首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
We used two measures to compare the effectiveness of 52 conservation criteria in achieving conservation targets for forest types. The first measure was efficiency. Although widely used, efficiency assumes no loss or reduction of biodiversity features before conservation is implemented. This is invalid in many situations. Often, it is more realistic to assume gradual implementation accompanied by incremental, predictable reduction and loss of biodiversity features. We simulated future landscapes resulting from the annual interplay of loss and conservation of forest types. We then based our second measure, retention, on how well criteria scheduled conservation action to prevent targets being compromised. The simulations partly support predictions about the best criteria for scheduling implementation with continuing biodiversity loss. Retention was weakly related or unrelated to efficiency across 52 criteria. Although retention values were sensitive to changes in targets and rates of conservation and forest loss, one criterion consistently produced highest retention values.  相似文献   

2.
Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future.  相似文献   

3.
Current levels of endangerment and historical trends of species and habitats are the main criteria used to direct conservation efforts globally. Estimates of future declines, which might indicate different priorities than past declines, have been limited by the lack of appropriate data and models. Given that much of conservation is about anticipating and responding to future threats, our inability to look forward at a global scale has been a major constraint on effective action. Here, we assess the geography and extent of projected future changes in suitable habitat for terrestrial mammals within their present ranges. We used a global earth-system model, IMAGE, coupled with fine-scale habitat suitability models and parametrized according to four global scenarios of human development. We identified the most affected countries by 2050 for each scenario, assuming that no additional conservation actions other than those described in the scenarios take place. We found that, with some exceptions, most of the countries with the largest predicted losses of suitable habitat for mammals are in Africa and the Americas. African and North American countries were also predicted to host the most species with large proportional global declines. Most of the countries we identified as future hotspots of terrestrial mammal loss have little or no overlap with the present global conservation priorities, thus confirming the need for forward-looking analyses in conservation priority setting. The expected growth in human populations and consumption in hotspots of future mammal loss mean that local conservation actions such as protected areas might not be sufficient to mitigate losses. Other policies, directed towards the root causes of biodiversity loss, are required, both in Africa and other parts of the world.  相似文献   

4.
Understanding the biology of rare species is a very important part of conservation biology. Most of our current understanding of rarity has, however, come from studies of terrestrial plants, birds, mammals and some insects. Freshwater and marine habitats are underrepresented in published studies of rare species or conservation biology. We therefore have little knowledge about how well our understanding of what makes particular species rare and how rare species persist applies to marine invertebrates which form a major component of coastal biodiversity. In this review, I examine some theories about rarity with respect to intertidal and shallow subtidal invertebrates to identify whether there are adequate data to apply these theories to marine invertebrates and how well such theories apply. The general conclusions are that the lack of quantitative data on abundances, ranges, habitat-requirements, dispersal and connectedness among populations for marine invertebrates means that their status as rare species cannot really be assessed appropriately. It is also unlikely that, without extensive sampling programmes and considerable expense, adequate data could be obtained for these small, cryptic animals, which typically have very patchy, variable and unpredictable patterns of distribution and abundance. Intertidal and subtidal assemblages are diverse, including species with many different life-histories from many phyla, occupying the same suite of habitats. It is therefore suggested that future research on rare organisms in marine habitats should build upon the long and successful history of experimental marine studies to test specific hypotheses about processes influencing rarity in the field. Such studies would not only add a new dimension to our current understanding of rarity, but would also provide badly-needed data on the status of rare marine invertebrates. abundances, invertebrates, marine, range, rarity  相似文献   

5.
Future battlegrounds for conservation under global change   总被引:2,自引:0,他引:2  
Global biodiversity is under significant threat from the combined effects of human-induced climate and land-use change. Covering 12% of the Earth's terrestrial surface, protected areas are crucial for conserving biodiversity and supporting ecological processes beneficial to human well-being, but their selection and design are usually uninformed about future global change. Here, we quantify the exposure of the global reserve network to projected climate and land-use change according to the Millennium Ecosystem Assessment and set these threats in relation to the conservation value and capacity of biogeographic and geopolitical regions. We find that geographical patterns of past human impact on the land cover only poorly predict those of forecasted change, thus revealing the inadequacy of existing global conservation prioritization templates. Projected conservation risk, measured as regional levels of land-cover change in relation to area protected, is the greatest at high latitudes (due to climate change) and tropics/subtropics (due to land-use change). Only some high-latitude nations prone to high conservation risk are also of high conservation value, but their high relative wealth may facilitate additional conservation efforts. In contrast, most low-latitude nations tend to be of high conservation value, but they often have limited capacity for conservation which may exacerbate the global biodiversity extinction crisis. While our approach will clearly benefit from improved land-cover projections and a thorough understanding of how species range will shift under climate change, our results provide a first global quantitative demonstration of the urgent need to consider future environmental change in reserve-based conservation planning. They further highlight the pressing need for new reserves in target regions and support a much extended 'north-south' transfer of conservation resources that maximizes biodiversity conservation while mitigating global climate change.  相似文献   

