首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaf, stem, and root extracts of near-isogenic tomato plantscv. Craigella, resistant and susceptible to Verticillium albo-atrum,showed constitutive 1,3-ß-glucanase activity whichincreased following inoculation with the pathogen. Partiallypurified enzyme extracts were obtained by dialysing a 30–80%ammonium sulphate fraction of the tissue brei. The enzyme hadpH and temperature optima of 5?5 and 44 ?C respectively, withhigh activity between 50 and 60 ?C. The response to laminarinconcentration was linear between 1?2 and 7?5 mg ml–1.Root inoculation of susceptible plants with 106 propagules ml–1V. albo-atrum led to a umform 300 per cent increase in all steminternodes except the terminal one, which was 500 per cent ofthe controls. No spatial relationship of enzyme activity tothe localization of fungus within the stem was apparent. Petioles,leaves, and roots of susceptible infected plants similarly showedan increase in activity but less than that in stems. Changedlevels of stern enzyme activity at different times after inoculationwere associated with reductions in the number of vessels containinghyphae. Extracts of plants of the resistant isoline showed increasedglucanase activity over controls, but this was substantiallylower than that in susceptible plants and was associated withthe greatly reduced mycelial colonization in resistant plants. It is concluded that single gene resistance in tomato to Verticilliumis not associated with innately higher levels of 1,3-ß-glucanasein healthy plants. The increased activity in infected plantsis proportional to the overall quantity of pathogen in the plantor of pathogenic metabolites.  相似文献   

2.
Aqueous foliar sprays of N-dimethylaminosuccinamic acid (daminozide)at 2000 p.p.m. and gibberellic acid (GA) at 100 p.p.m. wereapplied 45, 59, 82 and 100 days after sowing to Chantenay carrotswith population densities of 244, 495 and 883 plants m–2.The plants were harvested on ten approximately weekly occasions;fresh weights were determined and d. wt estimates were obtainedfor the separated shoots (s) and roots (r). Allometric linearregressions of the logarithm of s on that of r at each harvestseparately, clearly showed that GA always increased shoot: rootratio and reduced root yield (by approximately 35 per cent)but could sometimes also increase whole-plant weight. Daminozideincreased root yield (by approximately 7 per cent from 80 tonnesha–1) and tended to have effects opposite to those ofGA. Daucus carota L., carrot, root weight, shoot weight, N-dimethylaminosuccinamic acid (daminozide), gibberellic acid  相似文献   

3.
KOUCHI  H.; YONEYAMA  T. 《Annals of botany》1984,53(6):883-896
Nodulated soya bean (Glycine max L.) plants at the early floweringstage were allowed to assimilate 13CO2 under steady-state conditions,with a constant 13C abundance, for 8 h in the light. The plantswere either harvested immediately or 2 d after the end of the13CO2 feeding, divided into young leaves (including flower buds),mature leaves, stems+petioles, roots and nodules; the 13C abundancein soluble carbohydrates, organic acids, amino acids, starchand poly-ß-hydroxybutyric acid was determined witha gas chromatography-mass spectrometry. The rapid turnover of 13C in the sucrose pools observed in allorgans of the plants showed that sucrose was the principal materialin the translocation stream of primary products of photosynthesis.At the end of the 13CO2 exposure, sucrose in the mature leavesas the major source organs and in the stems+petioles was labelledwith currently assimilated carbon to about 75 per cent, whereasa much higher labelling of sucrose was found in the roots andin the nodules. This suggests the existence of two or more compartmentedpools of sucrose in mature leaves and also in stems+petioles. The relative labelling patterns of individual organic acidsand amino acids were similar in various plant organs. However,the rapid turnover of succinate and glycine was characteristicof nodules. Treatment with a high concentration of nitrate inthe nutrient media increased the turnover rate of amino acidcarbon in shoot organs and roots, while it markedly decreasedthe labelling of amino acids in nodules. The cyclitols, exceptfor D-pinitol, were significantly labelled with assimilated13C in mature leaves, but in nodules, the labelling was verymuch less. In the nodules, which were actively fixing atmospheric nitrogen,a large proportion (80–90 per cent) of currently assimilatedcarbon was found as sucrose and starch at the end of the 13CO2feeding. This was also true of the roots. On the other hand,in young growing leaves, the distribution of currently assimilatedcarbon into sucrose, starch and other soluble compounds wasmuch less. This suggests that a large amount of carbon assimilatedby and translocated to young leaves was used to make up structuralmaterials, mainly protein and cell wall polymers synthesis,during the light period. Glycine max L., soya bean, 13CO2 assimilation, carbon metabolism in nodules  相似文献   

