共查询到20条相似文献,搜索用时 0 毫秒
1.
Pirenzepine, a compound with selective antimuscarinic activity, was used to distinguish muscarinic acetylcholine receptor subtypes in normal human brain. Hill coefficients and IC50 values derived from the inhibition of specific [3H]L-quinuclidinyl benzilate receptor binding suggest the presence of two muscarinic binding sites, differing both in affinity for pirenzepine and in tissue distribution. 相似文献
2.
David L. Barker Thomas F. Murray Joseph F. Siebenaller George J. Mpitsos 《Journal of neurochemistry》1986,46(2):583-588
The selective muscarinic antagonist L-[3H]-quinuclidinyl benzilate (L-[3H]QNB) binds reversibly and with high affinity (KD = 0.3 nM) to a single population (Bmax = 105 fmol/mg protein) of specific sites in nervous tissue of the crab Cancer magister. The binding site is stereoselective; (-)QNB is over 200 times more potent than (+)QNB as an inhibitor of specific L-[3H]QNB binding. The muscarinic antagonists scopolamine and atropine are over 10,000 times more potent inhibitors of L-[3H]QNB binding than the nicotinic antagonists decamethonium and d-tubocurarine. The muscarinic agonists oxotremorine, pilocarpine, arecoline, and carbachol also compete effectively for the L-[3H]QNB binding site. This pharmacological profile strongly suggests the presence of classical muscarinic receptors in the crab nervous system. These receptors are localized to nervous tissue containing cell bodies and neuropil, whereas specific L-[3H]QNB binding is low or absent in peripheral nerve, skeletal muscle, and artery. 相似文献
3.
Abstract: cis -Methyldioxolane (CD) is a muscarinic receptor agonist. [3 H] CD has been used to label a subpopulation of muscarinic receptors described as exhibiting high agonist affinity. Pharmacological evidence suggests that the population of receptors labeled by [3 H] CD consists of m2 and/or m4 subtypes; however, no studies have directly addressed the subtype selectivity of [3 H] CD. The present study characterizes binding of this ligand to individual human receptor subtypes expressed in transfected Chinese hamster ovary cells. Results indicate that [3 H] CD binds with high affinity only to Hm2 receptors but not to all Hm2 receptors. Twenty-eight percent of Hm2 receptors bound [3 H] CD with a K D of 3.5 ± 0.5 nM. Binding was eliminated in the presence of guanosine 5'- O -(3-thiotriphosphate), indicating that the Hm2 receptors labeled by [3 H] CD are those that are associated with GDP-bound G protein. Binding of [3 H] CD by only a subpopulation of Hm2 receptors is in agreement with data generated from studies of [3 H] CD binding in mammalian brain. Because muscarinic receptors have been implicated to play a role in the pathogenesis of both Alzheimer's and Parkinson's disease, as well as the neurotoxicity of organophosphorus compounds, knowledge of the binding specificity of the muscarinic agonist [3 H] CD should aid research in these areas. 相似文献
4.
Ken Lee Akihiro Ito †Kunio Koshimura †Tetsuya Ohue †Yasutaka Takagi †Soichi Miwa 《Journal of neurochemistry》1995,64(2):874-882
Abstract: Hypoxia is known to disturb neuronal signal transmission at the synapse. Presynaptically, hypoxia is reported to suppress the release of neurotransmitters, but its postsynaptic effects, especially on the function of neurotransmitter receptors, have not yet been elucidated. To clarify the postsynaptic effects, we used cultured bovine adrenal chromaffin cells as a model of postsynaptic neurons and examined specific binding of l -[3 H]nicotine (an agonist for nicotinic acetylcholine receptors: nAChRs) and 22 Na+ flux under control and hypoxic conditions. Experiments were performed in media preequilibrated with a gas mixture of either 21% O2 /79% N2 (control) or 100% N2 (hypoxia). Scatchard analysis of the specific binding to the cells revealed that the KD under hypoxic conditions was twice as large as that under control conditions, whereas the B max was unchanged. When the specific [3 H]nicotine binding was kinetically analyzed, the association constant ( k 1 ) but not the dissociation constant ( k −1 ) was decreased to 40% of the control value by hypoxia. When the binding assay was performed using the membrane fraction, these changes were not observed. Nicotine-evoked 22 Na+ flux into the cells was suppressed by hypoxia. In contrast, specific [3 H]quinuclidinyl benzilate binding to the intact cells was unaffected by hypoxia. These results demonstrate that hypoxia specifically suppresses the function of nAChRs (and hence, neuronal signal transmission through nAChRs), primarily by acting intracellularly. 相似文献
5.
