首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sternomandibularis muscles were removed from slaughtered adult cattle immediately after exsanguination. On the basis of the density of diformazan granules deposited by a reaction for NAD tetrazolium reductase, approximately equal numbers of muscle fibres with high and low mitochondrial content were identified in serial frozen sections. In samples taken immediately after exanguination both types of muscle fibres exhibited glycogen phosphorylase activity and were stained equally by the periodic acid-Schiff (PAS) reaction for glycogen. In unstimulated muscle samples 1 hr postmortem, no loss of PAS staining was detected. In electrically stimulated samples 1 hr postmortem, large numbers of muscle fibres with a low mitochondrial content but only some muscle fibres with a high mitochondrial content became PAS-negative. Stimulation-induced glycogen depletion was completely prevented by the interfaicular injection of magnesium sulphate solution. In unstimulated samples between 5 and 24 hr postmortem, some muscle fibres with a high mitochondrial content but only a few muscle fibres with a low mitochondrial content became PAS-negative.  相似文献   

2.
Summary Nuclear bag and nuclear chain intrafusal fibres are present in guinea-pig muscle spindles. Unlike muscle spindles in other species two types of nuclear chain fibre seem to be present. The electron microscopical appearance of one type of nuclear chain fibre is similar to that of nuclear bag fibres.It is suggested that under tension the nuclei of small nuclear bag fibres become sufficiently displaced to form nuclear chain-like fibres. The frequent occurrence of fibres which combine some of the properties of both nuclear bag and nuclear chain fibres indicates the possible occurrence of a third type of intrafusal fibre.The sensory innervation of guinea-pig muscle spindles is similar to that of the cat and the rat. Three types of motor nerve ending which could be classified according to the complexity of their subneural apparatus were seen.  相似文献   

3.
Intrafusal fibre types in rat limb muscle spindles   总被引:1,自引:0,他引:1  
Summary Morphological, histochemical and ultrastructural characteristics of intrafusal fibre types were studied in rat muscle spindles. The existence of three intrafusal fibre types, namely the typical bag, the intermediate bag and the chain fibres was confirmed. Intrafusal fibres differ in diameter, length and number of nuclei in the equatorial zone. Histochemically, typical bag fibres exhibit both alkali-and acid-stable ATPase activity and low SDH activity. Intermediate bag fibres possess low alkali-stable ATPase activity; after acid-preincubation, however, they have low activity only in the juxtaequatorial region, whereas in the polar zones they exhibit high acid-stable ATPase activity. The SDH activity varies from moderate to high. The chain fibres exhibit high alkali-stable and low acid-stable ATPase and high SDH activity in the extensor digitorum longus muscle, whereas in the soleus muscle the acid-stable ATPase activity varies from a low one to a high one, either among individual chain fibres in one spindle, and/or repeatedly along the fibre length.Since there are regional differences in morphological characteristics and in staining properties of intrafusal fibres, a reliable identification of intrafusal fibre types can only be achieved by an analysis of serial sections.  相似文献   

4.
In the present study we have investigated the reactivity of rat muscle to a specific monoclonal antibody directed against alpha cardiac myosin heavy chain. Serial cross sections of rat hindlimb muscles from the 17th day in utero to adulthood, and after neonatal denervation and de-efferentation, were studied by light microscope immunohistochemistry. Staining with anti-alpha myosin heavy chain was restricted to intrafusal bag fibres in all specimens studied. Nuclear bag2 fibres were moderately to strongly stained in the intracapsular portion and gradually lost their reactivity towards the ends, whereas nuclear bag1 fibres were stained for a short distance in each pole. Nuclear bag2 fibres displayed reactivity to anti-alpha myosin heavy chain from the 21st day of gestation, whereas nuclear bag1 fibres only acquired reactivity to anti-alpha myosin heavy chain three days after birth. After neonatal de-efferentation, the reactivity of nuclear bag2 fibres to anti-alpha myosin heavy chain was decreased and limited to a shorter portion of the fibre, whereas nuclear bag1 fibres were unreactive. We showed that a myosin heavy chain isoform hitherto unknown for skeletal muscle is specifically expressed in rat nuclear bag fibres. These findings add further complexity to the intricate pattern of isomyosin expression in intrafusal fibres. Furthermore, we show that motor innervation influences the expression of this isomyosin along the length of the fibres.  相似文献   

