首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The mechanism of ion transport by carrier ionophores is investigated. The electrostatic potential is used as index of the binding energy of a cation with valinomycin and enniatin B. The ion binding capacities of these ionophores are studied as functions of conformation and of distance of an approaching ion-complex. The energetics of dirnerisation and the binding energy profile of an ion in dimers of valinomycin and enniatin B are examined. The binding energy profiles and the electrostatic potential surfaces of valinomycin and enniatin B are compared in relation to their biological activities.  相似文献   

2.
1. The action of the antibiotics enniatin A, valinomycin, the actin homologues, gramicidin, nigericin and dianemycin on mitochondria, erythrocytes and smectic mesophases of lecithin–dicetyl hydrogen phosphate was studied. 2. These antibiotics induced permeability to alkali-metal cations on all three membrane systems. 3. The ion specificity on each membrane system was the same. 4. Enniatin A, valinomycin and the actins did not induce permeability to protons, whereas nigericin and dianemycin rendered all three membrane systems freely permeable to protons. 5. Several differences were noted between permeability induced by nigericin and that induced by gramicidin. 6. The action of all these antibiotics on mitochondrial respiration could be accounted for by changes in passive ion permeability of the mitochondrial membrane similar to those induced in erythrocytes and phospholipid membranes, if it is assumed that a membrane potential is present in respiring mitochondria.  相似文献   

3.
Lung cancer is still a leading cause of death worldwide. In recent years, knowledge has been obtained of the mechanisms modulating ion channel kinetics and thus of cell bioelectric properties, which is promising for oncological biomarkers and targets. The complex interplay of channel expression and its consequences on malignant processes, however, is still insufficiently understood. We here introduce the first approach of an in-silico whole-cell ion current model of a cancer cell, in particular of the A549 human lung adenocarcinoma, including the main functionally expressed ion channels in the plasma membrane as so far known. This hidden Markov-based model represents the electrophysiology behind proliferation of the A549 cell, describing its rhythmic oscillation of the membrane potential able to trigger the transition between cell cycle phases, and it predicts membrane potential changes over the cell cycle provoked by targeted ion channel modulation. This first A549 in-silico cell model opens up a deeper insight and understanding of possible ion channel interactions in tumor development and progression, and is a valuable tool for simulating altered ion channel function in lung cancer electrophysiology.  相似文献   

4.
B Roux 《Biophysical journal》1999,77(1):139-153
A rigorous statistical mechanical formulation of the equilibrium properties of selective ion channels is developed, incorporating the influence of the membrane potential, multiple occupancy, and saturation effects. The theory provides a framework for discussing familiar quantities and concepts in the context of detailed microscopic models. Statistical mechanical expressions for the free energy profile along the channel axis, the cross-sectional area of the pore, and probability of occupancy are given and discussed. In particular, the influence of the membrane voltage, the significance of the electric distance, and traditional assumptions concerning the linearity of the membrane electric field along the channel axis are examined. Important findings are: 1) the equilibrium probabilities of occupancy of multiply occupied channels have the familiar algebraic form of saturation properties which is obtained from kinetic models with discrete states of denumerable ion occupancy (although this does not prove the existence of specific binding sites; 2) the total free energy profile of an ion along the channel axis can be separated into an intrinsic ion-pore free energy potential of mean force, independent of the transmembrane potential, and other contributions that arise from the interfacial polarization; 3) the transmembrane potential calculated numerically for a detailed atomic configuration of the gramicidin A channel embedded in a bilayer membrane with explicit lipid molecules is shown to be closely linear over a distance of 25 A along the channel axis. Therefore, the present analysis provides some support for the constant membrane potential field approximation, a concept that has played a central role in the interpretation of flux data based on traditional models of ion permeation. It is hoped that this formulation will provide a sound physical basis for developing nonequilibrium theories of ion transport in selective biological channels.  相似文献   