Quinuclidinyl Benzilate Binding in House Fly Heads and Rat Brain 总被引:1,自引:3,他引:1
Abstract: House fly heads contain a binding site for 3-quinuclidinyl benzilate (QNB) that is quite similar in pharmacology to the muscarinic acetylcholine receptor of vertebrate tissues. The house fly site binds [3 H]QNB reversibly with a K d of 260 PM and Bmax of 1 pmol/g of heads from direct binding measurements. The Kd calculated from the ratio of the dissociation rate constant (2 × 10−4 sec−1 ) to the association rate constant (2.5 × 106 M−1 Sec−1 ) was 80 pM. The house fly site binds (-)quinuclidinyl benzilate preferentially, as do classic muscarinic receptors. The binding is also sensitive to other muscarinic antagonists and agonists. Nicotinic and other drugs are no more effective on the house fly site than they are on the rat brain muscarinic receptor itself. These binding studies suggest that the house fly QNB binding site is a muscarinic receptor. 相似文献
6.
A. Undén B. Meyerson† B. Winblad§ C. Sachs† T. Bartfai 《Journal of neurochemistry》1983,41(1):102-106
Abstract: The effects of storage at 4°C on the antagonist and agonist binding properties of the muscarinic acetyl-choline receptor from fresh surgical and frozen autopsy samples from human cerebral cortex were studied. The number of 1-[3H]3-quinuclidinyl benzilate binding sites and their affinities were stable up to 51 h, both when stored as pieces of intact nonfrozen tissue and as a homogenate. The agonist binding properties as measured by the ability of the muscarinic agonist carbachol to compete with l-[3H]3-quinuclidinyl benzilate were also stable up to 51 h when the tissue was stored in the form of pieces. The affinity for carbachol decreased when the tissue was stored as a homogenate. The frozen autopsy samples showed no significant differences in binding properties in comparison with fresh neurosurgical tissue. 相似文献
7.
Bernard Lerer† Michael Stanley † Sàndra Demetriou † Samuel Gershon† 《Journal of neurochemistry》1983,41(6):1680-1683
Abstract: Single electroconvulsive shock (ECS) induced no change in [3 H]quinuclidinyl benzilate ([3 H]QNB) binding to muscarinic cholinergic receptors in rat cortex and hippocampus. ECS administered once daily for 7 days induced a significant reduction in [3 H]QNB binding in both brain areas. Concurrent ECS reversed the significant increase in cortical [3 H]QNB binding induced by chronic atropine administration. These findings may have relevance to the antidepressant or amnestic effects of electroconvulsive therapy. 相似文献
8.