4.
Root morphology, shoot morphology, and water uptake for Agavedeserti and Ferocactus acanthodes of various sizes were studiedusing allometric relationships (y = axb) and a previously developedwater uptake model. Shoot surface area increased with shootvolume with an exponent b of 0.75 for both species. Root lengthand the ground area explored by the roots increased with shootsurface area with b's of 0.72 for A. deserti and 0.92 for F.acanthodes. Various sized individuals had about the same ratioof root length to explored ground area, with higher values occurringfor A. deserti. Predicted water uptake averaged over the exploredground area was approximately constant over a 104-fold rangein shoot surface area, suggesting that shoot size confers nointraspecific competitive advantage for water uptake. For theroot lengths per explored ground area observed in the field,water uptake was predicted to be 85 per cent of maximal; wateruptake could be increased by the production of more rain roots.When differences in shoot volume were accounted for by allometry,small plants had relatively less shoot surface area and relativelymore root length per shoot volume than did large plants, whichmay be important for the water relations of seedling establishment. Agave deserti, Ferocactus acanthodes, allometry, desert succulents, root distribution, root length, seedling growth, seedling establishment, shoot surface area, shoot volume, water uptake  相似文献   

5.
Respiratory Loss of Recently Assimilated Carbon in Wheat   总被引:2,自引:0,他引:2  
A series of experiments was undertaken to assess the amountof respiration associated with the growth of wheat at differentstages. Plants (or in some cases just the flag leaf) were labelledwith 14CO2 and the amount of 14CO2 respired during the subsequent48 or 72 h was measured. The evolution of 14C, expressed asa percentage of the amount initially assimilated (referred toas the R/A value) was used as a measure of the overall efficiencyof dry matter production. Respiratory 14CO2 evolution from labelledplants was most rapid in the first 12 h after labelling, thereafterdeclining rapidly. Evolution was also more rapid following labellingsat the end of the light period (dusk) than at the beginningof it (dawn). The R/A values were greatest (42 and 50 per centrespectively for dawn- and dusk-labelled plants) for young plantsand least (13 and 28 per cent respectively) for plants duringmid grain filling. When flag leaves, as distinct from wholeplants, were labelled, R/A values were lower still (9 and 21per cent respectively), indicating that flag leaf assimilatewas used efficiently in grain production. The calculated minimum R/A for the formation of grain material(10 per cent protein, 90 per cent starch) was 6.2 per cent.That the experimentally determined values were greater thanthis is attributed to the turnover of carbon in enzymes, toother maintenance processes, and possibly to the operation ofthe pentose phosphate pathway of glucose oxidation. R/A valueswere lower in those plants labelled at the beginning than thoseat the end of the photoperiod. This was considered to be a consequenceof refixation of respiratory 14CO2 during the light. The higherR/A values found for young plants were considered to be a consequenceof the greater percentage of 14C translocated to the roots (rootsbeing unable to refix respired CO2) and of greater turnoverof enzymes associated with more active metabolism. Triticum, wheat, respiration, carbon assimilation, carbon loss, grain-filling  相似文献   

6.
JARVIS  S. C. 《Annals of botany》1984,53(2):153-162
The absorption and distribution of Cu in red clover (Trifoliumpratense L.) were measured in plants grown in flowing solutionculture with Cu maintained throughout at 0.5 µg 1–1and N supplied either as nitrate or through symbiotic fixation.Although there was a decrease in Cu absorption, both with time,and with a depleted nitrate supply, it increased to its formerrate when nitrate was adjusted to 10 mg N 1–1 after aperiod of depletion. Differences in absorption between plantsdependent upon fixation and those supplied with nitrate wererelated to the slower initial growth of the plants fixing N.Considerable proportions (> 30 per cent) of the absorbedCu were retained by the roots. At the final harvest, and withthe exception of plants grown with nitrate adjusted to 0.1 mgN 1–1 after a period of depletion, the proportion of theCu retained was related to the concentration of N in the roots.The different N treatments produced differences in Cu concentrationin the shoots, and the effects were greater in the youngestfully expanded leaves than in older leaves. Trifolium pratense L., red clover, absorption, copper, flowing solution culture, nitrogen  相似文献   

