首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
D. J. Pearson 《Ibis》1984,126(1):1-15
Moult data were collected during 1967–80 from some 6900 Little Stints in the southern Kenyan rift valley.
Adults typically moulted from summer to winter body and head plumage during September and early October, soon after arrival. The complete pre-winter wing and tail moult began in most adults between mid-September and early October. Some birds finished by December, but others continued until February and March. Individual duration was usually between 100 and 150 days. Adults which completed this moult early often remoulted outer primaries between January and early April.
Young birds acquired first-winter body plumage during October and early November. Some 90% had a complete pre-winter wing and tail moult. This usually began between December and early February, and finished during March or early April, taking about 70–100 days. In about 10% of young birds, flight feather moult was restricted to the outer primaries and inner secondaries. Birds adopting this strategy typically began moult late, during January or February. Short periods of suspension were common during pre-winter wing moult, particularly in adults. The difference in moult speed between adult arid first-winter birds was attributable in the primary, secondary and tail tracts to differences in numbers of growing feathers.
Practically all birds completed a pre-summer moult involving the entire body and head plumage, most of the tertials, some or all of the tail feathers and many wing coverts. Most birds began this moult between early February and late March, and finished between mid-April and early May. It was typically later and more rapid in first-year birds than adults. In late birds, the onset of pre-summer moult was linked to the final stages of pre-winter moult.
The wing moult of the Little Stint in different wintering areas is discussed. First-winter moult strategy is compared with that in other small Calidris species.  相似文献   

2.
Biannual complete moult in the Black-chested Prinia Prinia flavicans   总被引:2,自引:0,他引:2  
M. HERREMANS 《Ibis》1999,141(1):115-124
The Black-chested Prinia Prinia flavicans shows two distinctive periods each year during which adult birds undergo a complete moult: there is a fast moult (about 67 days) in spring (September-November) involving all birds simultaneously and a slower moult (about 108 days) in autumn (February-June), when about 95% of adults are moulting during April. A biannual complete moult pattern was also shown to occur in individual birds. The pattern of secondary replacement was variable and unusual for a passerine; the majority replaced S8 to S5/S4 descendantly, or had feathers being renewed ascendantly amongst S4-S7 before the ascendant series starting from the outermost secondary reached the middle secondaries. The descendant series tended to be longer during the autumn moult with S4 most frequently being the last to be replaced in autumn, but S5 last in spring. Breeding was erratic during summer in response to rains and sometimes overlapped extensively with moulting, the onset of which was less variably timed. When breeding occurred during the autumn moult, the new plumage was not the usual winter plumage (without the chest-band), but a new summer plumage.  相似文献   

3.
Trans‐equatorial avian migrants tend to breed, moult and migrate – the main energy‐requiring events in their lifecycle – at different times. Little is known about the relationship between wing moult and pre‐migratory fuelling in waders on their non‐breeding grounds, where time is less constrained than during their brief high‐latitude breeding season. We determined age‐related strategies of Wood Sandpipers Tringa glareola to balance the energetic demands of primary moult against pre‐migratory fuelling in southern Africa by analysing body mass and primary moult at first capture of 1721 birds mist‐netted in 1972–96 at waterbodies in Zimbabwe. Adults moulted all their primaries in August–December, but immatures underwent a supplemental moult of varying numbers of outer primaries in December–April, close to departure. We used locally weighted linear regression to estimate trends in Wood Sandpiper body mass from 1 July to 1 May. They maintained low mass from arrival in July–September to February–early March. Adults fuelled from 10 February to 1 May at a mean rate of 0.25 g/day (sd = 0.16). Most adults (98%) began fuelling 10–75 days after completing primary moult. Immatures fuelled from 4 March to 13 April at 0.24 g/day (sd = 0.14). They used varying strategies depending on their condition: a brief gap between moult and fuelling; an overlap of these processes near departure, leading to slower fuelling; or skipping fuelling altogether and staying in southern Africa for a ‘gap year’. Immatures moulting three or five outer primaries fuelled more slowly than post‐moult birds. Immatures moulting four outer primaries started fuelling 3 weeks later but at a higher rate than did post‐moult birds of this group. In post‐moult immatures, the later they ended moult, the later and faster they fuelled. The heaviest adults and immatures using all moult patterns accumulated fuel loads of c. 50% of lean body mass, and could potentially cross 2397–4490 km to reach the Great Rift Valley in one non‐stop flight. Immatures were more flexible in the timing and extent of moult and in the timing and rate of fuelling than adults. This flexibility enables inexperienced Wood Sandpipers to cope with inter‐annual differences in feeding conditions at Africa's ephemeral inland waterbodies.  相似文献   