Regional Differences in the Coupling of Muscarinic Receptors to Inositol Phospholipid Hydrolysis in Guinea Pig Brain 总被引:9,自引:18,他引:9
The differential effects of muscarinic agents on inositol phospholipid hydrolysis and the role in this process of putative muscarinic receptor subtypes (M1 and M2) were investigated in three regions of guinea pig brain. Addition of the agonist oxotremorine-M to slices of neostriatum, cerebral cortex, or hippocampus incubated in the presence of myo-[2-3H]inositol and Li+ resulted in a large accumulation of labeled inositol phosphates (733, 376, and 330% of control, respectively). In each tissue, the principal product formed was myo-inositol 1-phosphate (59-86%), with smaller amounts of glycerophosphoinositol and inositol bisphosphate. Only trace amounts of inositol trisphosphate could be detected. Regional differences were observed in the capacity of certain partial agonists to evoke inositol lipid hydrolysis, the most notable being that of bethanechol, which was four times more effective in the neostriatum than in either the cerebral cortex or hippocampus. In addition, the full agonists, oxotremorine-M and carbamoylcholine, were more potent stimulators of inositol phosphate release in the neostriatum than in the cerebral cortex. The putative M1 selective agonist 4-m-chlorophenylcarbamoyloxy-2-butynyl trimethyl ammonium chloride had little stimulatory effect in any brain region, whereas the putative M1 selective antagonist pirenzepine blocked the enhanced release of inositol phosphates with high affinity in the cerebral cortex and hippocampus (Ki = 12.1 and 13.9 nM; "M1") but with a lower affinity in the neostriatum (Ki = 160 nM; "M2"). In contrast to its differential effects on stimulated inositol lipid hydrolysis, no regional differences were observed in the capacity of pirenzepine to displace [3H]quinuclidinyl benzilate, a muscarinic antagonist, bound to membrane fractions. Atropine, an antagonist that does not discriminate between receptor subtypes, inhibited the enhanced release of inositol phosphates with similar affinities in the three regions (Ki = 0.40-0.60 nM). The results indicate that by measurement of inositol lipid hydrolysis, regional differences in muscarinic receptor coupling characteristics become evident. These differences, which are not readily detected by radioligand binding techniques, might be accounted for by either the presence of functionally distinct receptor subtypes, or alternatively, by regional variations in the efficiency of muscarinic receptor coupling to inositol lipid hydrolysis. 相似文献
9.
Although prior studies have supported the validity of measuring total muscarinic receptor binding in postmortem brain, there has not been a study of postmortem effects on muscarinic receptor subtypes, M1 and M2, defined by high and low affinity for pirenzepine, respectively. We have examined in rat brain the effect of postmortem delay at room temperature, storage at 4 degrees C and -20 degrees C, and multiple freeze/thaw cycles on total muscarinic binding, measured with [3H]quinuclidinylbenzilate ([3H]QNB) and on M1 muscarinic binding, measured with [3H]pirenzepine ([3H]Pir). We found that delay at room temperature up to 4 h, or storage at 4 degrees C for 24 h or at -20 degrees C for 4 weeks, or 3 freeze/thaw cycles had no effect on [3H]QNB or [3H]Pir binding. Exposure of brain to room temperature for 15 h, however, led to an increase in [3H]QNB binding, without change in [3H]Pir. Scatchard analysis showed an increase in binding sites without a change in affinity. We conclude that [3H]QNB and [3H]Pir are valid measures of total and M1 muscarinic binding, respectively, under these circumstances, but that caution must be used in the interpretation of indirect measures of M2 binding. 相似文献
10.
An endogenous inhibitor of L-[3H]quinuclinidinyl benzilate binding to the brain muscarinic acetylcholine receptor was identified. [3H]Quinuclinidinyl benzilate binding to rat brain synaptosomes was measured using a filtration assay. The inhibitor was prepared from several calf tissues and was found in highest specific activity in thymus. The loss of binding activity was slow, requiring a 30-40 min preincubation of the synaptosomes with the inhibitor, and reversed by removing the inhibitor by washing the membranes. Scatchard analysis of the binding data showed that the inhibition was noncompetitive resulting from both a decrease in affinity and a decrease in the number of binding sites. Zn2+ was required in low concentrations for this effect. Muscarinic acetylcholine receptor in synaptic membranes and in membranes free of most peripheral membrane proteins was still sensitive to inhibition. Preliminary characterization of the inhibitory molecule showed that it is of low molecular weight, moderately heat-stable, and acidic. The inhibitor was inactivated by reagents that are nonspecific for nucleophiles, but not by reagents specific for primary amine or thiol groups. 相似文献
11.
