首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hirudin inhibited the binding of human 125I-alpha-thrombin to the saturable, but not the nonsaturable, sites on washed human platelets. When hirudin was added to a thrombin-platelet mixture, it caused a biphasic dissociation of bound thrombin. A partial dissociation was too rapid to measure and was followed by complete dissociation with a first order rate constant of about 10(-2) s-1. The fraction of bound thrombin in the more slowly dissociable form increased from essentially none after a 5-s preincubation of thrombin and platelets to as much as 75% of saturable binding after a 4-min preincubation. Transition to the slowly dissociable state was not accompanied by an increase in the amount bound and was not observed with active site serine-derivatized thrombin. This is the first evidence with intact platelets of a binding characteristic that depends, as does platelet stimulation, on catalytically active thrombin, suggesting that it may represent physiologically significant receptor processing.  相似文献   

2.
A 77-kDa complex of thrombin and a protein secreted by activated platelets had little if any thrombin amidolytic activity, indicating that the secreted protein is an inhibitor. The molecular weight of the inhibitor before reaction with thrombin was approximately 50,000. The apparent second-order rate constant for complex formation was estimated to be 1.3 x 10(6) M-1 s-1 (mean of four measurements); it was not affected by heparin or heparinase. These properties distinguish this inhibitor from other protease inhibitors secreted by platelets. The inhibitor reacted with trypsin and possibly with urokinase but not with factor Xa.  相似文献   

3.
Platelets express, among others, initiator caspase 9 and effector caspase 3. Upon activation by physiological agonists, calcium ionophores or under shear stress they might develop apoptotic events. Although it is well known that the cytoskeletal network plays a crucial role in apoptosis, the relationship between caspases 3 and 9 and the cytoskeleton is poorly understood. Here we demonstrate that the physiological agonist thrombin is able to induce activation of caspases 3 and 9 in human platelets and significantly increases the amount in the cytoskeleton of the active forms of both caspases and the procaspases 3 and 9. After stimulation with thrombin the amount of active caspases 3 and 9 in the cytosolic and cytoskeletal fractions were significantly reduced in Ro-31-8220-treated cells, which demonstrates that caspases activation and association with the cytoskeleton needs the contribution of PKC. Inhibition of actin polymerization by cytochalasin D inhibits translocation and activation of both caspases, suggesting that thrombin stimulates caspase 3 and 9 activation and association with the reorganizing actin cytoskeleton. Finally, our results show that inhibition of thrombin-induced caspase activation has no effect on their translocation to the cytoskeleton although impairment of thrombin-evoked caspase translocation has negative effects on caspase activity, suggesting that translocation to the cytoskeleton might be important for caspase activation by thrombin in human platelets.  相似文献   

4.
The signal transduction induced by thrombin in human platelets   总被引:6,自引:0,他引:6  
E G Lapetina 《FEBS letters》1990,268(2):400-404
The stimulation of human platelets by thrombin leads to the activation of phospholipases C and A2, protein kinases, formation of 3-inositol phospholipids and mobilization of Ca2+. These biochemical reactions closely parallel platelet shape change, granular secretion and aggregation. The membrane-bound transducers for the thrombin receptor seem to be the heterotrimeric G protein Gi2 and the ras-related G protein rap 1-b. Phosphorylation of rap 1-b by the action of the cyclic AMP-dependent protein kinase seems to uncouple the thrombin receptor from phospholipases. This causes inhibition of the formation of second messenger molecules and the onset of physiological responses.  相似文献   

5.
Signalling cascades are regulated both positively and negatively by tyrosine phosphorylation. Integrin mediated platelet adhesion triggers signal transduction cascades involving translocation of proteins and tyrosine phosphorylation events, ultimately causing large signalling complexes to be assembled. In resting platelets, a small number of phosphorylated proteins are evident with molecular mass of 50-62 kDa and 120-130 kDa. In thrombin activated human platelets, however, there is a large increase in the number of tyrosine phosphorylated signalling proteins detected. These proteins include pCas (130 kDa), FAK (125 kDa), PI(3)k (85 kDa) and src (85 kDa). However, it is unlikely that this list of proteins represents all the dynamic changes that occur after platelet activation and it is understood that more proteins remain unidentified. In this study, we propose a method for the isolation of the phosphotyrosine proteome from both resting and thrombin activated human platelets. All the dynamic phosphotyrosine events that occur in the platelet after thrombin activation were isolated by immunoprecipitation, using the monoclonal antibody 4G10, allowing us to obtain higher concentrations of relatively low abundant proteins. The resulting phosphotyrosine proteomes were separated by two-dimensional gel electrophoresis. Sixty-seven proteins were reproducibly found to be unique in the thrombin activated platelet proteome when compared to resting platelets. We have positively identified ten of these proteins by Western blotting and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry and these include FAK, Syk, ALK-4, P2X6 and MAPK kinase kinase. This proteomics approach to understanding the signalling events following platelet activation may elucidate potential drug targets for the treatment of coronary thrombosis.  相似文献   