4.
D. J. Pearson 《Ibis》1981,123(2):158-182
Some 5700 Ruffs were ringed in the southern Kenyan rift valley during 1967–79, mainly at Lakes Nakuru and Magadi. These have produced 15 recoveries outside East Africa, 14 in Siberia between 73° and 154°E and one in India. Adult males returned to Kenya mainly during August, and females during late August and early September. Females greatly outnumbered males at all times. Most wintering males departed late in March and early in April, but females not until about a month later. First-year birds appeared from the end of August, but remained in low numbers until late October or November. Most departed during April and May, but a few females oversummered. First-year birds typically accounted for about 25% of the wintering Nakuru females, but about 50% of those at Magadi. At both sites they accounted for a higher proportion of male birds than females. Most of the birds at Nakuru throughout late August to May appeared to be local winterers, and many individuals remained in the area for many months each year. Retrapping indicated that approximately 60% of each season's birds returned the following season. Adult males and most adult females commenced pre-winter wing moult before arrival, but completed most of it in Kenya. Males moulted 3–4 weeks ahead of females, and most had finished before December. Females typically finished during December and early January. Most second year birds timed their pre-winter moult similarly to older adults. Suspension was recorded in over 15% of all moulting birds examined. Adult pre-summer moult involved most or all of the tertials, some or all of the tail feathers, most of the inner wing coverts and the body and head plumage. It occurred mainly during January to March (males) or February to April (females), although tertial renewal commonly began a month earlier. Males showed no sign in Kenya of the supplementary prenuptial moult. First-year birds moulted from juvenile into first winter body plumage during late September to November. They underwent a pre-summer moult similar in extent and timing to that of adults, and again about a month earlier in males than females. Spring feathers acquired were often as brightly coloured as those of adults. About 15% of first-year birds renewed their outer 2–4 pairs of large primaries during January to April. Adult and first-year birds fattened before spring departure, commonly reaching weights 30–60% above winter mean. Weights of adult males peaked early in April, those of adult females early in May, and those of first-winter females later in May. Weights were relatively high also during August and September. This was due to the arrival of wintering birds carrying ‘spare’ reserves, and also apparently to the presence of a late moulting fattening passage contingent. The wing length of newly moulted adults was about 3 mm longer than that of newly arrived first-year birds, but there was no evidence of an increase in the wing kngth of adults with successive moults. Adult wing length decreased by 4–5 mm between the completion of one moult and the middle stages of the next. The migrations and annual timetable of Kenyan wintering Ruffs are discussed, and their moult strategy is compared with that of other Holarctic waders.  相似文献   

