首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined glucocorticoid effects on CEM-C7 and CEM-C1 subclones of a leukemic human T-cell line using fluorescence photobleaching recovery techniques. Incubation with 10(-5) M triamcinolone acetonide (TA) increased lipid lateral diffusion on steroid-sensitive CEM-C7 cells but had no effect on steroid-resistant CEM-C1 cells. CEM-C7 cells incubated in serum-free medium responded only to TA but, when fetal calf serum was added to the incubation medium, would also respond to 10(-5) M dexamethasone and hydrocortisone. Thus, glucocorticoids can cause increased lipid lateral diffusion in CEM-C7 cells, while having no effect on steroid-resistant CEM-C1 cells.  相似文献   

2.
3.
Ketoconazole, an imidazole anti-fungal agent, has often produced features of androgen deficiency including decreased libido, gynecomastia, impotence, oligospermia, and decreased testosterone levels, in men being treated for chronic mycotic infections. Based on these potent effects on gonadal function in vivo as well as previous work in vitro demonstrating affinity of ketoconazole for receptor proteins for glucocorticoids and 1,25(OH)2 vitamin D3 and for sex steroid binding globulin (SSBG), the binding of ketoconazole to human androgen receptors (AR) in vitro was also examined. Ketoconazole competition with [3H]methyltrienolone (R1881) for androgen binding sites in dispersed, intact cultured human skin fibroblasts was determined at 22 degrees C. Fifty percent displacement of [3H]R1881 binding to AR was achieved by 6.4 +/- 1.8 (SE) x 10(-5) M ketoconazole. Additional binding studies performed with ketoconazole in the presence of increasing amounts of [3H]R1881 showed that the interaction of ketoconazole with AR was competitive when the data were analyzed by the Scatchard method. It should be noted, however, that the dose of ketoconazole required for 50% occupancy of the androgen receptor is not likely to be achieved in vivo, at least in plasma. Finally, androgen binding studies performed with other imidazoles, such as clotrimazole, miconazole, and fluconozole, revealed that in this class of compounds only ketoconazole appears to interact with the androgen receptor. Ketoconazole appears to be the first example of a non-steroidal compound which binds competitively to both SSBG and multiple steroid hormone receptors, suggesting that the ligand binding sites of these proteins share some features in common.  相似文献   

4.
1. Uptake and binding of dexamethasone to glucocorticoid receptor has been studied in Morris hepatoma 7800 C1 cells in relation to its effect on cell growth and peroxisomal beta-oxidation. 2. Intact cells showed saturable, specific dexamethasone binding of limited capacity and Scatchard analysis revealed one single class of binding sites with equilibrium dissociation constant (Kd) of 0.24 nM similar to other glucocorticoid receptors. However, the binding capacity of 24 fmol/mg cell protein is less than 5% of previously reported values. 3. Uptake of [3H]dexamethasone by intact cells was temperature dependent giving a linear Arrhenius plot with a calculated energy of activation of 58.5 kJ mol-1 x degree-1. 4. Cytosol fractions had specific binding proteins for glucocorticoid hormones with sedimentation coefficient of ca 7S. No specific binding sites for [3H]dexamethasone was demonstrated in purified membrane fractions. 5. Dexamethasone and the synthetic fatty acid analogue tetradecylthio acetic acid (TTA) both inhibited the growth of the 7800 C1 cells and induced the peroxisomal acyl-CoA oxidase activity. A combination of the two compounds gave additive effects. Both these effects of dexamethasone and TTA were counteracted by insulin. 6. We conclude that dexamethasone induces growth inhibition and enzyme induction by binding to functional intracellular glucocorticoid receptors. The action of dexamethasone is consistent with a dissolution in the membrane from where it diffuses passively into the cell and binds to specific receptors in an energy dependent step. 6. The synergistic action of dexamethasone and TTA and the counteraction exerted by insulin are not due to changes in the dexamethasone receptor affinity or binding capacity.  相似文献   