6.
One of the earliest actions of thrombin in fibroblasts is stimulation of a phospholipase C (PLC) that hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. In membranes prepared from WI-38 human lung fibroblasts, thrombin activated an inositol-lipid-specific PLC that hydrolysed [32P]PIP2 and [32P]phosphatidylinositol 4-monophosphate (PIP) to [32P]IP3 and [32P]inositol 1,4-bisphosphate (IP2) respectively. Degradation of [32P]phosphatidylinositol was not detected. PLC activation by thrombin was dependent on GTP, and was completely inhibited by a 15-fold excess of the non-hydrolysable GDP analogue guanosine 5'-[beta-thio]diphosphate (GDP[S]). Neither ATP nor cytosol was required. Guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) also stimulated polyphosphoinositide hydrolysis, and this activation was inhibited by GDP[S]. Stimulation of PLC by either thrombin or p[NH]ppG was dependent on Ca2+. Activation by thrombin required Ca2+ concentrations between 1 and 100 nM, whereas stimulation of PLC activity by GTP required concentrations of Ca2+ above 100 nM. Thus the mitogen thrombin increased the sensitivity of PLC to concentrations of free Ca2+ similar to those found in quiescent fibroblasts. Under identical conditions, another mitogen, platelet-derived growth factor, did not stimulate polyphosphoinositide hydrolysis. It is concluded that an early post-receptor effect of thrombin is the activation of a Ca2+- and GTP-dependent membrane-associated PLC that specifically cleaves PIP2 and PIP. This result suggests that the cell-surface receptor for thrombin is coupled to a polyphosphoinositide-specific PLC by a GTP-binding protein that regulates PLC activity by increasing its sensitivity to Ca2+.  相似文献   

7.

Background  

Platelets are small anucleated blood particles that play a key role in the control of bleeding. Platelets need to be activated to perform their functions and participate in hemostasis. The process of activation is accompanied by vast protein reorganization and posttranslational modifications. The goal of this study was to identify changes in proteins in platelets activated by different agonists. Platelets were activated by three different agonists - arachidonic acid, collagen, and thrombin. 2D SDS-PAGE (pI 4-7) was used to separate platelet proteins. Proteomes of activated and resting platelets were compared with each other by Progenesis SameSpots statistical software; and proteins were identified by nanoLC-MS/MS.  相似文献   

8.
The effect of thrombin on the oxygen consumption of washed human platelets was measured polarographically with the Clark oxygen electrode. The average basal respiratory rate was 18±1.6 (mean ±S.E.) natoms oxygen per min per 109 platelets. Thrombin (1.9 units/ml) caused a 4–13-fold increase in the rate of oxygen consumption (138±14 (mean ±S.E.) natoms oxygen per min per 109 platelets). The thrombin-stimulated increase of oxygen consumption was transient, lasting from 1 to 1.5 min before returning to the respiratory rate observed before the thrombin addition. Release of platelet constituents appeared to precede the stimulation of oxygen consumption. These results may provide a basis for explaining the discrepancy in the literature concerning the effects of thrombin on platelet respiration.  相似文献   

9.
  • 1.1. S-d-Lactoylglutathione accumulates in human platelets activated by agonists. Among the tested inducers thrombin is the most active.
  • 2.2. The effect is dose and time-dependent. S-d-Lactoylglutathione, corresponding to depleted pool of reduced glutathione, can also be detected in platelets incubated with exogenous methylglyoxal.
  • 3.3. A further significant increase was observed in platelets stimulated with trombin in the presence of methylglyoxal.
  • 4.4. No change in glyoxalase activities upon platelet stimulation with thrombin was shown.
  相似文献   

10.
Two fluorescent probes, N-carboxymethylisatoic anhydride, which binds to membrane proteins, and 1,6-diphenyl-1,3,5-hexatriene, a lipophilic label, have been used to follow membrane microenvironmental changes. Activation of human platelets by thrombin resulted in a simultaneous increase in values of fluorescence polarization (P) of both probes during the stages of shape change and secretion, which further increased during platelet aggregation. The similar pattern of changes in P for both probes indicates the interdependence of lipids and proteins in the activated platelet membrane.  相似文献   