5.
I. NEWTON  & P. ROTHERY 《Ibis》2005,147(4):667-679
Moult was studied in 1 year among Greenfinches trapped in a garden in east‐central England. Over the period June–December 2003, 333 captures of 179 individual adults provided information on breeding condition, moult, body weight, sex and age (yearling or older adult, equivalent to birds in their second or later calendar years, respectively). About 95% of all birds (sex and age groups combined) started primary feather moult from 2 July to 14 August, and finished from 10 October to 22 November. The mean date of moult onset in the population as a whole was 24 July. On average, males began 8 days before females, and yearlings began 6 days before older birds. The mean duration of moult was 100 days, whether the figure was calculated for the population as a whole or just for the 36 individual birds that were caught more than once during moult. However, moult rate was slightly slower, and moult duration slightly longer, in yearlings than in older adults of both sexes. No evidence was found for any systematic relationship between moult onset date and rate (duration). Breeding and moult overlapped by up to 5 weeks or more in individual birds, and some birds probably started to moult as early as the incubation stage of their last clutch of the season. The cloacal protuberance (taken as indicative of breeding condition) had regressed in all males by the time the fifth primary was shed, and the brood patch had regressed and re‐feathered in all females by the time the fourth primary was shed. The bulk of feather replacement in the secondary, tail and body tracts occurred in the second half of primary moult, and after cloacal protuberances and brood patches were completely regressed. In all birds examined near the end of primary moult the secondaries were still growing, and would have continued growth for up to another 19 days or more, extending the end of the moulting season into December. Body mass during moult was affected significantly by sex and age, as well as by time of day, amount of food in gullet, reproductive condition and date. No firm evidence emerged that body mass was affected by moult stage, after allowing for effects of date and other variables (although there was a non‐significant negative relationship between moult stage and body mass in males). In the population as a whole, the breeding season (from first egg‐laying to independence of last young) was spread over 21 weeks and moult over 24 weeks. With an overlap between the two events at the population level of up to 9 weeks, the two processes together took up to 36 weeks, some 69% of the year.  相似文献   

6.
Immature migrant waders have more complex patterns of primary moult than adults, but these have been described only fragmentarily. The Wood Sandpiper Tringa glareola breeds in the taiga region of the Palearctic and part of the population migrates to southern Africa. We selected this population for a study of the primary moult strategies of an immature wader. After analysing the moult formulae of 674 immatures, we discuss potential factors that influence the choice of moult strategy. All moulters replaced two to six outer primaries; 91% moulted four or five. We used the Underhill–Zucchini model to estimate the timing and duration of moult in immatures replacing different numbers of primaries. A slow moult of five or six primaries, adopted by 29%, lasted on average 98–111 days, beginning on average 8–16 December. Moult of four primaries (63%) began on 6 January and averaged 73 days. A rapid moult of three primaries (7%) began on 24 January and averaged 55 days. All groups ended their moult between 19 and 28 March. GLM models showed that heavier immatures were more likely to start moulting than leaner birds. This tendency was more pronounced in November–January than in later months. The later the moult started, the fewer feathers were replaced and the faster the process. Departure time set the limit for the end of moult. We suggest the ability to choose different strategies allows immature Wood Sandpipers to adjust their moult to the variable conditions they encounter at wetlands in southern Africa.  相似文献   

7.
M. P. Harris 《Ibis》1973,115(4):483-510
As a nesting species, the Waved Albatross Diomedea irrorata is restricted to Hood Island in the Galapagos archipelago where 12,000 pairs bred in 1971. Outside the islands the species occurs over the northern parts of the Humboldt Current. Two colonies were studied in detail (1970–1971). At the start of a season, males returned first to the colonies and defended a small territory. Copulation occurred without any elaborate ceremony and the female spent little time on land before laying. There was no fixed nest-site, even within a season, and birds moved their eggs considerable distances. This resulted in heavy egg losses. Younger birds bred later than older birds and laid longer but narrower eggs. The average incubation spell varied from four to five days at the extremes of the incubation period to 19 days in the middle. The average incubation and fledging periods were 60 and 167 days respectively. Pairs which lost an egg sometimes adopted the abandoned egg of another bird and successfully reared the chick. Most pairs nested in both seasons. Nesting success was extremely variable, both between years and between colonies. Between 1961 and 1971 at Punta Suarez, virtually no young were reared in four seasons. Even in 1970–71, where nesting success was good, some groups of birds deserted their eggs en masse whereas in neighbouring areas up to 80% of the pairs reared young. The main foods of the young were squid and fish. Birds did not moult wing and tail feathers at the breeding colonies, and about 50% retained some primaries for more than one season, suggesting that successful pairs had difficulty in fitting in a complete moult between breeding attempts. Old feathers were normally found among the inner primaries and at the next moult were preferentially replaced, though adjacent newer feathers were sometimes retained for another season. Some birds bred in their fourth years, but most not until a year or two older. Immatures were present at the colonies late in the breeding cycle, the youngest returning latest and remaining until the last young fledged. Survival of adults and young averaged at least 95% and 93% per annum over many years. Adults and young ringed in 1961 survived equally well. The significance of the timing of the return of immatures and of the large-scale desertion of eggs, apparently not due to food shortage or disturbance, is discussed.  相似文献   