7.
The youngest fully expanded leaves of single tillers of vegetativeperennial ryegrass plants were exposed to 14CO2. Thereafter,quantitative and fractional analysis of the partitioning, storageand re-mobilization after defoliation of the 14C-labelled assimilatewas sequentially conducted over a 22 d period. In undefoliated plants, most 14C reached its final destinationwithin 5–6 of feeding. Forty per cent of assimilated 14Cwas subsequently lost through respiration, while 13.5, 8.5 and34 per cent remained in roots, stem bases and tops respectively.At least some 14C was distributed to tillers throughout theplant, but secondary tillers subtended by the fed tiller madethe greatest demand on 14C translocated from the fed tiller. A small, but significant portion of 14C was invested into longterm storage in undefoliated plants, four per cent of the totalassimilated still being present in a labile chemical form inroots and stem bases 22 d after feeding. In plants that wereseverely defoliated 4 d after feeding, depletion of reserve14C was observed relative to undefoliated plants. The depletiontook place from stem bases, not roots, and both low and highmolecular weight storage compounds were involved. A portionof the depleted 14C was incorporated into new growth after defoliation. Lolium perenne, perennial ryegrass, assimilate partitioning, storage, re-mobilization, defoliation  相似文献   

8.
Amino acid composition of the free amino acid pool and the TCA-insolubleprotein fraction were investigated in root tips of pea and Tamarixtetragyna plants grown at various levels of NaCl salinity. Salinitystress induced an increase of proline content, mainly in thefree amino acid pool in both plants, and of proline or hydroxyprolinecontent in the protein. Externally-supplied proline was absorbedand incorporated into protein, by pea roots, more effectivelythan by Tamarix roots. Salinity stress, apparently, stimulatedthe metabolism of externally-supplied labelled proline. Pearoots have a very large pool of free glutamic acid; however,70 per cent of the 14C from externally-supplied 14C-U-glutamicacid was released as CO2. Very small amounts of it were incorporatedinto protein. No measurable amount of radioactivity could bedetected in any one of the individual amino acids, either ofprotein hydrolysate or the free amino acid pool. Proline very effectively counteracted the inhibitory effectof NaCl on pea seed germination and root growth. A similar effectbut to a lesser degree was achieved with phenylalanine and asparticacid. The feasibility of proline being a cytoplasmic osmoticumis discussed.  相似文献   

9.
Cultivated Agave mapisaga and A. salmiana can have an extremelyhigh above-ground dry-weight productivity of 40 Mg ha–1yr–1. To help understand the below-ground capabilitiesthat support the high above-ground productivity of these Crassulaceanacid metabolism plants, roots were studied in the laboratoryand in plantations near Mexico City. For approximately 15-year-oldplants, the lateral spread of roots from the plant base averaged1.3 m and the maximal root depth was 0.8 m, both considerablygreater than for desert succulents of the same age. Root andshoot growth occurred all year, although the increase in shootgrowth at the beginning of the wet season preceded the increasein growth of main roots. New lateral roots branching from themain roots were more common at the beginning of the wet season,which favoured water uptake with a minimal biomass investment,whereas growth of new main roots occurred later in the growingseason. The root: shoot dry weight ratio was extremely low,less than 0.07 for 6-year-old plants of both species, and decreasedwith plant age. The elongation rates of main roots and lateralroots were 10 to 17 mm d–1, higher than for various desertsucculents but similar to elongation rates for roots of highlyproductive C3 and C4 agronomic species. The respiration rateof attached main roots was 32 µmol CO2 evolved kg–1dry weight s–1 at 4 weeks of age, that of lateral rootswas about 70% higher, and both rates decreased with root age.Such respiration rates are 4- to 5-fold higher than for Agavedeserti, but similar to rates for C3 and C4 agronomic species.The root hydraulic conductivity had a maximal value of 3 x 10–7ms–1 MPa–1 at 4 weeks of age, similar to A. deserti.The radial hydraulic conductivity from the root surface to thexylem decreased and the axial conductivity along the xylem increasedwith root age, again similar to A. deserti. Thus, although rootsof A. mapisaga and A. salmiana had hydraulic properties perunit length similar to those of a desert agave, their highergrowth rates, their higher respiration rates, and the greatersoil volume explored by their roots than for various desertsucculents apparently helped support their high above-groundbiomass productivity Key words: Crassulacean acid metabolism, productivity, root elongation rate, root system, water uptake  相似文献   

