation, we studied the variability within this species at two levels: (1) external morphology (multivariate analysis of scalation, body dimensions, and colour pattern) and (2) mtDNA (sequencing and single-strand confirmation polymorphism analysis). Fifty-two individuals were studied at Taza, northern Morocco. Two morphological groupings (ostensibly representing two previously described subspecies) and two deep mtDNA lineages were detected at this site, with complete correspondence between the two. This, together with an apparent lack of hybrids, would normally support respective full species recognition. However, analysis of 98 individuals from other populations demonstrated that the situation is highly complex with the same genetic lineages having reversed morphotypes in other areas, making such a designation difficult. Across the other studied populations, we found no support for any of the currently recognized subspecies. The lack of congruence between mtDNA lineages and morphometric patterns (in some cases) and the morphological similarity among lizards from different lineages suggest ecophenotypic convergence or multiple introgressive hybridization. The study highlights the tremendous complexity that may exist within a taxon and the inadequacy of older alpha-taxonomy based designations in describing it.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 479–490.  相似文献   

11.
12.
13.
Species with larger geographic distributions are more likely to encounter a greater variety of environmental conditions and barriers to gene flow than geographically‐restricted species. Thus, even closely‐related species with similar life‐history strategies might vary in degree and geographic structure of variation if they differ in geographic range size. In the present study, we investigated this using samples collected across the geographic ranges of eight species of fiddler crabs (Crustacea: Uca) from the Atlantic and Gulf coasts of North America. Morphological variation in the carapace was assessed using geometric morphometric analysis of 945 specimens. Although the eight Uca species exhibit different degrees of intraspecific variation, widespread species do not necessarily exhibit more intraspecific or geographic variation in carapace morphology. Instead, species with more intraspecific variation show stronger morphological divergence among populations. This morphological divergence is partly a result of allometric growth coupled with differences in maximum body size among populations. On average, 10% of total within‐species variation is attributable to allometry. Possible drivers of the remaining morphological differences among populations include gene flow mediated by ocean currents and plastic responses to various environmental stimuli, with isolation‐by‐distance playing a less important role. The results obtained indicate that morphological divergence among populations can occur over shorter distances than expected based on dispersal potential. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 248–270.  相似文献   

14.
Parallel evolution is characterised by repeated, independent occurrences of similar phenotypes in a given habitat type, in different parts of the species distribution area. We studied body shape and body armour divergence between five marine, four lake, and ten pond populations of nine‐spined sticklebacks [Pungitius pungitius (Linnaeus, 1758)] in Fennoscandia. We hypothesized that marine and lake populations (large water bodies, diverse fish fauna) would be similar, whereas sticklebacks in isolated ponds (small water bodies, simple fish fauna) would be divergent. We found that pond fish had deeper bodies, shorter caudal peduncles, and less body armour (viz. shorter/absent pelvic spines, reduced/absent pelvic girdle, and reduced number of lateral plates) than marine fish. Lake fish were intermediate, but more similar to marine than to pond fish. Results of our common garden experiment concurred with these patterns, suggesting a genetic basis for the observed divergence. We also found large variation among populations within habitat types, indicating that environmental variables other than those related to gross habitat characteristics might also influence nine‐spined stickleback morphology. Apart from suggesting parallel evolution of morphological characteristics of nine‐spined sticklebacks in different habitats, the results also show a number of similarities to the evolution of three‐spined stickleback (Gasterosteus aculeatus Linnaeus, 1758) morphology. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 403–416.  相似文献   

15.
Allozyme diversity was studied within and among populations of five related taxa of Antirrhinum L. endemic to the Iberian Peninsula ( A. graniticum Rothm. ssp. graniticum , ssp. brachycalyx Sutton and ssp. ambiguum (Lange) Mateu & Segarra, A. boissieri Rothm. and A. onubensis (Fdez. Casas) Fdez. Casas). All of the studied taxa are obligate outcrossing endemic perennial herbs which form isolated populations. However, the taxa vary in range and population sizes, and are found on different soil types. The level and distribution of allozyme diversity differed widely between taxa: A. graniticum ssp. brachycalyx had the lowest level of allozyme diversity (HT = 0.09), whilst the highest level was detected in A. boissieri (HT = 0.25). Total variation was partitioned into within- and among-population variation. The proportion attributable to variation within populations varied from about 67% up to 84.3% and 89.5% in A. graniticum ssp. brachycalyx and A. graniticum ssp. ambiguum , respectively. Both these subspecies also showed little population divergence (GST = 0.10 and 0.09, respectively) and had high levels of estimated gene flow (Nm = 2.18 and 2.62, respectively). These results are discussed in relation to geographical proximity of populations and habitat continuity. Isolation by distance was not detected in any of the studied taxa. This result suggests that divergence among populations is due to random genetic drift.  © 2003 The Linnean Society of London . Biological Journal of the Linnean Society , 2003, 79 , 299–307.  相似文献   