5.
Monoclonal antibodies to the rat hepatic glucocorticoid receptor (GR) were produced by using 4000-fold-purified unactivated rat hepatic GR as the immunogen in an immunization in vitro. Hybridomas were screened for anti-GR antibody production by using an enzyme-linked immunosorbent assay. The antibody, 3A6, described here, is an IgM (lambda). The interaction of 3A6 with the purified GR was explored by sedimentation analysis, where a shift of the 9 S GR to a form with a higher s20,w value was demonstrated. Binding specificity and sensitivity were demonstrated by protein immunoblotting. 3A6 cross-reacted with all rat tissue glucocorticoid receptors (GRs) examined, except those of the brain. Species cross-reactivity was observed with other mammalian GRs (from human CEM-C7 cells and from pig and mouse liver). Immunocytochemical localization of the GR was assessed by indirect immunofluorescence in intact fixed cells, which demonstrated intense cytoplasmic staining in the absence of pretreatment with glucocorticoids and nuclear localization when cells were pretreated with glucocorticoids. This monoclonal antibody significantly inhibited steroid binding to unoccupied receptor and DNA binding of activated steroid-receptor complexes. Furthermore, preincubation of the purified activated GR complex with 3A6 prevented phosphorylation of the GR in vitro. Thus 3A6 differs from previous monoclonal antibodies to the GR in its capacity to cross-react with the human GR and by its specificity for an epitope on or near a functional domain of the GR.  相似文献   

6.
7.
Two glucocorticoid receptor-containing clones of human acute lymphoblastic leukemia, one (CEM-C7) sensitive and one (CEM-C1) resistant to dexamethasone (dex) were studied in an effort to identify the time course of the biochemical changes responsible for dex-induced growth inhibition of CEM-C7 cells. Cells were synchronized by treatment with 0.25 mM (C7) or 0.50 mM (C1) thymidine for 12 h followed by 0.025 micrograms/ml (C7) or 0.050 micrograms/ml (C1) colcemid for 12 h, then released either in the presence or absence of 1 microM dex. The inhibition of cellular proliferation which occurs at 48 h after release in the dex-treated CEM-C7 cells was preceded by an inhibition of acetate incorporation into cholesterol, first evident at 24 h, inhibition of protein synthesis at 30 h, and the development of a cell cycle block in G1 at 36 h. No inhibition of any of these parameters was seen in the resistant CEM-C1 cells. Thus the inhibition of cholesterol synthesis in the sensitive cells may be one of the earliest parameters affected by glucocorticoids.  相似文献   

8.
Inhibitors of histone deacetylases (HDACi's) are promising novel tools for cancer therapy. We have compared the growth inhibitory and apoptogenic potential of the pan-HDACi SAHA and the sub-class I selective HDAC inhibitor MS275, as well as valproic acid (VPA) on glucocorticoid sensitive and resistant B (B-ALL) and T (T-ALL) cell acute lymphoblastic leukemia cells and patients blasts. In contrast, to our previous results with U937 acute myeloid leukemia (AML) cells which showed a similar activity of MS275 and SAHA in growth inhibition and apoptosis induction, both B and T-ALL cells were much more efficiently killed by SAHA and VPA than by MS275. The same relative potency was observed with some patient ALL blasts treated ex vivo. SAHA displayed similar efficacy on glucocorticoid-sensitive and insensitive ALL cells but did not synergize with dexamethasone. In studying mediators of apoptosis we found that the TRAIL receptor DR5 is constitutively expressed in glucocorticoid-sensitive CEM-C7 cells which are also TRAIL sensitive. In contrast, glucocorticoid-insensitive CEM-C1 cells do not express DR5 and are insensitive to TRAIL. However, SAHA induces, in addition to p21(WAF1/CIP1) also re-expression of DR5. Importantly, SAHA-induced apoptosis of CEM-C7 cells operates through initiator caspase 10, while it induces apoptosis of CEM-C1 cells through the intrinsic, as well as through caspase-independent death pathways. Our data suggest that the generation of resistance to glucocorticoids has dramatically altered death signaling in these cells and that SAHA overcomes these restrictions by inducing alternative death pathways.  相似文献   