5.
Ion channel conformational changes within the lipid membrane are a key requirement to control ion passage. Thus, it seems reasonable to assume that lipid composition should modulate ion channel function. There is increasing evidence that this implicates not just an indirect consequence of the lipid influence on the physical properties of the membrane, but also specific binding of selected lipids to certain protein domains. The result is that channel function and its consequences on excitability, contractility, intracellular signaling or any other process mediated by such channel proteins, could be subjected to modulation by membrane lipids. From this it follows that development, age, diet or diseases that alter lipid composition should also have an influence on those cellular properties. The wealth of data on the non-annular lipid binding sites in potassium channel from Streptomyces lividans (KcsA) makes this protein a good model to study the modulation of ion channel structure and function by lipids. The fact that this protein is able to assemble into clusters through the same non-annular sites, resulting in large changes in channel activity, makes these sites even more interesting as a potential target to develop lead compounds able to disrupt such interactions and hopefully, to modulate ion channel function. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   

6.
A COOH-terminal tryptic fragment (Mr approximately equal to 20,000) of colicin E1 has been proposed to contain the membrane channel-forming domain of the colicin molecule. A comparison is made of the conductance properties of colicin E1 and its COOH-terminal fragment in planar bilayer membranes. The macroscopic and single channel properties of colicin E1 and its COOH-terminal tryptic fragment are very similar, if not indistinguishable, implying that the NH2-terminal, two-thirds of the colicin E1 molecule, does not significantly influence its channel properties. The channel-forming activity of both polypeptides is dependent upon the presence of a membrane potential, negative on the trans side of the membrane. The average single channel conductance of colicin E1 and the COOH-terminal fragment is 20.9 +/- 3.9 and 19.1 +/- 2.9 picosiemens, respectively. The rate at which both proteins form conducting channels increases as the pH is lowered from 7 to 5. Both molecules require negatively charged lipids for activity to be expressed, exhibit the same ion selectivity, and rectify the current to the same extent. Both polypeptides associate irreversibly with the membrane in the absence of voltage, but subsequent formation of conducting channels requires a negative membrane potential.  相似文献   

7.
Brownian dynamics simulations have been carried out to study the transport of ions in a vestibular geometry, which offers a more realistic shape for membrane channels than cylindrical tubes. Specifically, we consider a torus-shaped channel, for which the analytical solution of Poisson's equation is possible. The system is composed of the toroidal channel, with length and radius of the constricted region of 80 A and 4 A, respectively, and two reservoirs containing 50 sodium ions and 50 chloride ions. The positions of each of these ions executing Brownian motion under the influence of a stochastic force and a systematic electric force are determined at discrete time steps of 50 fs for up to 2.5 ns. All of the systematic forces acting on an ion due to the other ions, an external electric field, fixed charges in the channel protein, and the image charges induced at the water-protein boundary are explicitly included in the calculations. We find that the repulsive dielectric force arising from the induced surface charges plays a dominant role in channel dynamics. It expels an ion from the vestibule when it is deliberately put in it. Even in the presence of an applied electric potential of 100 mV, an ion cannot overcome this repulsive force and permeate the channel. Only when dipoles of a favorable orientation are placed along the sides of the transmembrane segment can an ion traverse the channel under the influence of a membrane potential. When the strength of the dipoles is further increased, an ion becomes detained in a potential well, and the driving force provided by the applied field is not sufficient to drive the ion out of the well. The trajectory of an ion navigating across the channel mostly remains close to the central axis of the pore lumen. Finally, we discuss the implications of these findings for the transport of ions across the membrane.  相似文献   

8.
Oocytes from Xenopus laevis are commonly used as an expression system for ion channel proteins. The aim of this study was to determine whether oocytes from the Colombian native toad, Bufo marinus, could be used as an alternative expression system for ion channel protein expression and functional characterization using the two-microelectrode voltage clamp method. B. marinus oocytes and X. laevis were isolated and cultured in similar conditions. The mean resting membrane potential of B. marinus oocytes was similar to that of X. laevis oocytes as well as the whole-cell basal currents. The potassium ion channel Kv1.1 was successfully expressed in B. marinus oocytes and showed a typical outward rectifying current. Potassium channel blockers reduced these currents. The similarities on electrical properties and expression of ion channel proteins show that B. marinus oocytes can be used effectively to express these proteins, making these cells a viable heterologous system for the expression of ion channel proteins and their electrophysiological characterization.  相似文献   