10.
GRAVES  C. J. 《Annals of botany》1978,42(1):117-125
The effects of various levels of copper on the uptake and distributionof copper in Chrysanthemum morifolium grown in solution cultureand peat-sand have been examined. Whole plants growing in shortdays were sampled at regular intervals, divided into roots,stem, leaves and lateral shoots, and analysed for copper. Thepartitioning of copper between these tissues showed that a relativelylarge proportion (30–40 per cent) of the total plant copperwas accumulated in the roots of normal plants during the harvestingperiod, compared with approximately 10 per cent in the rootsof copper deficient plants. Whilst the copper content (ug g–1) of leaves and stemfrom normal plants was negatively correlated with the amountof dry matter produced (P < 0·001), the correspondingcopper deficient tissues showed little variation in copper contentwith increases in tissue dry weight. A more detailed investigationof the copper content of leaves from normal plants showed thatgradients existed within the plant with respect to both leafposition and time of harvest which could be described by a singlecubic surface equation (P < 0·001).  相似文献   

11.
KOUCHI  H.; YONEYAMA  T. 《Annals of botany》1984,53(6):875-882
A long-term, steady-state 13CO2 assimilation system at a constantCO2 concentration with a constant 13C abundance was designedand applied to quantitative investigations on the allocationof photoassimilated carbon in nodulated soya bean (Glycine maxL.) plants. The CO2 concentration in the assimilation chamberand its 13C abundance were maintained constant with relativevariances of less than ±0.5 per cent during an 8-h assimilationperiod. At the termination of 8-h 13CO2 assimilation by plantsat early flowering stage, the currently assimilated carbon relativeto total tissue carbon (measured by the degree of isotopic saturation)were for young leaves (including flower buds), 13.9 per cent;mature leaves, 15.7 per cent; stems+petioles, 5.9 per cent;roots, 5.4 per cent and nodules, 6.9 per cent, 48 h after theend of the 13CO2 assimilation period, they were 12.3, 7.5, 7.4,6.8 and 6.1 per cent, respectively. The treatment with a highconcentration of nitrate in the nutrient media significantlydecreased the allocation of 13C into nodules. Experiments on13CO2 assimilation by plants at the pod-filling stage were alsoconducted. Labelling by 13C was weaker than at the early floweringstage, but an intense accumulation of 13C into reproductiveorgans was observed. Glycine max L., nodulated soya bean plants, 13CO2 assimilation, carbon dynamics  相似文献   

12.
The growth of garden orache, A triplex hortensis was studiedunder conditions of mild NaCl or Na2SO4 salinity. Growth, drymatter production and leaf size were substantially stimulatedat 10 mM and 50 mM Na+ salts. Increased growth, however, appearedto be due to a K+-sparing effect of Na+ rather than to salinityper se. The distribution of K+ and Na+ in the plant revealeda remarkable preference for K+ in the roots and the hypocotyl.In the shoot the K/Na ratio decreased strongly with leaf age.However, the inverse changes in K+ and Na+ content with leafage were dependent on the presence of bladder hairs, which removedalmost all of the Na+ from the young leaf lamina. Measurementsof net fluxes of K+ and Na+ into roots and shoots of growingAtriplex plants showed a higher K/Na selectivity of the netion flux to the root compared to the shoot. With increasingsalinity the selectivity ratio SK, Na* of net ion fluxes tothe roots and to the shoots was increased. The data suggestthat recirculation of K+ from leaves to roots is an importantlink in establishing the K/Na selectivity in A. hortensis plants.The importance of K+ recirculation and phloem transport forsalt tolerance is discussed. Key words: Atriplex hortensis, Salinity, Potassium, Sodium, K+ retranslocation, Bladder hairs, Growth stimulation  相似文献   

13.
Potted white pine (Pinus strobus L.) seedlings were grown ingravel either in outdoor cold frames or in growth chambers.They were watered every second day with a salt solution containingdifferent amounts of nitrogen and phosphorus. After 13 weeksof growth individual seedlings were illuminated separately for8 h in the presence of 14CO2 and the rates of their apparentphotosynthesis, respiration, and translocation of recent 14C-photosynthateto their roots were observed. Roots were extracted with 80 percent ethanol and the nature of various 14C compounds in theextract was determined by paper chromatography. The best over-all growth of plants, mycorrhizal development,apparent photosynthesis, and translocation of recent photosynthateto the roots were observed in plants grown at the intermediatelevels of N and P nutrition. Sucrose was always the dominant form in which recently translocated14C occurred in the roots, although with increased nitrogensupply there was increased hydrolysis of sucrose to hexosesand appearance of 14C in the amino- and organic acids.  相似文献   