8.
We present the first report of complete overlap of breeding and moult in a shorebird. In southeastern Australia, Hooded Plovers Thinornis rubricollis spend their entire lives on oceanic beaches, where they exhibit biparental care. Population moult encompassed the 6‐month breeding season. Moult timing was estimated using the Underhill–Zucchini method for Type 2 data with a power transformation to accommodate sexual differences in rates of moult progression in the early and late stages of moult. Average moult durations were long in females (170.3 ± 14.2 days), and even longer in males (210.3 ± 13.5 days). Breeding status was known for most birds in our samples, and many active breeders (especially males) were also growing primaries. Females delayed the onset of primary moult but were able to increase the speed of moult and continue breeding, completing moult at about the same time as males. The mechanism by which this was achieved appeared to be flexibility in moult sequence. All moult formulae fell on one of two linked moult sequences, one faster than the other. The slower sequence had fewer feathers growing concurrently and also had formulae indicating suspended moults. Switching between sequences via common formulae is possible at many points during the moult cycle, and three of 12 recaptures were confirmed to have switched sequences in the same moult season. Hooded Plovers thus have a prolonged primary moult with the flexibility to change their rate of moult; this may facilitate high levels of replacement clutches that are associated with passive nest defence and low reproductive success.  相似文献   

9.
Little is known about the biology of waders wintering in southern Asia; this paper deals with the Grey Plover Pluvialis squatarola, a species extensively studied only in western Europe. Adult Grey Plovers wintering in southeastern India underwent primary moult in autumn; the duration was estimated to be 127 days, with mean starting date 1 September and mean completion date 5 January. Some first-year Grey Plovers initiated primary moult in late winter and spring, and completed this moult the following spring. The average mass of adults on arrival in September was 200 g, fluctuated close to 220 g from October to February, and increased to 280 g near the end of May. The mass variation did not show the January peak observed in western Europe. Breeding productivity, measured as the percentage of first-year birds in winter catches, varied between 5% and 70% over six years, and showed a positive correlation with that of Dark-bellied Brent Geese Branta b. bernicla in western Europe and Curlew Sandpipers Calidris ferruginea in South Africa.  相似文献   

10.
Some theories about moult strategies of Palaearctic passerine migrants assume that birds adapt timing of moult to environmental conditions such as rainfall on their African wintering grounds. Species wintering in the northern tropics should limit moult to the period shortly after their arrival at the end of the rainy season. Passerine migrants wintering in West Africa should also moult more rapidly compared to related species or conspecific populations that moult elsewhere. We investigated the moult of melodious warblers Hippolais polyglotta, willow warblers Phylloscopus trochilus and pied flycatchers Ficedula hypoleuca wintering in Comoé National Park, Ivory Coast, between October 1994 and April 1998. In contrast to previous studies we did not restrict our analyses to moult of flight feathers but also included moult of body feathers. The results differed partially from the general assumptions of previous authors. Melodious warblers moulted twice: a complete moult shortly after their arrival, and a moult of body feathers and in some cases some tertials and secondaries in spring. Willow warblers moulting flight feathers were found between December and March with the majority moulting in January and February. Primary moult was not faster compared to populations moulting in central Africa and South Africa. Body feather moult varied strongly among individuals with birds in heavy moult between December and April. Pied flycatchers moulted body feathers and tertials between January and April. Birds with growing feathers were found throughout the whole period including the entire dry season. Moult strategies are thus not readily related to a few environmental factors in general and our results show that factors other than mere resource availability during certain times on the wintering grounds are likely to govern the timing of moult.Communicated by F.Bairlein  相似文献   

