首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The Gram-negative anaerobic bacterium B. fragilis is a member of the commensal flora of the human intestine, but is also frequently found in severe intra-abdominal infections. Several B. fragilis virulence factors have been implicated in the development of these infections. A B. fragilis protein of circa 60-kDa was identified as a putative plasminogen binding protein (Pbp). The corresponding gene was located, cloned, sequenced and the subcellular localization of the protein was investigated. Pbp was both determined in the outer membrane of B. fragilis and of E. coli that expressed the cloned protein. Protease accessibility studies showed that the protein is expressed at the cell surface. Importantly, we demonstrated that Pbp is sufficient and required for plasminogen binding to whole cells in both E. coli and B. fragilis. Pbp-like proteins were also detected in some other Bacteroides subspecies. The role of this potential B. fragilis virulence factor in pathogenicity is discussed.  相似文献   

2.
Bacteroides fragilis is a minor component of the intestinal microbiota and the most frequently isolated from intra-abdominal infections and bacteremia. Previously, our group has shown that molecules involved in laminin-1 (LMN-1) recognition were present in outer membrane protein extracts of B. fragilis MC2 strain. One of these proteins was identified and showed 98% similarity to a putative B. fragilis plasminogen-binding protein precursor, deposited in the public database. Thus, the objective of this work was to overexpress and further characterize this novel adhesin. The ability of B. fragilis MC2 strain and purified protein to convert plasminogen into plasmin was tested. Our results showed that B. fragilis strain MC2 strain adhered to both LMN-1 and plasminogen and this adhesion was inhibited by either LMN-1 or plasminogen. Regarding the plasminogen activation activity, both the whole bacterial cell and the purified protein converted plasminogen into plasmin similar to streptokinase used as a positive control. Bacterial receptors that recognize plasminogen bind to it and enhance its activation, transforming a nonproteolytic bacterium into a proteolytic one. We present in vitro evidence for a pathogenic function of the plasminogen receptor in promoting adherence to laminin and also the formation of plasmin by B. fragilis .  相似文献   

3.
The interaction of Streptococcus pneumoniae with human plasmin(ogen) represents a mechanism to enhance bacterial virulence by capturing surface-associated proteolytic activity in the infected host. Plasminogen binds to surface displayed pneumococcal alpha-enolase (Eno) and is subsequently activated to the serine protease plasmin by host-derived tissue plasminogen activator (tPA) or urokinase (uPA). The C-terminal lysyl residues of Eno at position 433 and 434 were identified as a binding site for the kringle motifs of plasmin(ogen) which contain lysine binding sites. In this report we have identified a novel internal plamin(ogen)-binding site of Eno by investigating the protein-protein interaction. Plasmin(ogen)-binding activity of C-terminal mutated Eno proteins used in binding assays as well as surface plasmon resonance studies suggested that an additional binding motif of Eno is involved in the Eno-plasmin(ogen) complex formation. The analysis of spot synthesized synthetic peptides representing Eno sequences identified a peptide of nine amino acids located between amino acids 248-256 as the minimal second binding epitope mediating binding of plasminogen to Eno. Binding of radiolabelled plasminogen to viable pneumococci was competitively inhibited by a synthetic peptide FYDKERKVYD representing the novel internal plasmin(ogen)-binding motif of Eno. In contrast, a synthetic peptide with amino acid substitutions at critical positions in the internal binding motif identified by systematic mutational analysis did not inhibit binding of plasminogen to pneumococci. Pneumococcal mutants expressing alpha-enolase with amino acid substitutions in the internal binding motif showed a substantially reduced plasminogen-binding activity. The virulence of these mutants was also attenuated in a mouse model of intranasal infection indicating the significance of the novel plasminogen-binding motif in the pathogenesis of pneumococcal diseases.  相似文献   

4.
Alpha-enolases are ubiquitous cytoplasmic, glycolytic enzymes. In pathogenic bacteria, alpha-enolase doubles as a surface-displayed plasmin(ogen)-binder supporting virulence. The plasmin(ogen)-binding site was initially traced to the two C-terminal lysine residues. More recently, an internal nine-amino acid motif comprising residues 248 to 256 was identified with this function. We report the crystal structure of alpha-enolase from Streptococcus pneumoniae at 2.0A resolution, the first structure both of a plasminogen-binding and of an octameric alpha-enolase. While the dimer is structurally similar to other alpha-enolases, the octamer places the C-terminal lysine residues in an inaccessible, inter-dimer groove restricting the C-terminal lysine residues to a role in folding and oligomerization. The nine residue plasminogen-binding motif, by contrast, is exposed on the octamer surface revealing this as the primary site of interaction between alpha-enolase and plasminogen.  相似文献   