Hermona Soreq David Gurwitz Daniel Eliyahu Mordechai Sokolovsky 《Journal of neurochemistry》1982,39(3):756-763
Abstract: The developmental pattern, the agonist binding properties and the cellular origin(s) of muscarinic binding sites were investigated in agranular cerebellum of x-irradiated rats, of Gunn rats with hereditary hyperbilirubinemia, and of staggerer mutant mice. The density of muscarinic binding sites was found to be higher than normal in all of these cerebellar types, indicating that granular neurons do not greatly contribute to binding of acetylcholine in the rodent cerebellum. The total number of muscarinic binding sites as measured by binding of [3H]4NMPB remains unchanged in the agranular cerebellum of x-irradiated rats. However, the number of muscarinic sites is reduced by about 30% in the agranular cerebellum of homozygous Gunn rats (jj), in which fibrous astrocytes and Purkinje cells are also damaged. In the cerebellum of staggerer mice (sg/sg), where a cascade of events leads to massive damage to mossy fibers and Golgi cells in addition to granular neurons and Purkinje cells, the content of muscarinic receptors is reduced by 50%. Thus, the number of muscarinic binding sites in the rodent cerebellum seems to depend on the integrity of the additional cell types and cellular elements, damaged in these agranular models. The ontogenetic variations in the affinity of cerebellar muscarinic sites for binding of carbamylcholine in normal and Gunn rat cerebellum were compared with those observed in x-irradiated and staggerer cerebellum, where elimination of granular neurons induces the formation of ‘heterologous’ synapses. Muscarinic binding affinity increases 10-fold during postnatal development in the cerebellum of normal and Gunn rats. In the immature x-irradiated cerebellum, the affinity of muscarinic binding sites was found to be nearly as high as that detected in the adult normal cerebellum. In contrast, cerebella of 5-month-old staggerer mice display 5-fold lower affinity than their normal counterpart values, as low as that determined in normal immature cerebellum. The characteristic ontogenetic pattern of muscarink binding is therefore indicated to be related to the formation of correct circuitry, but not to the presence of granular neurons, in the developing rat cerebellum. 相似文献
12.
The specific-binding properties of l-[3H]quinuclidinyl benzilate, a muscarinic acetylcholine-receptor antagonist, were investigated in synaptic and other membrane preparations of the guinea pig cochlear nucleus and auditory nerve. Binding parameters for all experiments were consistent with a single binding site with a Hill coefficient of 1.0. The binding of the ligand was specific and of high affinity, with values of KD in the range of 30-80 pM. Bmax was 0.352 +/- 0.023 pmol/mg protein for the dorsal cochlear nucleus and 0.215 +/- 0.011 pmol/mg protein for the ventral cochlear nucleus. The dorsal cochlear nucleus/ventral cochlear nucleus ratio for density of muscarinic receptors (1.6/1.0) was maintained across two different buffer systems, which varied with respect to the inclusion of proteolysis inhibitors. The results for auditory nerve indicated a level of binding much below that of the cochlear nucleus, with Bmax = 0.052 +/- 0.011 pmol/mg protein. The results of specific-binding experiments for l-[3H]quinuclidinyl benzilate support a role for acetylcholine as a neurotransmitter in the cochlear nucleus. The greater density of muscarinic receptors in the dorsal cochlear nucleus may indicate greater cholinergic activity in the dorsal relative to the ventral cochlear nucleus. 相似文献
13.
Binding of neurotrophic ligands to rabbit spermatozoa was studied. Nicotinic cholinergic antagonists, [3H]alpha-bungarotoxin and [3H]dihydro-beta-erythroidine (DE), bound with high affinity to different sites in the tails of rabbit spermatozoa with the former binding to 10,207 sites/cell and the latter to 562 sites/cell. alpha-Bungarotoxin and DE sites resemble nicotinic sites in brain in binding affinity and specificity. [3H]Quinuclidinyl benzilate (QNB), a muscarinic cholinergic antagonist, also bound with high affinity to a single class of sites located in the heads and tails of rabbit spermatozoa. The binding characteristics of the sperm muscarinic site are similar to muscarinic sites in both innervated and noninnervated cells. Rabbit spermatozoa incubated for 16-18 h in a medium which supported motility for an extended period possessed fewer binding sites than nonincubated spermatozoa for [3H] alpha-bungarotoxin and [3H]QNB and the KD for the latter ligand was also lower. Ligands specific for the kappa and delta opiate receptors showed no affinity for rabbit spermatozoa. 相似文献
14.