11.
《Ostrich》2013,84(3):573-576
Nothing has been published on the moult of the Fiery-necked Nightjar Caprimulgus pectoralis in Zimbabwe. However, most of the birds handled on Ranelia Farm, Cashel, during a study of nightjar breeding biology over four seasons, were examined for moult. Fiery-necked Nightjars were examined on over 70 occasions. Their annual moult occurs between late October and early March, commencing with the primaries, which moult descendantly. The secondaries, which moult ascendantly, follow after P5 has been shed, and so do the rectrices, which moult centrifugally, but R5 precedes R4. Body moult, which starts about the time that R1 is shed, progresses from the head across the neck to the rest of the dorsal plumage, and then over the throat and flanks to the ventral surface. The rictal bristles moult descendantly in time with the primaries. Several birds, some with primary moult scores as high as 18, had commenced moult while still tending young from the first brood, or incubating the eggs of a second, or replacement, clutch. The moult season overlaps the breeding season by about two months.  相似文献   

12.
Trade‐offs between moult and fuelling in migrant birds vary with migration distance and the environmental conditions they encounter. We compared wing moult and fuelling at the northern and southern ends of migration in two populations of adult Common Whitethroats Sylvia communis. The western population moults most remiges at the breeding grounds in Europe (e.g. Poland) and migrates 4000–5000 km to western Africa (e.g. Nigeria). The eastern population moults all remiges at the non‐breeding grounds and migrates 7000–10 000 km from western Asia (e.g. southwestern Siberia) to eastern and southern Africa. We tested the hypotheses that: (1) Whitethroats moult their wing feathers slowly in South Africa, where they face fewer time constraints than in Poland, and (2) fuelling is slower when it coincides with moulting (Poland, South Africa) than when it occurs alone (Siberia, Nigeria). We estimated moult timing of primaries, secondaries and tertials from moult records of Polish and South African Whitethroats ringed in 1987–2017 and determined fuelling patterns from the body mass of Whitethroats ringed in all four regions. The western population moulted wing feathers in Poland over 55 days (2 July–26 August) at a varying rate, up to 13 feathers simultaneously, but fuelled slowly until departure in August–mid‐September. In Nigeria, during the drier period of mid‐February–March they fuelled slowly, but the fuelling rate increased three‐fold in April–May after the rains before mid‐April–May departure. The eastern population did not moult in Siberia but fuelled three times faster before mid‐July–early August departure than did the western birds moulting in Poland. In South Africa, the Whitethroats moulted over 57 days (2 January–28 February) at a constant rate of up to nine feathers simultaneously and fuelled slowly from mid‐December until mid‐April–May departure. These results suggest the two populations use contrasting strategies to capitalize on food supplies before departure from breeding and non‐breeding grounds.  相似文献   