9.
Twenty‐seven preharvest maize ears affected by Fusarium poae rot (disease score 36–100%) were selected in 1998 and 1999 in Poland and examined for the occurrence of toxic hexadepsipeptides: beauvericin (BEA), enniatin A, enniatin B and enniatin B1. The identification of F. poae was confirmed by sequence analysis of variable internal transcribed spacer regions and compared with NCBI gene bank DNA sequences. Chemical analyses were performed by HPLC‐MS. In 27 ears infected by F. poae were detected: BEA (trace to 46 μg/g) in 18 samples, enniatin A (trace to 37 μg/g) in nine samples, enniatin B (trace to 47 μg/g) in 15 samples and enniatin B1 (trace to 25 μg/g) in 12 samples. When 20 strains of F. poae isolated from these samples were cultured on rice, all produced BEA (1.9–75 μg/g), three enniatin A (1.8–2 μg/g), 12 enniatin B (1.1–5.1 μg/g) and eight enniatin B1 (1.2–5.2 μg/g). Occurrence and quantification of enniatin A, enniatin B and enniatin B1 and their co‐occurrence with BEA in maize kernels is reported for the first time.  相似文献   

10.
A model for the gramicidin A channel is proposed which extends existing models by adding a specific cationic binding site at each entrance to the channel. The binding of ions to these outer channel sites is assumed to shift the energy levels of the inner sites and barriers and thereby alter the channel conductance. The resulting properties are analyzed theoretically for the simplest case of two inner sites and a single energy barrier. This for-site model (two outer and two inner) predicts that the membrane potential at zero current (Uo) should be a Goldman-Hodgkin-Katz equation with concentration-dependent permeability ratios. The coefficients of the concentration-dependent terms are shown to be related to the peak energy shifts of the barrier and to the binding constants of the outer sites. The thory also predicts the channel conductance in symmetrical solutions to exhibit three limiting behaviors, from which the properties of the outer and inner sites can be characterized. In two-cation symmetrical mixtures the conductance as a function of mole fraction is shown to have a minimum, and the related phenomenon of inhibition and block exerted by one ion on the other is explained explicitly by the theory. These various phenomena, having ion interactions in a multiply occupied channel as a common physical basis, are all related (by the theory) through a set of measurable parameters describing the properties of the system.  相似文献   

11.
Covalently bound intermediates of enniatin B synthesis could be isolated from enniatin synthetase by treatment with performic acid. By comparison with products of mild alkaline cleavage of authentic enniatin B they could be identified as the dipeptide D-2-hydroxyisovaleryl-N-methylvaline and the corresponding tetrapeptide. Synthesis of enniatins apparently proceeds via condensation of dipeptides. This was confirmed by the use of the substrate analogue isovaleric acid, which has shown to be a strong inhibitor for enniatin synthesis by formation of N-isovaleryl-N-methyl valine.  相似文献   

12.
Yao XL  Hong M 《Biochemistry》2006,45(1):289-295
Channel-forming colicins are bacterial toxins that spontaneously insert into the inner cell membrane of sensitive bacteria to form voltage-gated ion channels. It has been shown that the channel current and the conformational flexibility of colicin E1 channel domain depend on the membrane surface potential, which is regulated by the anionic lipid content and the ion concentration. To better understand the dependence of colicin structure and dynamics on the membrane surface potential, we have used solid-state NMR to investigate the topology and segmental motion of the closed state of colicin Ia channel-forming domain in membranes of different anionic lipid contents and ion concentrations. Colicin Ia channel domain was reconstituted into membranes with different POPG and KCl concentrations. 1H spin diffusion experiments indicate that the protein contains a small domain that inserts into the hydrophobic center of the 70% anionic membrane, similar to when it binds to the 25% anionic membrane. Measurements of C-H and N-H dipolar couplings indicate that, on the sub-microsecond time scale, the protein has the least segmental mobility under the high-salt and low-anionic lipid condition, which has the most physiological membrane surface potential. Measurement of millisecond time scale motions yielded similar results. These suggest that optimal channel activity requires the protein to have sufficient segmental rigidity so that entire helices can undergo cooperative conformational motions that are required for translocating the channel-forming helices across the lipid bilayer upon voltage activation.  相似文献   