5.
Intrafusal muscle fibres in adult muscle spindles differ in their myosin composition. After selective motor denervation intrafusal muscle fibres develop mature ultrastructural characteristics. In order to evaluate the role of fusimotor innervation on the maturation of the myosin composition of intrafusal muscle fibres we have examined with immunohistochemical techniques i) the postnatal development of muscle spindles in new-born rats and in 7-21 day old rats; ii) muscle spindles in the EDL of 21-day-old rats de-efferented at birth. For the characterization of myosins in intrafusal fibres we used three myosin antisera: antipectoral myosin, antiheart myosin and antiheart myosin adsorbed with muscle powder from the soleus muscle of guinea pig. We show in this study that during development intrafusal fibres change immunoreactivity and that in the absence of motor innervation bag fibres do not fully develop the myosin characteristics of control spindles. We conclude that the maturation of bag1 and bag2 fibres apparently requires next to the inductive influence of sensory axon terminals the presence and activity of fusimotor axons.  相似文献   

6.
Synopsis A technique for the quantitation of glycogen in single fibres of human skeletal muscle is described. By using microphotometry the loss of glycogen from cryostat sections during a PAS-staining procedure was shown to be negligible. Further, it was found that nearly all the PAS-positive material (98.5%) inside a muscle fibre is glycogen. A significantly higher mean glycogen concentration (P<0.001) was found in type II fibres than in type I fibres in the resting quadriceps muscle of sedentary young males. The coefficient of variation for the glycogen concentration within each fibre type was found to be 17% and 15% for type I and type II respectively. The specificity of the PAS-staining technique for glycogen was confirmed by a statistically significant correlation (r=0.78,P<0.001) between the glycogen concentration measured biochemically and that calculated from microphotometry and area and thickness measurements. With the technique described, it seems possible to measure the glycogen concentration of single muscle fibres in serial sections and to calculate this in standard biochemical terms.  相似文献   

7.
The expression of myosin heavy chain isoforms in muscle spindle fibres has been the subject of a number of immunocytochemical studies, some of them with discordant results. In order to assess whether these discrepancies are due to differences in the specificity and sensitivity of the antibodies used, we have compared the reactivity of rat muscle spindle fibres to two pairs of antibodies presumed to be directed against slow tonic (ALD 19 and ALD 58) and neonatal (NN5) and neonatal/fast (MF30) myosin heavy chains. Adult, developing and neonatally de-efferented muscle spindles from the rat hind limb muscles were studied in serial cross-sections processed for the peroxidase-antiperoxidase method. Important differences in the staining profiles of intrafusal fibres were noted when ALD 19 and ALD 58 were compared. ALD 19 stained the muscle spindle precursors from the seventeenth day in utero, whereas ALD 58 only did so by the twentieth day of gestation. In adult spindles ALD 19 stained the nuclear bag1 fibres along their entire length, whereas ALD 58 did not stain these fibres towards their ends. ALD 19 stained the nuclear bag2 fibres along the A, B and inner C region, but ALD 58 stained these fibres only in the A and the inner B regions. ALD 19 stained some nuclear chain fibres along a short equatorial segment, whereas ALD 58 did not stain the nuclear chain fibres at all. NN5 stained the nascent nuclear bag1 and chain fibre precursors at earlier stages of development than MF30. Clear differential staining between primary and secondary generation of both extra- and intrafusal myotubes was seen with NN5, whereas MF30 stained all myotubes alike. However, in postnatal spindles, MF30 was a very good negative marker of nuclear bag1 fibres. The staining profile of the adult fibres with NN5 and MF30 was rather similar. The staining pattern of neonatally de-efferented bag fibres obtained with ALD 19 and ALD 58 was practically identical and it differed from that of control spindles, confirming that motor innervation participates in the regulation of the expression of slow tonic MHC along the length of the nuclear bag2 fibres, as we have previously shown with ALD 19. The distinct staining patterns obtained with ALD 19 versus ALD 58 and with NN5 versus MF30 reflect differences in antibody sensitivity and specificity. These differences account, in part, for the discrepancies in the results of previous studies on muscle spindles, published by Kucera and Walro using ALD 58 and MF30, and by us using ALD 19 and NN5.  相似文献   