11.
12.
The occurrence of aspirin resistance has been inferred by the assessment of platelet aggregation ex vivo in patients with ischemic vascular syndromes taking aspirin. Since aspirin is a weak inhibitor of the inducible isoform of prostaglandin H synthase (COX-2), it was suggested that COX-2 may play a role in aspirin resistance. However the cellular source(s) of COX-2 possibly responsible for aspirin resistance remains unknown. Recently, the expression of the inducible isoform of COX-2 in circulating human platelets was reported. To investigate the possible contribution of COX-2 expression in platelet thromboxane (TX) biosynthesis, we have compared the inhibitory effects of NS-398 and aspirin, selective inhibitors of COX-2 and COX-1, respectively, on prostanoid biosynthesis by thrombin-stimulated platelets vs lipopolysaccharide (LPS)stimulated monocytes (expressing high levels of COX-2) isolated from whole blood of healthy subjects. NS-398 was 180-fold more potent in inhibiting monocyte COX-2 activity than platelet TXB2 production. In contrast, aspirin (55 micromol/L) largely suppressed platelet TXB2 production without affecting monocyte COX-2 activity. By using specific Western blot techniques, we failed to detect COX-2 in platelets while COX-1 was readily detectable. Our results argue against the involvement of COX-2 in TX biosynthesis by activated platelets and consequently dispute platelet COX-2 expression as an important mechanism of aspirin resistance.  相似文献   

13.
Wheat germ agglutinin induced aggregation and secretion of fresh platelets. Aggregation, but not secretion of serotonin by platelets in plasma, by the lectin was inhibited by 5 mM EDTA. Further, the lectin-induced stimulation of fresh platelets was blocked by prostaglandin E1. Thus, this lectin stimulates platelets by a mechanism which closely mimics thrombin activation and is independent of intercellular crosslinking. Lentil lectin did not stimulate platelets. Each platelet contained about 6 . 10(-5) binding sites for the lectins with an apparent dissociation constant of 3.0 . 10(-7) M. Wheat germ agglutinin, which binds mainly to glycoprotein I (Mr 150 000), increased the subsequent binding of thrombin to fixed platelets while lentil lectin was without effect. It appears that thrombin and wheat germ agglutinin bind to independent but interacting sites. Wheat germ agglutinin, but neither thrombin nor lentil lectin, inhibited the agglutination of platelets by ristocetin. Further, rat platelets were not aggregated by either ristocetin or wheat germ agglutinin. It appears that the interaction sites of ristocetin and wheat germ agglutinin on platelets are overlapping.  相似文献   

14.
We have investigated raft formation in human platelets in response to cell activation. Lipid phase separation and domain formation were detected using the fluorescent dye 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (diI-C(18)) that preferentially partitions into gel-like lipid domains. We showed that when human platelets are activated by cold and physiological agonists, rafts coalesce into visible aggregates. These events were disrupted by depletion of membrane cholesterol. Using Fourier transform infrared spectroscopy (FTIR), we measured a thermal phase transition at around 30 degrees C in intact platelets, which we have assigned as the liquid-ordered to the liquid-disordered phase transition of rafts. Phase separation of the phospholipid and the sphingomyelin-enriched rafts could be observed as two phase transitions at around 15 and 30 degrees C, respectively. The higher transition, assigned to the rafts, was greatly enhanced with removal of membrane cholesterol. Detergent-resistant membranes (DRMs) were enriched in cholesterol (50%) and sphingomyelin (20%). The multi-functional platelet receptor CD36 selectively partitioned into DRMs, whereas the GPI-linked protein CD55 and the major platelet integrin alpha(IIb)beta(3a) did not, which suggests that the clustering of proteins within rafts is a regulated process dependent on specific lipid protein interactions. We suggest that raft aggregation is a dynamic, reversible physiological event triggered by cell activation.  相似文献   

15.
In this study the identity of annexins in human platelets has been determined together with their ability to be released by agents which induce platelet degranulation. The presence of proteins cross-reacting to antibodies against annexins I and V was detected in human platelets. However, the study provided evidence that these annexins are not located on the surface of the plasma membrane in a Ca++ dependent manner. Moreover, activation of platelets with several agents which induced platelet degranulation did not cause release of annexins I or V as determined by both immunoblotting and ELISA.  相似文献   

16.
17.
The initial step in the interaction of thrombin with human platelets in binding of the enzyme to the platelet surface. The effects of digestion of isolated platelets with trypsin and neuraminidase on aggregation, release of serotonin and binding of thrombin have been examined.Trypsin is a powerful inducer of platelet aggregation as well as the release reaction. The aggregation effect of trypsin may be blocked with disodium ehtylenediaminetatraacetate (EDTA). Further, in the presence of EDTA, trypsin-induced release of [14C]serotonin is 15–20% lower compared to controls and the initial lag period is prolonged. Conditions were developed under which trypsin did neither aggregate nor release serotonin from platelets. Even under these conditions, trypsin caused a profound loss in the thrombin binding capacity of platelets. Thus, the trypsin-induced fall in the thrombin binding capacity and the platelet response are dissociated. This loss in the thrombin binding by trypsin is due to a lower number of binding sites available on the platelet surface and is not due to an altered affinity.Neuraminidase did not induce platelet aggregation or the release reaction. The ability of platelets to bind thrombin was also unimpaired by prior digestion with neuraminidase. Thus, the sialic acid at the platelet surface is not essential in the function of thrombin recognition by the receptor. This moiety may nontheless be a constituent of a glycoprotein which might act as the thrombin receptor.  相似文献   