13.
We describe the existence of a potassium ion transport mechanism in the mitochondrial inner membrane of a lower eukaryotic organism, Acanthamoeba castellanii. We found that substances known to modulate potassium channel activity influenced the bioenergetics of A. castellanii mitochondria. In isolated mitochondria, the rate of resting respiration is increased by about 10% in response to potassium channel openers, i.e. diazoxide and BMS-191095, during succinate-, malate-, or NADH-sustained respiration. This effect is strictly dependent on the presence of potassium ions in an incubation medium and is reversed by glibenclamide (a potassium channel blocker). Diazoxide and BMS-191095 also caused a slight but statistically significant depolarization of mitochondrial membrane potential (measured with a TPP(+)-specific electrode), regardless of the respiratory substrate used. The resulting steady state value of membrane potential was restored after treatment with glibenclamide or 1 mM ATP. Additionally, the electrophysiological properties of potassium channels present in the A. castellanii inner mitochondrial membrane are described in the reconstituted system, using black lipid membranes. Conductance from 90 +/- 7 to 166 +/- 10 picosiemens, inhibition by 1 mM ATP/Mg(2+) or glibenclamide, and activation by diazoxide were observed. These results suggest that an ATP-sensitive potassium channel similar to that of mammalian mitochondria is present in A. castellanii mitochondria.  相似文献   

14.
Summary This paper reports a study of the chemistry of valinomycin, enniatins and related membrane-active depsipeptides that increase alkali metal ion permeability of model and biological membranes. The antimicrobial activity of these compounds and their effect on membranes has been correlated with their cation-complexing ability. The complexing reaction has been studied by spectropolarimetric and conductimetric methods. Nuclear magnetic resonance, optical rotatory dispersion, and infrared spectrophotometric studies have revealed the coexistence of conformers of the cyclodepsipeptides in solution and have led to elucidation of the spatial structure of valinomycin, enniatin B and their K+ complexes. The effect of the conformational properties of the cyclodepsipeptides on their complexation efficiency and selectivity, surface-active properties and behavior towards phospholipid monolayers, bimolecular phospholipid membranes and a number of biological membrane systems has been ascertained. The studies have clearly shown the feasibility of using cyclodepsipeptides with predetermined structural and conformational parameters as chemical tools for membrane studies. it is suggested that the principle of conformation-dependent cation binding through iondipole interactions may possibly lie at the basis of the mode of action of systems governing the natural ion permeability in biological membranes.For preliminary communication,see Refs. [9, 19, 20, 27, 29].  相似文献   

15.
The mechanosensitive (MS) ion channel is gated by changes in bilayer deformation. It is functional without the presence of any other proteins and gating of the channel has been successfully achieved using conventional patch clamping techniques where a voltage has been applied together with a pressure over the membrane. Here, we have for the first time analyzed the large conducting (MscL) channel in a supported membrane using only an external electrical field. This was made possible using a newly developed technique utilizing a tethered lipid bilayer membrane (tBLM), which is part of an engineered microelectronic array chip. Single ion channel activity characteristic for MscL was obtained, albeit with lower conductivity. The ion channel was gated using solely a transmembrane potential of 300 mV. Computations demonstrate that this amount of membrane potential induces a membrane tension of 12 dyn/cm, equivalent to that calculated to gate the channel in patch clamp from pressure-induced stretching of the bilayer. These results strengthen the supposition that the MscL ion channel gates in response to stress in the lipid membrane rather than pressure across it. Furthermore, these findings illustrate the possibility of using the MscL as a release valve for engineered membrane devices; one step closer to mimicking the true function of the living cell.  相似文献   