9.
The DDT1MF-2 smooth muscle tumor cell line contains receptors for and is differentially sensitive to androgens and glucocorticoids. Androgens stimulate and glucocorticoids inhibit growth. We now confirm that the latter involves the induction of a block in the G1 phase of the cell cycle. We have developed and characterized in vitro and in vivo a glucocorticoid resistant variant of this cell line, the DDT1MF-2-GR. Glucocorticoids specifically inhibit androgen induced androgen receptor augmentation in DDT1MF-2 cells, but not in the GR variant suggesting that growth inhibition is related to inhibition of androgen receptor augmentation. However, under optimal conditions for cell proliferation, when glucocorticoid inhibited growth is relieved by the exogenous addition of platelet derived growth factor, androgen receptor augmentation is still suppressed. Thus, androgen induced elevation in androgen receptor concentrations is not a prerequisite for cell proliferation. These results imply that in androgen responsive cells, although androgen stimulation of growth can be blocked by antagonism of androgen receptor mediated events, the antagonism can be bypassed by supplying the cells with exogenous growth factors. These results provoke speculation on how cells, which are dependent upon androgens for growth, become autonomous.  相似文献   

10.
The R3327H-G8-A1 cell line derived from the Dunning rat prostate adenocarcinoma contains both androgen and glucocorticoid receptors. Following steroid deprivation, androgens specifically increase the concentration of their receptors in these cells by approximately 2-fold within 6 h and 3-4-fold in 24 h. In the presence of potent glucocorticoids, androgen receptor augmentation is reduced by 40-50% in the first 6 h and completely inhibited during the subsequent 24 h. This event, which is specific for glucocorticoids, appears to be due to an inhibition of androgen receptor synthesis. Furthermore, glucocorticoids inhibit proliferation of these cells by inhibiting the release of growth factors and arresting them in the G0 or A state of the cell cycle. This inhibition can be overcome by addition of low concentrations of either epidermal growth factor or platelet-derived growth factor; however, the inhibitory effect of the glucocorticoid on androgen receptor augmentation is not released. These results suggest that glucocorticoids arrest cellular proliferation by altering the autoregulation of growth and that this event is not dependent upon inhibition of androgen receptor augmentation.  相似文献   

11.
Treatment of CEM-C7 cells with glucocorticoids produces a 2.5-fold increase in the activity of the enzyme glutamine synthetase (GS). This increase is specific for steroids with glucocorticoid activity adn occurs over a range of steroid concentrations consistent with a receptor-mediated mechanism. Half-maximal and maximal inductions by dexamethasone (dex) occur at 2 X 10(-8) M and 2 X 10(-7) M dex, respectively, concentrations approximately equal to those necessary to produce half and full occupancy of glucocorticoid receptors. GS activity began to increase 1 hour after dex treatment and was complete by 12 hours. This is well before any of the growth inhibitory or cytolytic effects of dex on this cell line occur. This increase was dependent on the presence of glucocorticoid receptors and required both RNA and protein synthesis. Removal of dex following stimulation to maximal levels resulted in a decrease of GS activity to preinduced levels with a half-time of 5 hours. Glutamine deprivation of cells resulted in increased GS activity. However, even in the total absence of glutamine, dex treatment elicited a 2.0-2.5-fold increase in GS activity, ruling out inhibition of glutamine uptake as a mechanism for the dex-induced increase. Experiments with 5'-bromodeoxyuridine (BrdU) demonstrated that GS elevation was sensitive to BrdU substitution of DNA, while dex-induced growth inhibition was not. Therefore GS elevation and growth inhibition in this cell line appear to be independently expressed steroid responses.  相似文献   

12.
The data reported here demonstrate that the synthetic steroid RU 38486 functions as an optimal antagonist in the glucocorticoid-sensitive human leukemic cell line CEM-C7. This steroid blocks the ability of the potent agonist triamcinolone acetonide (TA) to induce glutamine synthetase activity and to ultimately cause cell lysis, but when given alone does not exhibit partial agonist activity. Both [3H]RU 38486 and [3H]TA bind with high affinity and specificity to cytosolic glucocorticoid receptors in this cell line. However, under a variety of in vitro conditions (elevated temperature and presence of exogenous ATP), [3H]TA promotes receptor activation more effectively than [3H]RU 38486. This difference in the extent of activation was verified by two independent techniques: DEAE-cellulose chromatography and DNA-cellulose binding. [3H]RU 38486 and [3H]TA dissociate at the same rate from the unactivated receptors but at 25 degrees C (not 0 degree C) [3H]RU 38486 dissociates slightly more rapidly from the activated receptors. The defective receptors in the glucocorticoid-resistant subclone 3R7 appear to be "activation labile" (rapid dissociation of ligand from activated form) using either tritiated steroid. Once activated in vivo, the CEM-C7 [3H]TA- and [3H]RU 38486-receptor complexes undergo similar nuclear translocation and those activated complexes generated in vitro appear to bind to nonspecific DNA-cellulose with the same relative affinities. Thus the precise mechanism(s) by which RU 38486 exerts its potent antiglucocorticoid effect in this human cell line cannot be easily explained in terms of a defect in one of the crucial steps (specific high affinity binding, activation, translocation, DNA binding) required to elicit a physiological response. However, the data presented here do suggest that when comparing an antagonist and agonist which both bind to receptors with the same relative high affinity, the agonist may be more effective in facilitating the conformational change associated with in vitro activation.  相似文献   