18.
Myoinositol trisphosphate (IP3) is formed when phosphatidylinositol 4,5-bisphosphate (PIP2) is hydrolyzed by phospholipase C. At micromolar concentrations, IP3 is a stimulus for Ca2+ release in both platelet membranes and various permeabilized cells. We have utilized a combination of ion exchange and capillary gas chromatography to quantitate the mass of IP3 produced by human platelets stimulated by thrombin. Accumulations of IP3 are transient and detectable within 5 s of exposure to thrombin. Within 15 s, thrombin (1 unit/ml) promotes the formation of 134 pmol of IP3/10(9) platelets, the equivalent of an intracellular concentration of 13.4 microM. Incubation of platelets with a stimulus for protein kinase C, 12-O-tetradecanoyl phorbol 13-acetate, prior to the addition of thrombin impairs the hydrolysis of PIP2 and the increase in IP3, with 50% inhibition occurring at 60 nM TPA. We conclude that platelets produce sufficient quantities of IP3 to cause Ca2+ release from membrane stores. TPA inhibits the activation of phospholipase C and consequently the generation of IP3. The decreased accumulation of IP3 in platelets exposed to TPA may account for the inhibited rise in cytoplasmic Ca2+ which has been observed in such platelets.  相似文献   

19.
Summary Whole-cell patch-clamp recordings were made from freshly isolated human platelets. The pipette contained a high concentration of divalent cations, which permitted easy disruption of cell-attached membrane patches by suction. Single-channel currents were measured when the pipette contained isotonic BaCl2 or MgCl2 saline; over 30 sec –5 min an increasing number of channels appeared until conductance steps through individual channels could no longer be distinguished. The current-voltage relationship was curvilinear; chord conductance at –35 mV was 25 pS increasing to 45 to 52 pS at +45 mV. Ion substitution experiments showed the current to be primarily carried by Cl.E rev was shifted 30 mV/10-fold change in external Cl (replaced by gluconate), was similar with BaCl2 or MgCl2 in the pipette and was not significantly shifted by replacing external Na+ with K+. Addition of 1mm BAPTA to the MgCl2 pipette saline prevented activation of Cl currents; with isotonic CaCl2 internal saline, current appeared immediately upon patch rupture, suggesting that the Cl channels are dependent on internal Ca2+, 5-nitro-2-(3-phenylpropylamino)-benzoate, reported to block a Cl conductance in studies of rat epithelial cells, caused a potent flickery block and may be a useful tool with which to investigate the physiological role of Cl currents in human platelets.  相似文献   

20.
The high affinity receptor for immunoglobulin (Ig) E on mast cells, along with the antigen receptors on T and B cells and Fc receptors for IgG, belongs to a class of receptors which lack intrinsic kinase activity, but activate non-receptor tyrosine and serine/threonine kinases. Receptor engagement triggers a chain of signaling events leading from protein phosphorylation to activation of phosphatidylinositol-specific phospholipase C, an increase in intracellular calcium levels, and ultimately the activation of more specialized functions. IgE receptor disengagement leads to reversal of phosphorylation by undefined phosphatases and to inhibition of activation pathways. Here we show that phenylarsine oxide, a chemical which reacts with thiol groups and has been reported to inhibit tyrosine phosphatases, uncouples the IgE receptor-mediated phosphorylation signal from activation of phosphatidyl inositol metabolism, the increase in intracellular calcium levels, and serotonin release. Phenylarsine oxide inhibits neither the kinases (tyrosine and serine/threonine) phosphorylating the receptor and various cellular substrates nor, unexpectedly, the phosphatases responsible for the dephosphorylation following receptor disengagement. By contrast, it abolishes the receptor-mediated phosphorylation of phospholipase C-gamma 1, but not phospholipase C activity in vitro. Therefore the phosphorylation and activation of phospholipase C likely requires a phenylarsine oxide-sensitive element. Receptor aggregation thus activates at least two distinct phosphorylation pathways: a phenylarsine oxide-insensitive pathway leading to phosphorylation/dephosphorylation of the receptor and of various substrates and a sensitive pathway leading to phospholipase C-gamma 1 phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号