5.
6.
alpha-enolase of Bacillus anthracis has recently been classified as an immunodominant antigen and a potent virulence factor determinant. alpha-enolase (2-phospho-d-glycerate hydrolase (EC 4.2.1.11), a key glycolytic metalloenzyme catalyzes the dehydration of d-(+)-2-phosphoglyceric acid to phosphoenolpyruvate. Interaction of surface bound alpha-enolase with plasminogen has been incriminated in tissue invasion for pathogenesis. B. anthracis alpha-enolase was expressed in Escherichia coli and the recombinant enzyme was purified to homogeneity that exhibited a K(m) of 3.3 mM for phosphoenolpyruvate and a V(max) of 0.506 microM min(- 1) mg(-1). B. anthracis whole cells and membrane vesicles probed with anti-enolase antibodies confirmed the surface localization of alpha-enolase. The specific interaction of alpha-enolase with human plasminogen (but not plasmin) evident from ELISA and the retardation in the native gel reinforced its role in plasminogen binding. Putative plasminogen receptors in B. anthracis other than enolase were also observed. This binding was found to be carboxypeptidase sensitive implicating the role of C-terminal lysine residues. The recombinant enolase displayed in vitro laminin binding, an important mammalian extracellular matrix protein. Plasminogen interaction conferred B. anthracis with a potential to in vitro degrade fibronectin and exhibit fibrinolytic phenotype. Therefore, by virtue of its interaction to host plasminogen and extracellular matrix proteins, alpha-enolase may contribute in augmenting the invasive potential of B. anthracis.  相似文献   

7.
Pseudomonas aeruginosa is one of the pathogenic bacteria which utilize binding of the host plasminogen (Plg) to promote their invasion throughout the host tissues. In the present study, we confirmed that P. aeruginosa exhibits binding affinity for human plasminogen. Furthermore, we showed that the protein detected on the cell wall of P. aeruginosa and binding human plasminogen is an enolase-like protein. The hypothesis that alpha-enolase, a cytoplasmatic glycolytic enzyme, resides also on the cell surface of the bacterium was supported by electron microscopy analysis. The plasminogen-binding activity of bacterial cell wall outer membrane enolase-like protein was examined by immunoblotting assay.  相似文献   

8.
Far-UV irradiation of Bacteroides fragilis cells under anaerobic conditions resulted in the induction of a new 95,000-molecular-weight protein and the increased synthesis of two proteins with molecular weights of 90,000 and 70,000. The latter two proteins were synthesized in small amounts in unirradiated cells. The induction of a 37,000- to 40,000-molecular-weight protein was not observed in irradiated B. fragilis cells. Caffeine, which affected the survival of irradiated B. fragilis cells and reduced host cell-mediated UV reactivation, specifically inhibited the induction of the 95,000-, 90,000-, and 70,000-molecular-weight proteins. Sodium arsenite did not affect the induction of the three inducible proteins or the survival of irradiated B. fragilis cells.  相似文献   

9.
10.
Since reduced metronidazole causes DNA damage, resistance to metronidazole was used as a selection method for the cloning of Bacteroides fragilis genes affecting DNA repair mechanisms in Escherichia coli. Genes from B. fragilis Bf-2 were cloned on a recombinant plasmid pMT100 which made E. coli AB1157 and uvrA, B, and C mutant strains more resistant to metronidazole, but more sensitive to far uv irradiation under aerobic conditions. The loci affecting metronidazole resistance and uv sensitivity were linked and located on a 5-kb DNA fragment which originated from the small 6-kb cryptic plasmid pBFC1 present in B. fragilis Bf-2 cells.  相似文献   