13.
Glucocorticoids induce growth inhibition and eventually cause cell lysis in certain sensitive leukemic cells. To investigate how glucocorticoids interact with cell growth pathways, we studied the expression of 14 growth-related genes in dexamethasone-treated CEM-C7A cells, a steroid-sensitive clone of the CCRF-CEM cell line, and in several closely related clones. The 14 genes studied were chosen to represent four different levels of mitogenic signal transduction. Detectable mRNA levels were found for 8 of the 14 genes, but among these only c-myc expression was obviously suppressed by dexamethasone. The c-myc mRNA levels declined abruptly during the first 12 h after addition of 1 microM dexamethasone, and maximal suppression occurred by 18 h. This change was not seen in the C7A controls, in the glucocorticoid-resistant, receptor-deficient clone ICR-27, or in the glucocorticoid-resistant, receptor-positive clone C1. H.10, a hybrid clone between C1 and ICR-27, showed restoration of the sensitive phenotype, and in H.10 cells the c-myc mRNA was also suppressed by dexamethasone. Our results suggest that: 1) functional glucocorticoid receptor is required for inducing c-myc suppression. 2) In dexamethasone-resistant cells with functional receptors c-myc is not suppressed. 3) The growth arrest induced by glucocorticoids correlates with, and may be regulated via, suppression of c-myc expression.  相似文献   

14.
Summary CEM-C7, a human leukemic CD4+ T-lymphocyte cell line and three of its subclones, CEM-4R4, CEM-3R43, and ICR-27, previously cultured in a medium supplemented with 5 to 10% fetal bovine serum, have been adapted to serum-free media. The best medium of those tested was RPMI 1640 supplemented with 5 μg/ml each transferrin and insulin + 5 ng/ml sodium selinite ± 0.1% bovine serum albumin. While growing either with or without albumin, the several clonal lines of CEM cells displayed growth similar to serum-supplemented cultures. Cell proliferation of CEM-C7 cells cultured in both serum-free media has been sustained for 3 mo, with culture doubling times of about 25 h for both serum-supplemented and serum-free cultures (viability ≥ 90%). Cell morphology remained essentially the same in serum-free or serum containing media. The expression of CD4, a marker for T-derived lymphoid cells, was not significantly different in serum-free medium. When grown in serum-free medium, CEM-C7 cells exhibited increased steroid responsiveness as evidenced by increased glucocorticoid receptor binding sites, increased induction of glutamine synthetase, and cell lysis at lower concentrations of steroid. Receptor mutant subclones of CEM-C7, which are proven to be completely unresponsive to micromolar concentrations of dexamethasone when grown in serum-supplemented medium, become partially sensitive to the hormone after growth in defined medium. The increased sensitivity of CEM-C7 cells and its subclones to dexamethasone in serum-free medium returned to previous levels when these cells were recultured in serum-containing medium. Our results suggest that substances in serum influence steroid effects on these cells and that the molecular details of glucocorticoid hormone action may be pursued more precisely in a clearly defined culture medium. This work was conducted in conjunction with the Walls Medical Research Foundation.  相似文献   