14.
Guttation was used as a non-destructive way to study the flowof water and mineral ions from the roots and compared with parallelmeasurements of root exudation. Guttation of the leaves of barley seedlings depends on age andon the culture solution. Best rates of guttation were obtainedwith the primary leaves of 6- to 7-day-old seedlings grown onfull mineral nutrient solution. The growing leaf tissue becomessaturated with K+ below 1.5 mM K+ in the medium, whereas K+concentration in the guttated fluid still increases furtheras K+ concentration in the medium is raised. At 3 mM K+ averagevalues of guttation were 1.4–2.4 mm3 h–1 per plantwith a K+ concentration of 10–20 mM; for exuding plantsthe flow was 4.2–7.6 mm3 h–1 per plant and K+ concentration35–55 mM. Abscisic acid (ABA) at 10–6 to 10–4 M 0–2h after addition to the root medium increased volume flow ofguttation and exudation and the amount of K+ exported. Threeh after addition of ABA both volume and amount of K+ were reduced.There was an ABA-dependent increase in water permeability (Lp)of exuding roots shortly after ABA addition. Later Lp was decreasedby 35 per cent and salt export by 60 per cent suggesting aneffect of ABA on salt transport to the xylem apart from itseffect on Lp. Benzyladenine (5 x 10–8 to 10–5 M)and kinetin (5 x 10–6 M) progressively reduced volumeflow and K+ export in guttation and exudation and reduced Lp. Guttation showed a qualitatively similar response to phytohormonesas found here and elsewhere using exuding roots. Hordeum vulgare L., barley, guttation, abscisic acid, cytokinins, benzyl adenine, kinetin  相似文献   

15.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

16.
Embryogenic cell suspension cultures were established from calliderived from young leaves of sugarcane (Saccharum officinarumL.) by placing them in liquid medium containing 5 per cent coconutwater (CW), 2–3 mg 1–1 2, 4-D and 500 mg 1–1casein hydrolysate (CH). The cultures were maintained by transferring2.5–5.0 ml of the suspension to 35 ml of fresh mediumevery 4–5 days. Organized structures resembling the earlystages of embryogeny were formed when 2, 4-D in the medium waslowered (0.1–1.0 mg 1–1) but these did not developbeyond the globular or early scutellar stages. High levels ofsucrose (6–10 per cent) promoted the formation of proembryoids.Plating of the suspension on MS agar medium supplemented with0.25–2.0 mg 1–1 2, 4-D, 5 per cent CW, 500 mg 1–1CH, with or without activated charcoal, resulted in the formationof embryogenic calli. A large number of embryoids were formedin media containing lower 2, 4-D concentrations. Transfer ofembryoids to half-strength MS medium with 6 per cent sucroseestablished plantlets which were successfully transferred tosoil. Saccharum officinarumL, sugarcane, suspension culture, embryogenesis, regeneration  相似文献   

17.
The polar transport of indol-3yl-acetic acid (IAA-2-14C) instem explants and decapitated shoots of tumour-prone Nicotianahybrids (2n, 3n, and 4n) was compared with that in the normal,non-tumorous parent species N. glauca and N. langsdorffii. Thetotal uptake of the auxin from donor blocks was greatest inthe hybrids and N. glauca. The velocity of the basipetal movementof IAA-14C was the same in all species tested, i.e. 8 mm/h.The transport capacity for the hormone, however, was decreasedin the three tumour-prone hybrids. Gas chromatography showedthat between 70 and 90 per cent of the transported auxin waspresent in the form of IAA, between 10 and 30 per cent in theform of indol-3yl-aldehyde (IAld). The basipetal transport exceeded the acropetal transport inyoung (third) intemodes of all plants studied, whereas in olderstem segments (tenth intenodes) the reverse was found. The polarity of auxin transport was less well expressed in thetumorous hybrids. Blocking the active transport by pre-treatment of stem cuttingswith 2,4-dinitrophenol (2,4-DNP) caused a drastic reductionin the polar IAA-14C movement; in all plants tested the auxintransport was reduced to the same low level. The accumulation of auxin at the base of cuttings was higherin N. glauca and the 2n hybrid than in N. langsdorffii, i.e.about seven times higher after 1-h and three times higher after12-h transport experiments. The release of 14C from the cuttinginto an agar receiver block, however, was markedly reduced inthe 2n hybrid, whereas in N. glauca the labelled substancesmoved more freely into the receiver blocks. Differences in the capacity for the accumulation and the releaseof IAA-14C in hybrid and N. glauca stem tissues were studiedusing decapitated greenhouse plants wounded by incision abovethe fourth internode. Accumulation of the auxin occurred onlyabove the wound-cut in hybrid plants. This observation is consistentwith the view that tumour formation on hybrid stems occurs atsites of wounding. Our data suggest an elevated auxin levelto be present during tumour initiation at these sites. These results on polar transport and accumulation of IAA-14Cin tumorous Nicotiana plants together with our previous dataon various endogenous auxins suggest that the induction of neoplasticgrowth in tobacco plants is correlated with increased auxinlevels and an accumulation of the hormone at sites of wounding.  相似文献   