11.
Streptococcus suis serotype 2 (SS2) is a zoonotic pathogen that is distributed throughout the world. Virulence factors and/or markers of the virulent serotype 2 strains have not been fully identified. In this study a simple, rapid, and non-destructive method was used to extract cell wall-associated proteins from SS2 strains. Two virulent strains were compared with one avirulent strain by 2-dimensional electrophoresis (2DE). When the results of the 2DE analyses were combined with the results of mass spectrometry analyses, a total of 40 unique proteins were identified, including 26 antigens (2DE immunoblotting was used as a preliminary study). In addition to a known virulence factor, muramidase-released protein, two new proteins, catabolite control protein A and leucyl aminopeptidase, and nine potential virulence factors were also identified. The formers may be a potential virulence regulator or drug target, and the latter contains plasminogen-binding proteins and molecular chaperones. Our results complemented previous immunoproteomics studies of SS2 strains.  相似文献   

12.
Shiga toxins (Stx) are the main virulence factors in enterohemorrhagic Escherichia coli (EHEC) infections, causing diarrhea and hemolytic uremic syndrome (HUS). The genes encoding for Shiga toxin-2 (Stx2) are located in a bacteriophage. The toxin is formed by a single A subunit and five B subunits, each of which has its own promoter sequence. We have previously reported the expression of the B subunit within the eukaryotic environment, probably driven by their own promoter. The aim of this work was to evaluate the ability of the eukaryotic machinery to recognize stx2 sequences as eukaryotic-like promoters. Vero cells were transfected with a plasmid encoding Stx2 under its own promoter. The cytotoxic effect on these cells was similar to that observed upon incubation with purified Stx2. In addition, we showed that Stx2 expression in Stx2-insensitive BHK eukaryotic cells induced drastic morphological and cytoskeletal changes. In order to directly evaluate the capacity of the wild promoter sequences of the A and B subunits to drive protein expression in mammalian cells, GFP was cloned under eukaryotic-like putative promoter sequences. GFP expression was observed in 293T cells transfected with these constructions. These results show a novel and alternative way to synthesize Stx2 that could contribute to the global understanding of EHEC infections with immediate impact on the development of treatments or vaccines against HUS.  相似文献   

13.
14.
Prevotella intermedia is a periodontal pathogen that requires iron for its growth. Although this organism has hemolytic activity, the precise nature of its hemolytic substances and their associated hemolytic actions are yet to be fully determined. In the present study, we identified and characterized several putative hly genes in P. intermedia ATCC25611 which appear to encode hemolysins. Six hly genes (hlyA, B, C, D, E, and hlyI) of P. intermedia were identified by comparing their nucleotide sequences to those of known hly genes of Bacteroides fragilis NCTC9343. The hlyA-E, and hlyI genes were overexpressed individually in the non-hemolytic Escherichia coli strain JW5181 and examined its contribution to the hemolytic activity on sheep blood agar plates. E. coli cells expressing the hlyA and hlyI genes exhibited hemolytic activity under anaerobic conditions. On the other hand, only E. coli cells stably expressing the hlyA gene were able to lyse the red blood cells when cultured under aerobic conditions. In addition, expression of the hlyA and hlyI genes was significantly upregulated in the presence of red blood cells. Furthermore, we found that the growth of P. intermedia was similar in an iron-limited medium supplemented with either red blood cells or heme. Taken together, our results indicate that the hlyA and hlyI genes of P. intermedia encode putative hemolysins that appear to be involved in the lysis of red blood cells, and suggest that these hemolysins might play important roles in the iron-dependent growth of this organism.  相似文献   

15.
Molecular analysis of the Bacteroides fragilis recA gene   总被引:6,自引:0,他引:6  
H J Goodman  D R Woods 《Gene》1990,94(1):77-82
  相似文献   

16.
Bacteroides fragilis is an important anaerobic pathogen accounting for up to 10% of bacteremias in adult patients. Enterotoxin producing B. fragilis (ETBF) strains have been identified as enteric pathogens of children and adults. In order to further characterize the B. fragilis pathogenicity island (BfPAI) and using PCR assays for bft- and mpII-metalloprotease genes, we determined the frequency of B. fragilis strains with pattern I (containing the BfPAI and its flanking region), pattern II (lacking both the BfPAI and the flanking region), and pattern III (lacking the BfPAI but containing the flanking region) in 63 blood culture isolates. The results were compared to 197 B. fragilis isolates from different clinical sources. We found 19% of blood culture isolates were pattern I (ETBF), 43% were pattern II (NTBF) and 38% were pattern III (NTBF). Comparatively, B. fragilis isolates from other clinical sources were 10% pattern I, 47% pattern II and 43% pattern III. This suggests that the pathogenicity island and the flanking elements may be general virulence factors of B. fragilis.  相似文献   