Protection by Alcuronium of Muscarinic Receptors Against Chemical Inactivation and Location of the Allosteric Binding Site for Alcuronium 总被引:2,自引:0,他引:2
Abstract: We have found earlier that the neuromuscular blocker alcuronium binds to cardiac muscarinic receptors simultaneously with their specific antagonist [3 H]methyl- N -scopolamine ([3 H]NMS) and allosterically increases their affinity to this ligand. Nothing is known about the allosteric site with which alcuronium interacts. To gain an insight, we have now investigated how the binding of [3 H]NMS is affected by agents known to modify specific residues in proteins and how their effects are altered by alcuronium. Reagents that covalently modify the tyrosyl residues ( p -nitrobenzenesulfonyl fluoride and 4-chloro-7-nitrobenzofurazan) and the carboxyl groups of aspartate and glutamate [1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, N,N' -dicyclohexylcarbodiimide, and N -ethyl-5-phenylisoxazolium-3'-sulfonate] blocked the binding of [3 H]NMS to receptors in rat heart atria. Their action was probably due to the modification of tyrosyl and aspartyl residues directly in the muscarinic binding sites because it was antagonized by atropine and carbamoylcholine. Alcuronium and gallamine, another allosteric ligand, also protected the [3 H]NMS binding sites against the inactivation by tyrosine- and carboxyl-directed chemical modifiers just as well as by benzilylcholine mustard, known to attach covalently to the muscarinic binding sites. Protection by alcuronium has also been observed on cerebrocortical muscarinic receptors. The effect of alcuronium indicates that the drug interferes with the access of chemical modifiers to the muscarinic sites. In view of the unspecific nature of most of the modifiers used (with regard to muscarinic mechanisms), the protection by alcuronium appears to be best explained on the assumption that the drug binds in close vicinity of the "classical" muscarinic site and sterically blocks the access to this site. 相似文献
15.
Poul Staun-Olsen Bent Ottesen† Paul D. Bartels Morten H. Nielsen‡ Steen Gammeltoft§ Jan Fahrenkrug 《Journal of neurochemistry》1982,39(5):1242-1251
Abstract: Vasoactive intestinal polypeptide (VIP) is a neuropeptide that causes neurone excitation in the brain cortex. VIP receptors were studied in subcellular fractions isolated from rat cerebral cortex. The receptor binding of 125I-VIP was greatest in the synaptosomal fraction at membrane protein concentrations of 50–100 μg/ml, a temperature of 37°C, and a pH from 7.4 to 7.7. Under these conditions the concomitant proteolytic degradation of 125I-VIP was approximately 10% after 60 min of incubation. The binding of 60 pmoI/L 125I-VIP reached steady-state after 60 min and was maintained up to 240 min. At steady-state, the receptor-bound 125I-VIP was displaced by unlabelled VIP with half-maximal inhibition (IC50) at a concentration of approximately 3 nmol/L. The binding of 125I-VIP in the concentration range of 10 pmol/L to 6 nmol/L was superimposable on the VIP displacement curve. The Scatchard plot was curvilinear with upward concavity, which can be interpreted to represent two classes of receptors with KD of 2.5 and 125 nmol/L, one class of receptors with negative cooperative interactions, or heterogeneity of the 125I- VIP preparation. The total amount of receptors was 9.5 pmol/mg of membrane protein. Secretin displaced receptor-bound 125I-VIP with an IC50 of 0.3 μmol/L, whereas glucagon snowed no inhibition up to 1 μmol/L. The dissociation of receptor-bound 125I-VIP was biexponential with rate constants (k2) of 4.1 – 10?3 and 0.18 min?1 corresponding to half-times of approximately 170 and 4 min, respectively. The size of the two components was dependent on the duration of the 125I-VIP association period. Initially, both components increased; at steady-state, the rapid component declined, whereas the slow component increased to approximately 70% after 120 min. The association rate constants (k1) were estimated from the initial velocities as 106 and 4. 106 L. mol?1. min?1, and a calculation of the KD as k2/k1 gave values of 4.1 and 45 nmol/L, respectively. In conclusion, the presence of receptors for VIP on synaptosomes from the cerebral cortex supports the role of VIP as a neurotransmitter in the brain. The receptor binding was heterogeneous, suggesting the presence of two classes of receptors. The binding kinetics showed a time-dependent transition of VIP receptors from a low- to a high-affinity state, which may be interpreted as desensitisation of synapses to the action of VIP. 相似文献
16.