8.
We have studied the morphology and pattern of expression of myosin heavy chain (MHC) isoforms of intrafusal fibres in a human first lumbrical muscle. Each intrafusal fibre type, namely nuclear bag1, nuclear bag2 and nuclear chain fibres, had a distinct MHC composition and distribution of different MHC isoforms along the whole length of intrafusal fibres. However, most muscle spindles analyzed also contained one or several intrafusal fibres exhibiting an extrafusal or mixed pattern of immunoreactivity which did not correspond to any of the described intrafusal fibre types. We conclude that the latter fibres do not represent new intrafusal fibre types, but their morphology and expression of MHC merely reflects the differences in their innervation owing to their unusual localization at the edge or outside the axial bundle of intrafusal fibres.  相似文献   

9.
T Soukup 《Histochemistry》1976,47(1):43-57
Morphological, histochemical and ultrastructural characteristics of intrafusal fibre types were studied in rat muscle spindles. The existence of three intrafusal fibre types, namely the typical bag, the intermediate bag and the chain fibres was confirmed. Intrafusal fibres differ in diameter, length and number of nuclei in the equatorial zone. Histochemically, typical bag fibres exhibit both alkali- and acid-stable ATPase activity and low SDH activity. Intermediate bag fibres possess low alkali-stable ATPase activity; after acid-preincubation, however, they have low activity only in the juxtaequatorial region, whereas in the polar zones they exhibit high acid-stable ATPase activity. The SDH activity varies from moderate to high. The chain fibres exhibit high alkali-stable and low acid-stable ATPase and high SDH activity in the extensor digitorum longus muscle, whereas in the soleus muscle the acid-stable ATPase activity varies from a low one to a high one, either among individual chain fibres in one spindle, and/or repeatedly along the fibre length. Since there are regional differences in morphological characteristics and in staining properties of intrafusal fibres, a reliable identification of intrafusal fibre types can only be achieved by an analysis of serial sections.  相似文献   

10.
M A Khan 《Cytobios》1980,28(110):85-93
The oxidative fibres of pigeon pectoralis muscle are 'type II red' on the basis of high myofibrillar adenosine triphosphatase (ATPase) and succinate dehydrogenase (SDH). The ATPase and SDH reactions do not characterize the heterogeneity of the red fibres in the normal pigeon pectoralis. Therefore, lipid, glycogen, phosphorylase, glycogen synthetase, SDH and ATPase reactions were studied in transverse sections of the pigeon pectoralis red fibre. This study has revealed the existence of an inherent heterogeneity between these red fibres. Three sub-populations distinguished were : (1) 'red1' fibres showing low fat but high glycogen and enzymes of glycogen metabolism (EGM); (2) 'red2' fibres displaying higher fat and higher amount of glycogen and EGM; and (3) 'red3' fibres possessing higher fat but lower content of glycogen and EGM. Ultrastructurally, one category of fibres (presumably red2 and red3) showed a higher concentration of fat; these fibres presumably possess higher synthetic capacity and lower (or higher?) utilization. Other mitochondria-loaded red fibres (presumably red1) documented here for the first time, showed fewer and smaller fat droplets indicating that they are 'predominantly lipid utilizers' and are incapable of storing large quantities of lipid. Moreover, the differing histochemical-ultrastructural attributes are presumably correlated with differences in levels of energetic metabolism, heat production and motor units of the red fibres.  相似文献   

11.
In fry, 1- and 2-year old juvenile Atlantic salmon, relatively small superficial red muscle fibres staining well for glycogen and succinic dehydrogenase (SDH) but with little myofibrillar ATPase, were evident on either side of the lateral line, in June. Well differentiated relatively large white fibres contained lower concentrations of glycogen than the red fibres, higher ATPase and no SDH, except traces in the larger 1- and 2-year-olds. Intermediate size pink fibres, which were also intermediate between red and white fibres in their staining properties, occurred in a thin diffuse layer along the red-white boundary, thickest at the apex near the vertebral column, and most evident in the younger fish.  相似文献   