13.
P. R. Evans 《Ibis》1966,108(2):183-216
The annual cycle of Lesser Redpolls breeding in Northumberland is described. Birds return in late April and could rear at least two broods, in the absence of predation, before they begin to moult in early August. The complete moult of both sexes usually begins just after the last brood of young reaches independence. Moult ends in late September and the adults then move southwards immediately. Juveniles also finish their partial moult before they migrate, but those which finish moult well before the adults, apparently wait for the latter before undertaking extensive southward movements, though some disperse over short distances in early September. Some adults and juveniles caught during moult at one site returned to moult there in later autumns, even though they did not breed there. Movement in autumn from Britain to the Continent takes place only at the short sea-crossings. More recoveries are obtained abroad in years of poor birch seed crop in southern England. Moult of the remiges and rectrices of the adults is described, and its progress recorded by a numerical scoring system whose merits are discussed. The moult score of the primary feathers follows an approximately linear relationship with date, and the moult scores of all individuals of each sex in each year have been used in regression analyses to yield averages of the duration, start and end of moult, an average daily increase of primary moult score, and the spread of the start of moult within each sample of birds. The results are discussed in relation to breeding and migration. The rates of moult of the primaries, secondaries and tail are not independent of each other, though, in contrast to the primaries, the secondary moult score does not increase linearly with date. The average daily increase of primary moult score is closely correlated with the number of primaries growing simultaneously. Each primary took about 16 days to complete growth in each year, but the duration of moult varied between 43 and 56 days in different years. Variation in the timing and duration of moult of Redpolls in Norway, Iceland and Britain is discussed in relation to the breeding season. Plumage sequences of the Lesser Redpoll are reviewed, with emphasis on their application to separation of sex and age classes. Wing lengths of the males and females of a given age overlap considerably, and abrasion alters these lengths only slightly. Older birds have longer wings. Weight changes of adults and juveniles in autumn are examined in detail. Weight variation of individual birds in August and September is more often due to hourly changes in response to feeding than day-to-day changes in response to temperature. Weights of adults, but not first-year birds, decrease at the start but then increase towards the end of the moult, but apparently there is no deposition of fat for migration. Weights of birds caught during their southward movement also show no increase, nor did a group of Lesser Redpolls caught near Oxford in December. It is suggested that day length may be an additional reason for southward migration, besides a reduction in food supply.  相似文献   

14.
D. D. B. Summers 《Ibis》1972,114(1):79-88
Japanese Quail were kept in small cages under controlled conditions of temperature and light, and their pterylography and moult are described. There are 10 primaries, 14 secondaries and corresponding numbers of greater upper and lower wing coverts. The alula has four feathers and the tail from five to six pairs of feathers. There is an apterium in the dorso-pelvic tract similar to that in other quail genera. The arrangement of feathers in the ventral and cervical tracts appears to differ from that described for some North American quail.
The chicks hatch with a covering of natal down. Pre-juvenile moult can be seen when the chicks are three days old. Juvenile body plumage is complete in about 30 days; the sides of the face, around the eyes, are the last places to acquire feathers. The tenth and last juvenile primary to grow is mature when the chicks are 41 days old.
The moult in which the juvenile plumage is replaced overlaps the post-natal moult and in part of the ventral tract natal down is replaced by the first adult feathers. This makes it possible to sex the quail at 14 days old. The first adult moult is complete, in the body tracts, by the time the birds are five to six weeks old. The dropping of juvenile primaries commences at about three weeks old and ceases when about eight weeks old. Only from three to six primaries are replaced; most birds studied replaced five. The significance of this difference from other Galliformes is discussed; it is thought to be associated with the species' migratory behaviour. Quail which remained in the controlled laboratory environment did not undergo any further moult. All birds moulted when both temperature and light period were reduced and most birds moulted when the light period alone was reduced. Adult birds housed in small cages in an unheated, unlit shed underwent a complete moult between August and December in which all primaries were replaced. This moult took 8–14 weeks to complete.  相似文献   

15.
Dunlin migration in northeast Italy is described. An attempt to identify the main routes and staging areas used by birds wintering in the central Mediterranean is presented. The results of monthly counts from 1990–1995 revealed that the bulk of the population occupied the wintering area in October and left for the breeding grounds in April and May. The analysis of 342 Italian recoveries of foreign ringed birds showed that 65% were ringed during post-breeding migration through the Baltic Sea, whereas just a few birds had been ringed in western Europe. First-year birds arrived in autumn with a single migratory wave, peaking in October. Two categories of adults were identified during post-breeding migration: birds which directly reached Italian wintering sites and birds which arrived after they had suspended their migration for moulting: the Azov/Black Sea wetlands are suggested as possible moulting areas. Out of 2444 adults and 1627 first-years ringed between 1989 and 1996 at our study area, we obtained a total of 42 recoveries abroad and evidence of direct links between Azov/Black Sea and N Adriatic wetlands, both during autumn and spring migrations. Primary moult was observed only in adults arriving early, the second migratory wave being composed of moulted birds. Locally moulting adults adopted a moult strategy characterized by high raggedness scores, typical of resident moulters. Body mass was not affected by primary moult stage or intensity, winter mass values being reached two weeks after the average date of primary moult completion.  相似文献   