16.
A phylogenetic analysis of the majority of sparid genera and representatives of the sparoid families Centracanthidae, Lethrinidae and Nemipteridae is presented using 87 predominately osteological characters. The Sparidae constitute a monophyletic grouping, with the inclusion of the centracanthid Spicara smaris , which nests deep within the ingroup. The phylogeny was then used to investigate agreement with the most recent molecular study, taxonomic stability of subfamilial classification and the evolution of feeding strategies. Results show that the incongruence between morphological and molecular data appears largely to be an artifact of errors in rooting. However, there appears to be real and substantial conflict between the molecular tree and the morphological data, which is not attributable to the different positions of the least congruent taxa. The data support the molecular hypothesis that none of the subfamilial classification, based on dentition and trophic specialization, is monophyletic, and should be rejected pending further taxonomic revision. The phylogeny supports multiple independent origins of trophic types and it is suggested that the evolutionary plasticity of the oral teeth of sparids has been fundamental to the adaptive radiation of this family compared to their closest allies. ©2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 269–301.  相似文献   

17.
The round-eared sengis or elephant-shrews (genus Macroscelides) exhibit striking pelage variation throughout their ranges. Over ten taxonomic names have been proposed to describe this variation, but currently only two taxa are recognized (M. proboscideus proboscideus and M. p. flavicaudatus). Here, we review the taxonomic history of Macroscelides, and we use data on the geographic distribution, morphology, and mitochondrial DNA sequence to evaluate the current taxonomy. Our data support only two taxa that correspond to the currently recognized subspecies M. p. proboscideus and M. p. flavicaudatus. Mitochondrial haplotypes of these two taxa are reciprocally monophyletic with over 13% uncorrected sequence divergence between them. PCA analysis of 14 morphological characters (mostly cranial) grouped the two taxa into non-overlapping clusters, and body mass alone is a relatively reliable distinguishing character throughout much of Macroscelides range. Although fieldworkers were unable to find sympatric populations, the two taxa were found within 50 km of each other, and genetic analysis showed no evidence of gene flow. Based upon corroborating genetic data, morphological data, near sympatry with no evidence of gene flow, and differences in habitat use, we elevate these two forms to full species.  相似文献   

18.
We compared the proportion of morphological variation accounted for by subspecies categories with the proportion encompassed by ecologically based categories in cutthroat trout ( Oncorhynchus clarkii ssp.), as a means of assessing the relative importance of each approach in identifying intraspecific diversity. We used linear and geometric morphometrics to compare measures of body shape, fin length, and head features between and within subspecies of cutthroat trout. Both categories accounted for a significant proportion of the variation between and within the subspecies; however, the larger proportion was explained by subspecific differences, with the greatest morphological divergence between coastal cutthroat trout ( Oncorhynchus clarkii clarkii ) and interior subspecies. Ecotypic categories within each subspecies also explained significant morphological differences: stream populations had longer fins and deeper, more robust bodies than lake populations. The largest ecotypic differences occurred between stream and lake populations of Yellowstone cutthroat trout ( Oncorhynchus clarkii bouvieri ). Given that many cutthroat trout subspecies are of conservation concern, our study offers a better understanding of intraspecific variation existing within the species, providing precautionary evidence of incipient speciation, and a framework of describing phenotypic diversity that is correlated with ecological conditions.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 266–281.  相似文献   

19.
We used morphological, vocal and molecular (one mitochondrial and two nuclear loci) data to re-evaluate the taxonomic status of the taxa acanthizoides , concolor , and brunnescens in the Cettia acanthizoides (J. Verreaux, 1871) complex. We conclude that all three are valid taxa, and that acanthizoides of China and concolor of Taiwan are best treated as conspecific, whereas brunnescens of the Himalayas is better considered as a separate species. The degree of morphological, vocal, and genetic differentiation is variably congruent among all taxa; the recently separated acanthizoides and concolor differ slightly in plumage and structure but are indistinguishable in vocalizations, whereas the earlier diverged brunnescens and acanthizoides/concolor differ only slightly more in morphology but to a much greater degree in vocalizations. We stress the essential nature of taxonomic revisions as a prerequisite for the biodiversity estimates required for conservation planning.  © 2007 The Linnean Society of London, Zoological Journal of the Linnean Society , 2007, 149 , 437–452.  相似文献   

20.
Trophic polymorphisms are a prominent form of phenotypic diversification in many animal taxa. Northern temperate lakes have become model systems for the investigation of sympatric speciation due to trophic polymorphisms. Many examples of niche-based phenotypic variation occur in temperate lakes, whereas northern rivers offer few such examples. To further investigate the conditions under which trophic polymorphisms are likely to evolve, the present study examined phenotypic variation related to snout size and shape in the mountain whitefish (Salmonidae: Prosopium williamsoni ), which has been hypothesized to exhibit a rare example of reproductively isolated trophic morphs in a northern river-dwelling fish species. Variation in snout size and shape increased greatly with body size and, although this variation was continuously distributed, individuals in the largest size class tended to lie at phenotypic extremes. At one extreme were individuals with a large bulbous snout and a sloping forehead ('pinocchio'), and at the other were individuals that lack the bulbous snout and have a concave forehead ('normal'). The pinocchio trait may result from a stage-specific developmental switch that occurs late in ontogeny. Consistent differences were found with respect to diet between individuals with extreme snout morphologies, but no evidence was found for assortative mating within populations at seven microsatellite loci. The explosive mating system of this species may be responsible for this lack of assortative mating. The present study highlights the influence of ecological factors in shaping phenotypic and behavioural diversification due to trophic morphology.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 253–267.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号