Regulation of the Muscarinic Acetylcholine Receptor: Effects of Phosphorylating Conditions on Agonist and Antagonist Binding 总被引:1,自引:3,他引:1
Robert D. Burgoyne 《Journal of neurochemistry》1983,40(2):324-331
Incubation of rat brain synaptic membranes under phosphorylating conditions (i.e., in the presence of Mg2+, ATP, and cyclic AMP) leads to a loss in muscarinic acetylcholine receptors, detectable as specific binding of the muscarinic antagonist L-[3H]quinuclidinyl benzilate. A role for protein phosphorylation in this receptor loss is indicated by the finding that 5'-adenylyl imidodiphosphate, a nonhydrolysable analogue of ATP, does not support receptor loss. Furthermore, receptor loss is inhibited by adenosine and 2-deoxyadenosine, both of which inhibit protein kinase activity. The loss of muscarinic receptors is calmodulin dependent, and it has been demonstrated here that this requirement is probably at the level of calmodulin-dependent phosphorylation. An investigation of the effects of phosphorylation on the binding of the agonist carbachol to synaptic membranes from the cortex and cerebellum demonstrated that phosphorylation altered the relative proportions of the super-high-, high-, and low-affinity binding sites. The results were consistent with an apparent conversion of high- into super-high-affinity sites. In the presence of 5'-guanylyl imidodiphosphate, agonist binding demonstrated the properties expected of a population of largely low-affinity sites. This conversion of super-high- and high-affinity sites into low-affinity sites by 5'-guanylyl imidodiphosphate was partially inhibited by phosphorylation. 相似文献
17.
G. Bonvento P. Lacombe E. T. MacKenzie† D. Fage J. Benavides L. Rouquier B. Scatton 《Journal of neurochemistry》1991,56(2):681-689
We have studied the nature and origin of the serotonergic innervation of two distinct anatomical cerebrovascular compartments, namely, small pial vessels and major cerebral arteries, in the rat. To this end, the levels of serotonin [5-hydroxytryptamine (5-HT)] and 5-hydroxyindoleacetic acid (5-HIAA) were measured by HPLC in both cerebrovascular compartments after either bilateral sympathectomy or destruction of the ascending serotonergic pathways, which originate from the raphe nuclei. We first showed that the small pial vessel samples were not contaminated by underlying cortical tissues through the use of an immunohistochemical approach that revealed the glia limitans, the most superficial cortical layer. Superior cervical ganglionectomy caused a marked decrease in noradrenaline concentrations in major cerebral arteries (-77%), although the reduction was less pronounced (-34%) in small pial vessels. Sympathectomy decreased by 33% 5-HT concentrations in the major cerebral arteries but was without effect on 5-HT levels in the small pial vessels. Destruction of the ascending serotonergic pathways (via local administration of 5,7-dihydroxytryptamine into the ventral tegmental area) produced a dramatic fall in 5-HT and 5-HIAA concentrations in both vascular compartments. To establish the authenticity of the serotonergic innervation, the synthesis of 5-HT [as assessed by measuring the accumulation of 5-hydroxytryptophan (5-HTP) after decarboxylase inhibition] was measured in the two vascular beds under control conditions and after destruction of the ascending serotonergic pathways. The rate of accumulation of 5-HTP was higher in the small pial vessels than in major cerebral arteries, an observation that indicates an important de novo synthesis of 5-HT in small pial vessels.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
18.