16.
Ronald W.  Summers 《Ibis》1983,125(4):524-544
Upland Geese Chloëphaga picta were studied between 1977 and 1980, primarily around Darwin, East Falkland, in order to describe their breeding biology, moulting and adult survival. The population of breeding birds in a valley reached a peak from mid-September to late November when nesting took place. The average territory length was 240 m in five valleys. Breeding adults generally returned to breed in the same territory each year and with the same mate. Nests were on the ground, usually amongst whitegrass Cortaderiapilosa. The mean clutch size was 6-1, brood size was 5-1 and fledged family 3–9. Incubation took 30 days and the fledgling period was about 70 days. Most broods were raised in the nesting territory. Growth of goslings is described. The breeding success between laying and fledging was 0–34 (in 1977) and 0–29(in 1978), giving an annual production of 21 and 1–8 young per breeding pair. Fledglings remained in family parties through the autumn and winter and were evicted by their parents in early spring. Some siblings stayed together for short periods and then joined other non-breeders. Females started pairing at ten months of age and most were paired at 17–18 months. Some bred for the first time at 23 months. Males started pairing at about 20 months of age. Flightless moult (shedding) took place at ponds or in sheltered inlets of the sea, in flocks of up to several hundred birds. Flightless birds were found between 14 November and 11 February, though 50% were flightless between 26 November and 2 January. Individuals were flightless for 36 days. First-year birds were more synchronized in shedding than adults. The percentage of first-year males (in the male component) varied from 16-5 to 45-9% in shedding flocks, and significantly more males were present in some flocks. The flocks were composed of first-year and second-year birds too young to breed and failed breeders. The percentage of a shedding population which returned to the same site in successive years was 25-3 and 15-1% at two localities. The moult of other feather tracts is described. The annual survival rate of breeding adults was 82%. A model of the population dynamics is presented. The current level of culling to control the goose population is less than the number which must die each year to maintain a stable population.  相似文献   

17.
Organisms that reproduce at high latitudes are assumed to have evolved several adaptations to the short summer. For birds, and especially for long-distance migrants, there is a time constraint because both reproduction and moult must be completed before autumn migration. It has therefore been assumed that birds at northern latitudes must initiate their moult during reproduction more often than birds at low latitudes. To investigate how passerine birds breeding at different latitudes allocate their time between reproduction and moult, we compared timing of these activities during three consecutive breeding seasons in three widely separated populations of the pied flycatcher Ficedula hypoleuca. Our results show that the frequency of individuals with moult-breeding overlap, and moult initiation in relation to breeding stage, varied considerably among populations and years. In all three populations, female moult initiation was restricted to the late nestling period. The males had a more pronounced moult-breeding overlap than the females, but its duration was similar in all three study areas. Thus, there was no evidence for a more pronounced moult-breeding overlap at high compared with low latitudes. These results suggest that pied flycatchers sometimes accept a moult-breeding overlap, but that the time gained by having too extensive an overlap between reproduction and moult does not outweigh the associated costs. Long-distance migrants breeding at northern latitudes apparently experience a trade-off between reproduction and somatic investment during moult. We therefore suggest that a pronounced moult-breeding overlap is not a typical strategy used by long-distance migrants to adjust to the short breeding season at northern latitudes. Received: 7 May 1998 / Accepted: 24 August 1998  相似文献   