16.
王晖  肖昭扬  高琴琴  刘明富 《生物磁学》2014,(12):2356-2359
钾离子通道是最大最复杂的离子通道家族,迄今为止在人类基因组中共克隆出了70余种钾离子通道亚型,其中双孔钾离子通道是近年来新发现的一类钾离子通道亚家族,它们在结构上与电压依赖性钾通道、钙激活钾通道,内向整流型钾通道等传统的单孔钾离子通道差异很大。双孔钾离子通道,具有4个跨膜片段,形成独特的2个孔道结构域,主要介导背景钾电流。由于其介导背景钾电流而参与并维持静息膜电位形成等重要生理作用而备受关注。近年来研究最多的双孔钾通道TREK-1几乎表达于机体的每一个细胞,可被细胞内酸度、膜牵张、多不饱和脂肪酸、温度、受体偶联第二信使系统调控,调节细胞兴奋性,参与一系列生理、病理过程,与神经系统疾病如癫痫密切相关,本文就此做一综述。  相似文献   

17.
:钾离子通道是最大最复杂的离子通道家族,迄今为止在人类基因组中共克隆出了70 余种钾离子通道亚型,其中双孔钾离 子通道是近年来新发现的一类钾离子通道亚家族,它们在结构上与电压依赖性钾通道、钙激活钾通道,内向整流型钾通道等传统 的单孔钾离子通道差异很大。双孔钾离子通道,具有4 个跨膜片段,形成独特的2 个孔道结构域,主要介导背景钾电流。由于其介 导背景钾电流而参与并维持静息膜电位形成等重要生理作用而备受关注。近年来研究最多的双孔钾通道TREK-1 几乎表达于机 体的每一个细胞,可被细胞内酸度、膜牵张、多不饱和脂肪酸、温度、受体偶联第二信使系统调控,调节细胞兴奋性,参与一系列生 理、病理过程,与神经系统疾病如癫痫密切相关,本文就此做一综述。  相似文献   

18.
The fundamental properties of ion channels assure their selectivity for a particular ion, its rapid permeation through a central pore and that such electrical activity is modulated by factors that control the opening and closing (gating) of the channel. All cell types possess ion channels and their regulated flux of ions across the membrane play critical roles in all steps of life. An ion channel does not act alone to control cell excitability but rather forms part of larger protein complexes. The identification of protein interaction partners of ion channels and their influence on both the fundamental biophysical properties of the channel and its expression in the membrane are revealing the many ways in which electrical activity may be regulated. Highlighted here is the novel use of the patch clamp method to dissect out the influence of protein interactions on the activity of individual GABA(A) receptors. The studies demonstrate that ion conduction is a dynamic property of a channel and that protein interactions in a cytoplasmic domain underlie the channel's ability to alter ion permeation. A structural model describing a reorganisation of the conserved cytoplasmic gondola domain and the influence of drugs on this process are presented.  相似文献   

19.
Viral ion channels: structure and function   总被引:9,自引:0,他引:9  
Viral ion channels are short auxiliary membrane proteins with a length of ca. 100 amino acids. They are found in enveloped viruses from influenza A, influenza B and influenza C (Orthomyxoviridae), and the human immunodeficiency virus type 1 (HIV-1, Retroviridae). The channels are called M2 (influenza A), NB (influenza B), CM2 (influenza C) and Vpu (HIV-1). Recently, in Paramecium bursaria chlorella virus (PBCV-1, Phycodnaviridae), a K+ selective ion channel has been discovered. The viral channels form homo oligomers to allow an ion flux and represent miniaturised systems. Proton conductivity of M2 is established; NB, Vpu and the potassium channel from PBC-1 conduct ions; for CM2 ion conductivity is still under proof. This review summarises the current knowledge of these short viral membrane proteins. Their discovery is outlined and experimental evidence for their structure and function is discussed. Studies using computational methods are presented as well as investigations of drug-protein interactions.  相似文献   

20.
A model for the primary active transport by an ion pump protein is proposed. The model, the "energization-relaxation channel model," describes an ion pump as a multiion channel that undergoes stochastic transitions between two conformational states by external energy supply. When the potential profile along ion transport pathway is asymmetrical, a net ion flux is induced by the transitions. In this model, the coupling of the conformational change and ion transport is stochastic and loose. The model qualitatively reproduces known properties of active transport such as the effect of ion concentration gradient and membrane potential on the rate of transport and the inhibition of ion transport at high ion concentration. We further examined the effect of various parameters on the ion transport properties of this model. The efficiency of the coupling was almost 100% under some conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号