Cricket (Acheta domesticus) terminal abdominal ganglia (TG) contain high concentrations (approximately 2 pmol/mg protein) of muscarinic and nicotinic cholinergic binding sites, based on the capacity of TG to bind specifically the labelled ligands L-[3H]quinuclidinyl benzilate ([3H]QNB) and [125I]alpha-bungarotoxin ([125I]alpha-BGT) with high affinity. For both ligands, binding is saturable and reversible. Competitive displacement experiments indicate that the [3H]QNB and [125I]alpha-BGT binding sites probably represent pharmacologically distinct classes of putative TG acetylcholine receptors (AChRs). Results from physiological recording and autoradiographic localization experiments demonstrate that a portion of the putative nicotinic AChRs is localized in synaptic regions of the well-characterized cercal sensory-giant interneuron pathway in the TG, where they are likely to serve as functional synaptic AChRs. Unlike nicotinic ligands, muscarinic agents do not appear to be pharmacologically active in this pathway. Therefore, in the insect CNS, putative muscarinic and nicotinic AChRs coexist at high density, but can be pharmacologically distinguished from one another on the basis of criteria derived from both ligand binding and physiological methods. 相似文献
19.
Meredith J. Noetzel Marianne K. O. Grant Esam E. El-Fakahany 《Neurochemical research》2009,34(6):1138-1149
Xanomeline is thought to be a M1/M4 functionally selective agonist at muscarinic receptors. We have previously demonstrated
that it binds in a unique manner at the M1 receptor. In the current study, we examined the ability of xanomeline to bind to
the M3 receptor and determined the long-term consequences of this mode of binding in Chinese hamster ovary cells expressing
M3 receptors. Xanomeline binds in a reversible and wash-resistant manner at the M3 receptor and elicits a functional response
under both conditions. Long-term exposure to xanomeline resulted in changes in the binding profile of [3H]NMS and a decrease in cell-surface receptor density. Additionally, pretreatment with xanomeline was associated with antagonism
of the functional response to subsequent stimulation by conventional agonists. Our results indicate that xanomeline binds
to and activates the M3 muscarinic receptor in a wash-resistant manner, and that this type of binding results in time-dependent
receptor regulation. 相似文献
20.
Gabriel Berstein Kazuko Haga Tatsuya Haga Arata Ichiyama 《Journal of neurochemistry》1988,50(6):1687-1694
The affinity for muscarinic ligands of a preparation of muscarinic acetylcholine receptors purified from porcine brain was examined by means of competitive binding of [3H]quinuclidinylbenzylate and unlabeled ligands, followed by computer-assisted nonlinear regression analysis. The displacements by antagonists fitted a single-site model. In contrast, the displacements by agonists did not fit the single-site model and could be explained by assuming two populations of binding sites. The proportion of the sites with high affinity for muscarinic agonists (H-sites) ranged from 25 to 35% of the total number of sites. GTP had no effect on the displacements by agonists, a finding indicating that H-sites did not result from interaction between receptors and GTP-binding proteins. In the presence of dithiothreitol, the affinity for muscarinic ligands decreased. The largest effects were observed on the affinity for pirenzepine and that of H-sites for carbachol. Preincubation of the preparation with 5,5'-dithiobis(2-nitrobenzoic acid) resulted in an increase in the proportion of H-sites to 75% of the total number of binding sites. The results of sucrose density gradient centrifugation of the preparation indicated apparent heterogeneity as to molecular size of the receptors, but this heterogeneity did not correlate with that of the affinity for agonists. In addition, the receptors were detected as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the preparation, regardless of the presence or absence of disulfide-reducing reagents. These results suggest that the redox state of thiol groups in the receptor molecules is relevant to their affinities for ligands.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献