12.
In order to evaluate the effects of fusimotor elimination on the expression of myosin heavy chain (MHC) proteins in intrafusal fibres, we compared the muscle spindles in hind limb muscles of 3- to 6-week-old rats de-efferented at birth with those of their litter-mate controls. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal MHC isoforms, against synaptophysin, the neurofilament 68 kD subunit and laminin. We found that de-efferented intrafusal fibres differentiated, as in normal spindles, into nuclear bag and bag fibres both containing predominantly slow MHC, and nuclear chain fibres that contained fast and neonatal MHC. In both de-efferented and control intrafusal fibres the same MHCs were stained; the degree and extent of staining, however, varied. Both types of de-efferented bag fibres displayed a high content of slow tonic and slow twitch MHC along most of the fibre length, in contrast to the prominent regional variation in control bag fibres. In their encapsulated regions, the de-efferented bag fibres were more similar to each other in their reactivity to anti-fast twitch and anti-neonatal MHC antibodies than the control bag fibres. In these aspects they resembled more closely the bag fibres of newborn rats. The differences might be due to an arrest of "specialization" in the regional expression of the different MHC isoforms. Chain fibres developed MHC patterns identical to those of control spindles with all the antibodies used, even though they differentiated from the beginning in the absence of motor innervation. The structural differentiation of the capsule and sensory innervation in de-efferented muscle spindles, as shown by anti-laminin, anti-synaptophysin and anti-neurofilament staining, did not differ from the controls. We conclude, in agreement with previous studies, that the sensory innervation plays a key role in inducing and supporting the differentiation of intrafusal fibres and the specific expression of their MHC. However, we also show that motor innervation and/or muscle function seem to be necessary for the diversity in the expression and distribution of different slow and fast MHC isoforms in the bag and bag fibres.  相似文献   

13.
The histochemical pattern of red, pink and white muscle of fish living in fresh, brackish, and salt water is reported. The muscle fibres were stained routinely during the year for lactate dehydrogenase (LDH), menadione α-glycerophosphate dehydrogenase (Mα—GPDH), succinic dehydrogenase (SDH), myosin adenosine triphosphatase (myosin ATPase), phosphorylase, lipids and glycogen. The pink and red muscles contain more glycogen and lipids and have a higher SDH activity, which is in accord with their aerobic metabolism and function in sustained swimming activity. The acid labile myosin ATPase activity characteristic of fast twitch fibres is present in the white fibres of most species, however in the white muscle of Gobius paganellus the enzyme activity is stable to both acid and alkali and, in addition, there is a scattered distribution of different fibre types in red and, especially, pink muscle. A study of seasonal variation patterns of myosin ATPase in white muscle of mugilidae over a period of two years has demonstrated, in late summer, the appearance of new small diameter fibres, with a high acid stable enzyme activity, that develop into the large diameter acid labile fibres.  相似文献   

14.
1. The mechanical behaviour of intrafusal muscle fibres during fusimotor stimulation and passive stretch was observed directly in muscle spindles isolated from the cat tenuissimus muscle. 2. Mammalian intrafusal muscle fibres are of three functional types. Most spindles contain one slow nuclear bag fibre, one fast nuclear bag fibre, and four or five nuclear chain fibres. 3. Contraction in slow nuclear bag fibres is characterized by a long latency and very slow initial velocity, whereas the latency for the other intrafusal fibres is short and the inital velocity rapid. The mean time for maximum contraction (at 75 Hz to 100 Hz) and relaxation is significantly longer for slow nuclear bag fibres (0-8s) than for other intrafusal fibres (0-5 s). The contraction time of fast nuclear bag fibres is sometimes longer than that of nuclear chain fibres but the mean values are not significantly different; a difference in the time to attain 90% contraction is more obvious. 4. At low stimulation frequencies (10 Hz) contraction in slow nuclear bag fibres and in most fast nuclear bag fibres is smooth whereas nuclear chain fibres exhibit marked oscillations. Single stimuli elicit small local twitches in nuclear chain fibres and occasionally in fast nuclear bag fibres but produce no visible effect in slow nuclear bag fibres. 5. Maximum contraction of slow and fast nuclear bag fibres at body temperature is attained at a stimulation frequency of 75 Hz to 100 Hz, whereas a frequency of 150 Hz or more is required for maximum contraction of nuclear chain fibres. At 50 Hz at body temperature contraction in nuclear bag fibres is at least half the maximum, whereas in many spindles nuclear chain fibres show only a very small contraction at this frequency. 6. Contraction in slow nuclear bag fibres occurs at one or two discrete foci, most of which lie in the intracapsular region beyond the end of the fluid space. Weak contraction extends the primary sensory spiral by a small amount (2%-8%) at a low velocity (5%-10%s-1). When the fibre is passively stretched the spiral opens and then creeps back to about 75% of the extension at the end of the stretch due to yielding in the poles of fibre; creep is complete in 0-5s to 2-5s. 7. Contraction in fast nuclear bag fibres also occurs at one or two discrete foci, most of which lie in the intracapsular region beyond the end of the fluid space. Shortening of sarcomeres at the foci and extension of the sensory spiral are, however, up to eight times greater (up to 25%) than in slow nuclear bag fibres, and the velocity of stretch of the spiral is three to eight times greater (25%-40%s-1). Fast nuclear bag fibres exhibit little or no creep following passive stretch. 8. Contraction in the nuclear chain fibre bundle is localized to the intracapsular region, centered on a point in the intracapsular region between 0-9 mm and 1-6 mm from the spindle equator. Maximal contraction stretches primary and secondary sensory endings by 15% to 20%, at 30% to 40% s-1...  相似文献   