17.
Antibodies against citrullinated proteins are highly specific for rheumatoid arthritis (RA), but little is understood about their citrullinated target antigens. We have detected a candidate citrullinated protein by immunoblotting lysates of monocytic and granulocytic HL-60 cells treated with peptidylarginine deiminase. In an initial screen of serum samples from four patients with RA and one control, a protein of molecular mass 47 kDa from monocytic HL-60s reacted with sera from the patients, but not with the serum from the control. Only the citrullinated form of the protein was recognised. The antigen was identified by tandem mass spectrometry as alpha-enolase, and the positions of nine citrulline residues in the sequence were determined. Serum samples from 52 patients with RA and 40 healthy controls were tested for presence of antibodies against citrullinated and non-citrullinated alpha-enolase by immunoblotting of the purified antigens. Twenty-four sera from patients with RA (46%) reacted with citrullinated alpha-enolase, of which seven (13%) also recognised the non-citrullinated protein. Six samples from the controls (15%) reacted with both forms. Alpha-enolase was detected in the RA joint, where it co-localised with citrullinated proteins. The presence of antibody together with expression of antigen within the joint implicates citrullinated alpha-enolase as a candidate autoantigen that could drive the chronic inflammatory response in RA.  相似文献   

18.
Bacteroides fragilis has been isolated from several human and non-human monomicrobial and mixed infections. In this study, some virulence markers and the antimicrobial susceptibility of bacteria of the B. fragilis group isolated from children's stools were evaluated. All the 64 isolates showed the following characteristics: capsulated, beta-hemolytic, hydrophilic, and serum-resistant. Only, 24 (37.5%) strains were resistant at 60 masculine C, for 30 min, and among them, 12 (18.75%) were resistant at 60 masculine C, for 60 min. Also, none strain was resistant at 100 masculine C. Four strains were able to hemagglutinate erythrocytes and D-mannose, D-galactose, D-arabinose, and D-xylose inhibited hemagglutination in 2 B. fragilis strains (p76a, p76b). The hemagglutination in the strain B. uniformis p3-2 was inhibited by D-xylose and D-galactose. The bft gene detection and the enterotoxin production were observed only in 13 EF-enterotoxigenic species. Fragilysin activity was confirmed on HT-29 cells. The antimicrobial determination confirmed that both imipenem and metronidazole were efficient against B. fragilis species; all the strains were resistant to lead and nickel. Plasmids of 2.9, 4.4, 4.8, and 8.9 kb were observed in 6 tested strains. These results show the values of the species identification from clinical infections, as well as of the periodic evaluation of the resistance patterns of the B. fragilis group at Brazilian medical institutions.  相似文献   

19.
Bacillus anthracis the causative agent of anthrax, is an important pathogen among the Bacillus cereus group of species because of its physiological characteristics and its importance as a biological warfare agent. Tripartite anthrax toxin proteins and a poly-D-glutamic acid capsule are produced by B. anthracis vegetative cells during mammalian hosts infection and when cultured in conditions that are thought to mimic the host environment. To identify the factors regulating virulence in B. anthracis the whole cell proteins were extracted from two B. anthracis strains and separated by narrow range immobilized pH gradient (IPG) strips (pH 4–7), followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Proteins that were differentially expressed were identified by the peptide fingerprinting using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). A total of 23 proteins were identified as being either upregulated or downregulated in the presence or absence of the virulence plasmid pXO1. Two plasmid encoded proteins and 12 cellular proteins were identified and documented as potential virulence factors.  相似文献   

20.
Group A streptococci are common human pathogens that cause a variety of infections. They express M proteins which are important cell wall-bound type-specific virulence factors. We have found that a set of strains, associated primarily with skin infections, express M proteins that bind plasminogen and plasmin with high affinity. The binding is mediated by a 13-amino-acid internal repeated sequence located in the N-terminal surface-exposed portion of these M proteins. This sequence binds to kringle 2 in plasminogen, a domain that is not involved in the interaction with streptokinase, a potent group A streptococcal activator of plasminogen. It could be demonstrated that plasminogen, absorbed from plasma by growing group A streptococci expressing the plasminogen-binding M proteins, could be activated by exogenous and endogenous streptokinase, thereby providing the bacteria with a surface-associated enzyme that could act on the tissue barriers in the infected host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号