18.
SEDGLEY  M. 《Annals of botany》1975,39(5):1091-1095
Brassica oleracea pollen was applied to a basic medium of 1.5per cent agar and 15 per cent sucrose to which flavanoids wereadded at three concentrations. Two types of agar were used;with agar 1, quercetin at a concentration of 0.5 x 10–3per cent gave an increase in percentage germinating grains.With agar 2, an increase in germination occurred with kaempferoland naringin at concentrations of 0.5 x 10–3 and 0.5 x10–1 per cent respectively. Increase in pollen tube lengthoccurred with agar 2 and quercetin at a concentration of 0.5x 10–3 per cent. The stigma tissue of B. oleracea contains at least three andthe pollen at least one glycoside of quercetin. The sugars inthe glycosides were not identified. Pollen germination and pollentube extension were not stimulated exclusively by the flavanoidspresent in the stigma. The flavanoid composition of the stigmadid not vary amongst five different S-allele genotypes, indicatingthat flavanoids are probably not directly involved in the incompatibilityreaction of B. oleracea.  相似文献   

19.
Three cultivars of M. sativa and one cultivar of O. viciifoliawere evaluated for their response to inoculation with A. rhizogenesstrain A4T (containing pRiA4b). A cultivar-dependent responsewas observed in M. sativa with 94%, 25%, and 4% of infectedstem explants producing transformed roots in the cultivars Vertus,Regen-S, and Rangelander, respectively. In O. viciifolia cv.Hampshire Giant, an explant-dependent response was observedwith 78% and 50% of seedling cotyledon and hypocotyl explantsresponding, respectively. Leaf explants failed to produce transformedroots. Transformed roots showed plagiotropic and negativelygeotropic growth on hormone-free agar MS medium. Productionof transgenic shoots from O. viciifolia root cultures occurredspontaneously. Recovery of transgenic plants from M. salivacv. Rangelander was achieved by transfer of callus (inducedon UM medium containing 2·0mg dm–3 2,4-D and 0·25mg dm–3 kinetin) to MS medium containing 0·5 ingdm–3 BAP and 0·05 mg dm–3 NAA. Cultured rootsof both species synthesized opines (agropine and mannopine).Extensive morphological variation was observed in plants ofM. sativa (clone Al) and O. viciifolia (clone A4Tl) establishedin the glasshouse. DNA sequences homologous to TL-DNA and TR-DNAwere present in root clones and regenerated plants. Key words: Agrobacterium rhizogenes, Medicago sativa, Onobrychis viciifolia, transformed roots, transgenic plants  相似文献   

20.
The effects of salinity on growth, water relations, glycinebetainecontent, and ion accumulation in the perennial halophyte Atriplexgriffithii var. stocksii were determined. The following questionswere addressed: (1) What effect does salinity have on growthresponses at different ages? (2) Is A. griffithii an ion accumulator?(3) Does A. griffithii accumulate glycinebetaine in responseto salinity? Atriplex griffithii plants were grown in pots at0, 90, 180 and 360  m M NaCl in sand culture in a plantgrowth chamber and plants were harvested after 30, 60 and 90d. Plant total dry weight was significantly inhibited at 360m M NaCl. Root growth showed a substantial promotion at 90 mM NaCl. The water potential and osmotic potential of shootsbecame more negative with increasing salinity and time of growth.The Na+and Cl-content in both shoots and roots increased withincreases in salinity. Increased treatment levels of NaCl induceddecreases in Ca+, K+and Mg2+in plants. Atriplex griffithii accumulateda large quantity of ions, with the ash content reaching 39%of the dry weight in leaves. Inorganic ion accumulation is significantin osmotic adjustment and facilitates water uptake along a soil-plantgradient. Glycinebetaine concentration was low in roots, andin stems it increased with increases in salinity. Total amountsof glycinebetaine in leaves increased with increases in salinity,and its concentration increased substantially at 360 m M NaCl.Copyright 2000 Annals of Botany Company Atriplex griffithii, glycinebetaine, growth, ions, water relations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号