15.
M A Khan  T Soukup 《Histochemistry》1979,62(2):179-189
The histochemical activities of myofibrillar adenosine triphosphatase (ATPase), succinic dehydrogenase (SDH) and alpha glycerophosphate dehydrogenase (alpha-GPD) were studied in intrafusal muscle fibres of rat fast and slow muscles. The ATPase reaction was carried out after the three standard acid preincubations. The cold K2-EDTA preincubated ATPase reaction product was similar to that seen following the regular or alkali-preincubated ATPase reaction, except that the intermediate bag fibres exhibited much higher activity after cold K2-EDTA preincubation. Following either acetic acid solution or cold and room temperature K2-EDTA-preincubation, followed by the ATPase reaction, chain fibres of the fast muscles vastus lateralis and extensor digitorum longus exhibited a very low amount of reaction product as compared with those of the slow soleus. Veronal acetate and K2-EDTA preincubations (and equally preincubation in acetic acid solution) resulted in acid stable ATPase activity along the entire length of the typical bag fibres but only in the polar regions of the intermediate bag fibres. On the basis of differing alpha-GPD reaction, two sub populations of nuclear chain fibres were discovered in one spindle. It is a matter of conjecture, to what extent the histochemical differences of intrafusal fibres from fast and slow muscles reflects functional distinctions in the response to stretch of muscle spindles from fast and slow muscles.  相似文献   

16.
The M. pectoralis (pars thoracicus) of pigeons (Columba livia) is comprised of short muscle fibres that do not extend from muscle origin to insertion but overlap ''in-series''. Individual pectoralis motor units are limited in territory to a portion of muscle length and are comprised of either fast twitch, oxidative and glycolytic fibres (FOG) or fast twitch and glycolytic fibres (FG). FOG fibres make up 88 to 90% of the total muscle population and have a mean diameter one-half of that of the relatively large FG fibres. Here we report on the organization of individual fibres identified in six muscle units depleted of glycogen, three comprised of FOG fibres and three comprised of FG fibres. For each motor unit, fibre counts revealed unequal numbers of depleted fibres in different unit cross-sections. We traced individual fibres in one unit comprised of FOG fibres and a second comprised of FG fibres. Six fibres from a FOG unit (total length 15.45 mm) ranged from 10.11 to 11.82 mm in length and averaged (± s.d.) 10.74 ± 0.79 mm. All originated bluntly (en mass) from a fascicle near the proximal end of the muscle unit and all terminated intramuscularly. Five of these ended in a taper and one ended bluntly. Fibres coursed on average for 70% of the muscle unit length. Six fibres from a FG unit (total length 34.76 mm) ranged from 8.97 to 18.38 mm in length and averaged 15.32 ± 3.75 mm. All originated bluntly and terminated intramuscularly; one of these ended in a taper and five ended bluntly. Fibres coursed on average for 44% of the muscle unit length. Because fibres of individual muscle units do not extend the whole muscle unit territory, the effective cross-sectional area changes along the motor unit length. These non-uniformities in the distribution of fibres within a muscle unit emphasize that the functional interactions within and between motor units are complex.  相似文献   