18.
Gonad development, moult and seasonal changes in body weight and composition in the Tawny owl Strix aluco were studied by examining the carcasses of 369 owls (mostly road casualties) supplemented by 112 weights of live birds. In breeding females laying was preceded by the accumulation of fat and to a lesser extent protein which meant that they weighed more at this time (February/March) than at any other. Females declined in weight after laying but were still heavy during incubation. In contrast, males and non-breeding females did not increase in weight before the start of the breeding season. Juveniles reached or even exceeded adult weight well before independence due to the deposition of fat. Even after the exclusion of diseased or contaminated individuals, 9·4% of the birds examined were identified as starving; most of these were in the autumn and were probably newly-independent young wandering in search of territories. In both sexes gonad maturation was of brief duration coinciding with the period (mid-March to mid-April) in which eggs are normally laid. Ovarian growth was biphasic. In the three months prior to the breeding season ovarian condition in different birds was positively correlated with body weight and it appeared that the largest ovarian follicles of females in poor condition failed to attain the size from which rapid growth to final ovulation occurs. in males testis size in the breeding season was correlated with pectoral muscle weight (an index to protein condition) but not body weight. The majority of adults commenced wing moult in June. The average duration of primary moult was estimated to be 77 days. Healthy birds replaced the primaries of both wings at the same rate but most diseased birds moulted asymmetrically and/or out of season. First-year birds renewed their body feathers between September and November. In the Tawny owl territory establishment, breeding and moult are temporally separated.  相似文献   

19.
In the annual cycle of migratory birds, temporal and energetic constraints can lead to carry‐over effects, in which performance in one life history stage affects later stages. Bar‐tailed godwits Limosa lapponica baueri, which achieve remarkably high pre‐migratory fuel loads, undertake the longest non‐stop migratory flights yet recorded, and breed during brief high‐latitude summers, may be particularly vulnerable to persistent effects of disruptions to their rigidly‐timed annual routines. Using three years of non‐breeding data in New Zealand, we asked how arrival timing after a non‐stop flight from Alaska (>11 000 km) affected an individual godwit's performance in subsequent flight feather moult, contour feather moults, and migratory departure. Late arrival led to later wing moult, but godwits partially compensated for delayed moult initiation by increasing moult rate and decreasing the total duration of moult. Delays in arrival and wing moult up to 34–37 d had no apparent effect on an individual's migratory departure or extent of breeding plumage at departure, both of which were extraordinarily consistent between years. Thus, ‘errors’ in timing early in the non‐breeding season were essentially corrected in New Zealand prior to spring migration. Variation in migration timing also had no apparent effect on an individual's likelihood of returning the following season. The bar‐tailed godwits’ rigid maintenance of plumage and spring migration schedules, coupled with high annual survival, imply a surprising degree of flexibility to address unforeseen circumstances in the annual cycle.  相似文献   

20.
For long‐distance migrants, such as many of the shorebirds, understanding the demographic implications of behavioural strategies adopted by individuals is key to understanding how environmental change will affect populations. Stable isotopes have been used in the terrestrial environment to infer migratory strategies of birds but rarely in marine or estuarine systems. Here, we show that the stable isotope ratios of carbon and nitrogen in flight feathers can be used to identify at least three discrete wintering areas of the Red Knot Calidris canutus on the eastern seaboard of the Americas, ranging from southeastern USA to Patagonia and Tierra del Fuego. In spring, birds migrate northwards via Delaware Bay, in the northeastern USA, the last stopping point before arrival in Arctic breeding areas, where they fatten up on eggs of spawning Horseshoe Crabs Limulus polyphemus. The isotope ratios of feather samples taken from birds caught in the Bay during May 2003 were compared with feathers obtained from known wintering areas in Florida (USA), Bahia Lomas (Chile) and Rio Grande (Argentina). In May 2003, 30% of birds passing through the Bay had Florida‐type ‘signatures’, 58% were Bahia Lomas‐type, 6% were Rio Grande‐type and 7% were unclassified. Some of the southern wintering birds had started moulting flight feathers in northern areas, suspended this, and then finished their moult in the wintering areas, whereas others flew straight to the wintering areas before commencing moult. This study shows that stable isotopes can be used to infer migratory strategies of coastal‐feeding shorebirds and provides the basis for identifying the moult strategy and wintering areas of birds passing through Delaware Bay. Coupled with banding and marking birds as individuals, stable isotopes provide a powerful tool for estimating population‐specific demographic parameters and, in this case, further our understanding of the migration systems of the declining Nearctic populations of Red Knot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号