15.
Activated cholesterol-laden macrophages in atherosclerotic lesions are believed to influence the progression of this disease. The induction of nitric oxide synthase (iNOS) activity was investigated in control and cholesterol-laden J774 macrophages, obtained by pre-incubation with oxidized or acetylated low density lipoproteins (oxLDL, acLDL). Loading with oxLDL caused a small induction of NOS activity in unstimulated cells, as indicated by nitrite and citrulline accumulation in the supernatant. However, it suppressed the iNOS activity resulting from stimulation of the cells with lipopolysaccharide with or without interferon-gamma. AcLDL had no inhibitory effect, indicating that cholesterol accumulation as such was not responsible. Since the induction of NOS in macrophages is inhibited by glucocorticoids, the possibility that a glucocorticoid-like factor, formed during oxidation of LDL, may cause the inhibition, was investigated. However, addition of the glucocorticoid receptor antagonist mifepristone did not prevent the oxLDL-dependent NOS inhibition, indicating that the glucocorticoid receptor is not involved in the suppressive effect of oxLDL.  相似文献   

16.
The effect of media conditions on the glucocorticoid response has been examined in three types of cultured cells. In rat pituitary tumor cells (GC cells) growth hormone production was stimulated by glucocorticoids provided fresh culture media was present (enriched media conditions). In contrast, dexamethasone either failed to induce or deinduce growth hormone synthesis if added to cultures which had not received fresh media for 3 days (depleted media condition). With human skin fibroblasts, cortisol stimulated [3H]thymidine incorporation in the enriched condition but inhibited this response in the depleted condition. In mouse lymphoma (S49) cells the enriched media conditions significantly delayed the killing response to glucocorticoids (20% killing after 24 h versus 90% killing after 24 h for the depleted condition). Thus, the magnitude and in some cases, the direction of the glucocorticoid response are sensitive to the conditions to which the cells are exposed. In all three cell types the steroid also rapidly (detectable by 15 min, maximal by 2 h) altered chromatin structure as detected by a change in the number of initiation sites for Escherichia coli RNA polymerase assayed under cell-free conditions. This early nuclear response could be in a positive or negative direction and was also affected by the culture conditions; enriched media favored a positive or less negative effect on the initiation sites by the steroid, while depleted media favored a steroid-induced inhibition of this chromatin function. In S49 and GC cells the kinetics and magnitude of the change in chromatin closely followed receptor . glucocorticoid complex binding to nuclei while removal of dexamethasone from the culture media resulted in a rapid (t 1/2 = approximately 20 min) disappearance of the effect which paralleled loss of bound hormone from the nucleus. The glucocorticoid effect on chromatin was not observed in two lines of glucocorticoid-resistant mutant S49 cells. One line (R-) lacks detectable glucocorticoid receptors; the other line (Nti) has receptors that bind the hormone normally, but the receptor . glucocorticoid complexes bind more avidly to the nucleus. These results suggest that the receptor is involved in both the stimulatory and the inhibitory effects on chromatin. The findings in the Nti cells and of a slight lag between nuclear binding of receptors and initiation site alteration implies that some receptor property, in addition to nuclear binding per se, is responsible for the influence on chromatin. These results are discussed in terms of a model in which steroid hormones initiate their actions by influencing a reaction that modifies chromatin structure. The direction and magnitude of the reaction, and its effect on the expression of specific genes, are dictated by the metabolic state and differentiation of the cell.  相似文献   

17.
Regulation of glucocorticoid receptor (GR) protein and mRNA were examined in the human leukemic T-cell line CEM-C7. Unlike other cells in which GR regulation has been examined, the growth of these cells is inhibited by glucocorticoids, leading to cell death. Treatment of glucocorticoid-sensitive CEM-C7 cells with 1 microM dexamethasone for 18 h resulted in an increase in both cytoplasmic and nuclear GR protein, as determined by immunoblotting with anti-human GR antisera. Analysis of GR mRNA levels by Northern blotting revealed a corresponding increase in mRNA in steroid-treated cells. An increase in GR mRNA was detectable after as little as 3 h of treatment with dexamethasone, and GR mRNA concentration continued to increase for at least 18 h, well before the onset of growth arrest or cell death. GR mRNA concentration was not altered after dexamethasone treatment of the glucocorticoid-resistant mutant cell line ICR27TK.3, which lacks functional GR. Thus, the increase in GR seen in glucocorticoid-sensitive cells is a GR-mediated response. These results are in sharp contrast to the down-regulation of GR reported in other cells and tissues, and suggest that regulation of the GR by its cognate ligand may be tissue-specific.  相似文献   