17.
On parasitization with larval Brugia pahangi the infected flight muscle fibres of "resistant" Anopheles labranchiae atroparvus undergo the following ultrastructural changes. The fibres become almost totally devoid of glycogen, their sarcoplasmic reticulum becomes elongate and closely associated with muscle fibrils. These fibrils degenerate and vesicles appear both within the degenerate fibril and within elements of the sarcoplasmic reticulum. Vesicles accumulate around the worm and degenerate to a uniform mass which eventually becomes melanized from its inner edge (next to the parasite) outwards. The infected flight muscle fibres of both "resistant" Aedes aegypti and "susceptible" Aedes togoi are almost totally devoid of glycogen granules, but show no other ultrastructural change from the uninfected state.  相似文献   

18.
Summary In order to evaluate the effects of fusimotor elimination on the expression of myosin heavy chain (MHC) proteins in intrafusal fibres, we compared the muscle spindles in hind limb muscles of 3- to 6-week-old rats de-efferented at birth with those of their litter-mate controls. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal MHC isoforms, against synaptophysin, the neurofilament 68 kD subunit and laminin. We found that de-efferented intrafusal fibres differentiated, as in normal spindles, into nuclear bag1 and bag2 fibres both containing predominantly slow MHC, and nuclear chain fibres that contained fast and neonatal MHC. In both de-efferented and control intrafusal fibres the same MHCs were stained; the degree and extent of staining, however, varied. Both types of de-efferented bag fibres displayed a high content of slow tonic and slow twitch MHC along most of the fibre length, in contrast to the prominent regional variation in control bag fibres. In their encapsulated regions, the de-efferented bag fibres were more similar to each other in their reactivity to anti-fast twitch and anti-neonatal MHC antibodies than the control bag fibres. In these aspects they resembled more closely the bag fibres of newborn rats. The differences might be due to an arrest of specialization in the regional expression of the different MHC isoforms. Chain fibres developed MHC patterns identical to those of control spindles with all the antibodies used, even though they differentiated from the beginning in the absence of motor innervation.The structural differentiation of the capsule and sensory innervation in de-efferented muscle spindles, as shown by anti-laminin, anti-synaptophysin and anti-neurofilament staining, did not differ from the controls.We conclude, in agreement with previous studies, that the sensory innervation plays a key role in inducing and supporting the differentiation of intrafusal fibres and the specific expression of their MHC. However, we also show that motor innervation and/or muscle function seem to be necessary for the diversity in the expression and distribution of different slow and fast MHC isoforms in the bag1 and bag2 fibres.  相似文献   

19.
Fibre type composition, fibre areas, capillaries, enzyme activities and intramuscular substrates were analysed on skeletal muscle samples from reindeer. The muscles contained 10-20% Type I fibres and a higher percentage of Type IIB (40-60%) than Type IIA fibres (20-40%). All fibre types revealed medium or dark staining intensity for oxidative capacity. Glycolytic capacity was greatest in Type IIB fibres. All fibres stained for glycogen, while Type I and IIA fibres stained for lipids. The mean number of capillaries in contact with fibres of each type, relative to fibre type area was high in all muscle types. The metabolic profile of reindeer muscle indicates that energy, to a great extent, is produced through oxidative pathways.  相似文献   

20.
Summary The histochemical activities of myofibrillar adenosine triphosphatase (ATPase), succinic dehydrogenase (SDH) and alpha glycerophosphate dehydrogenase (-GPD) were studied in intrafusal muscle fibres of rat fast and slow muscles. The ATPase reaction was carried out after the three standard acid preincubations. The cold K2-EDTA preincubated ATPase reaction product was similar to that seen following the regular or alkalipreincubated ATPase reaction, except that the intermediate bag fibres exhibited much higher activity after cold K2-EDTA preincubation. Following either acetic acid solution or cold and room temperature K2-EDTA-preincubation, followed by the ATPase reaction, chain fibres of the fast muscles vastus lateralis and extensor digitorum longus exhibited a very low amount of reaction product as compared with those of the slow soleus. Veronal acetate and K2-EDTA preincubations (and equally preincubation in acetic acid solution) resulted in acid stable ATPase activity along the entire length of the typical bag fibres but only in the polar regions of the intermediate bag fibres. On the basis of differing -GPD reaction, two sub populations of nuclear chain fibres were discovered in one spindle. It is a matter of conjecture, to what extent the histochemical differences of intrafusal fibres from fast and slow muscles reflects functional distinctions in the response to stretch of muscle spindles from fast and slow muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号