18.
CON8 is a single-cell derived subclone of the 13762NF transplantable, hormone-responsive rat mammary tumor that proliferates rapidly in serum-free medium. Addition of either glucocorticoids or calf serum alone caused a slight stimulation of CON8 proliferation. However, glucocorticoids required the presence of specific serum proteins to strongly suppress CON8 cell growth. Furthermore, the anchorage-independent growth of CON8 cells was significantly reduced in the presence of glucocorticoids and serum. We have designated this serum activity GMGSF, for glucocorticoid modulating growth suppression factor. Inhibition of cell growth was limited to steroids with strong glucocorticoid biological activity, while exposure to the glucocorticoid antagonist RU38486 prevented this response. Half-maximal growth inhibition and half-maximal expression of a glucocorticoid-inducible gene product (2 nM) occurred slightly below the half-maximal receptor binding of [3H]dexamethasone (10nM). We have also selected a variant mammary epithelial tumor cell line, derived from CON8, denoted 8RUV7, whose proliferation and soft agar colony formation failed to be suppressed by glucocorticoids in the presence of serum. These glucocorticoid-resistant variant cells possess functional glucocorticoid receptors, competently produce the glucocorticoid-responsive gene product plasminogen activator inhibitor, and along with CON8 cells express milk fat globule protein antigens on their cell surface, indicative of their mammary epithelial cell character. We are using this variant line to genetically dissect the molecular mechanism of the glucocorticoid/GMGSF growth suppression pathway in mammary epithelial tumor cells.  相似文献   

19.
The antifungal imidazole, ketoconazole, was tested for effects on 1,25-dihydroxyvitamin D-3 (1,25-(OH)2D3) metabolism and binding in intact osteoblast-like osteogenic sarcoma cells (UMR-106). Ketoconazole inhibited the C-24 oxidation of 1,25-(OH)2D3 in a dose-dependent manner. Furthermore, inhibition of 1,25-(OH)2D3 metabolism by ketoconazole resulted, after a lag time of 2 h, in a sharp increase of receptor-bound 1,25-(OH)2D3. The data suggest that the self-induced 1,25-(OH)2D3 metabolism may play an important role in controlling the intracellular levels of and, consequently, receptor occupancy by the active form of vitamin D. Furthermore the results are compatible with the existence of a homologous up-regulation of the 1,25-(OH)2D3-receptor.  相似文献   

20.
The relationship between the cellular uptake of glucocorticoid hormones, the binding of these hormones to specific in vitro receptors, and the induction of mouse mammary tumor viruses in an established mouse mammary tumor cell line was highly correlated. These results suggest that the induction of mouse mammary tumor virus by glucocorticoid hormones is a physiological process acting through a mechanism of high affinity, saturable steroid-receptors. A temperature-sensitive or salt-dependent step following glucocorticoid-receptor interaction was required for nuclear uptake of the steroid. Induction studies with different adrenocorticoids indicate that the synthetic glucocorticoid, dexamethasone (1,4-pregnadiene-9-fluor-16alpha-methyl-11beta,17alpha,21-triol-3,20-dione), is the most potent inducer of mouse mammary tumor viruses and all steroids which caused significant induction were glucocorticoids. Other glucocorticoids appear to stimulate murine mammary tumor virus production by a mechanism similar to that of dexamethasone; for example, corticosterone competes with dexamethasone for binding to the glucocorticoid receptor and blocks the uptake of dexamethasone into cells. Progesterone also blocks the cellular uptake of dexamethasone and can bind to the glucocorticoid receptor at low concentrations (10-7 to 10-8 M) but progesterone does not consistently induce virus at hormone concentrations even as high as 10-4 M. Thus, in this system, binding to a cytoplasmic receptor is necessary but not sufficient for induction by glucocorticoids. Estrogens and androgens interfere with receptor binding and cellular uptake of dexamethasone but only at much higher concentration (10-4 M) than progesterone, and do not induce mammary tumor virus production. Although there was a positive correlation between steroid structure, binding, and biologic induction, other factors clearly affect the physiological manifestations of steroid actions. Mouse cells with comparable cytoplasmic receptor levels and comparable nuclear uptake differed absolutely in their degree of murine mammary tumor virus induction following hormone treatment. Although all mouse cells examined contain comparable levels of murine mammary tumor virus DNA, only cells producing constitutive levels of murine mammary tumor virus RNA could be induced to higher levels by a variety of glucocorticoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号