6.
Evolutionary studies have played a fundamental role in our understanding of life, but until recently, they had only a relatively modest involvement in addressing conservation issues. The main goal of the present discussion meeting issue is to offer a platform to present the available methods allowing the integration of phylogenetic and extinction risk data in conservation planning. Here, we identify the main knowledge gaps in biodiversity science, which include incomplete sampling, reconstruction biases in phylogenetic analyses, partly known species distribution ranges, and the difficulty in producing conservation assessments for all known species, not to mention that much of the effective biological diversity remains to be discovered. Given the impact that human activities have on biodiversity and the urgency with which we need to address these issues, imperfect assumptions need to be sanctioned and surrogates used in the race to salvage as much as possible of our natural and evolutionary heritage. We discuss some aspects of the uncertainties found in biodiversity science, such as the ideal surrogates for biodiversity, the gaps in our knowledge and the numerous available phylogenetic diversity-based methods. We also introduce a series of cases studies that demonstrate how evolutionary biology can effectively contribute to biodiversity conservation science.  相似文献   

7.
Biodiversity continues to decline, despite the implementation of international conservation conventions and measures. To counteract biodiversity loss, it is pivotal to know how conservation actions affect biodiversity trends. Focussing on European farmland species, we review what is known about the impact of conservation initiatives on biodiversity. We argue that the effects of conservation are a function of conservation-induced ecological contrast, agricultural land-use intensity and landscape context. We find that, to date, only a few studies have linked local conservation effects to national biodiversity trends. It is therefore unknown how the extensive European agri-environmental budget for conservation on farmland contributes to the policy objectives to halt biodiversity decline. Based on this review, we identify new research directions addressing this important knowledge gap.  相似文献   

8.
Phylogenetic diversity is a measure for describing how much of an evolutionary tree is spanned by a subset of species. If one applies this to the unknown subset of current species that will still be present at some future time, then this ‘future phylogenetic diversity’ provides a measure of the impact of various extinction scenarios in biodiversity conservation. In this paper, we study the distribution of future phylogenetic diversity under a simple model of extinction (a generalized ‘field of bullets’ model). We show that the distribution of future phylogenetic diversity converges to a normal distribution as the number of species grows, under mild conditions, which are necessary. We also describe an algorithm to compute the distribution efficiently, provided the edge lengths are integral, and briefly outline the significance of our findings for biodiversity conservation.  相似文献   

9.
Decisions about where conservation actions are implemented are based on incomplete knowledge about biodiversity. The Protea Atlas is a comprehensive database, containing information collated over a decade. Using this data set in a series of retrospective simulations, we compared the outcome from different scenarios of information gain, and habitat protection and loss, over a 20-year period. We assumed that there was no information on proteas at the beginning of the simulation but knowledge improved each year. Our aim was to find out how much time we should spend collecting data before protecting habitat when there is ongoing loss of habitat. We found that, in this case, surveying for more than 2 years rarely increased the effectiveness of conservation decisions in terms of representation of proteas in protected areas and retention within the landscape. If the delay is too long, it can sometimes be more effective just using a readily available habitat map. These results reveal the opportunity costs of delaying conservation action to improve knowledge.  相似文献   

10.
系统保护规划的理论、方法及关键问题   总被引:3,自引:0,他引:3  
张路  欧阳志云  徐卫华 《生态学报》2015,35(4):1284-1295
为了减缓生物多样性丧失的趋势、将有限的保护资源用于关键区域,Margules等提出了系统保护规划(Systematic Conservation Planning)概念和方法,目前该方法已成为国际主流保护规划方法。与传统基于专家决策的保护体系规划方法不同,系统保护规划拥有量化的保护目标、保护成本,并综合考虑保护体系连通性、人为干扰因素,使用优化算法计算,从而获得空间明晰的生物多样性保护体系。在阐述规划理念、规划流程与方法的基础上,重点评述了生物多样性替代指标的选择、保护规划成本的计算、保护目标的设置、规划结果的可靠性评估等关键问题,并结合我国的具体情况,探讨了该方法在我国的应用前景,以期为推进我国生物多样性与生态服务功能的保护做出贡献。  相似文献   

11.
The Atlantic Forest is one of the most diverse and threatened ecosystems of the world, being thus classified as one of the most important biodiversity hotspots. However, habitat loss, overexploitation, alien species, disease and pollution are not the only threats faced by native fauna and flora. The lack of adequate taxonomic knowledge hinders conservation and management efforts of endemic species. This is true even for mammals, which is the most charismatic group of animals and traditionally receive a good deal of attention from scientists and the public in general. A few examples show how this gap in local fauna information can be demise for species conservation, even misguiding management strategies: molecular data reveal a hidden marsupial diversity; the lack of taxonomic studies at the species level seriously threatens rodent conservation; and the taxonomic rearrangement of the genusBrachyteles revealed a new species and had a great impact on management strategies. New species are discovered, described and taxonomically rearranged at an astounding rate. We can only be successful in biodiversity conservation if we have at least a minimum level of knowledge about what we are trying to preserve. That is true both for researchers and for the general public. Recent taxonomic revisions may represent the turning point in Neotropical fauna knowledge, which, coupled with a greater awareness of local people about the rich biodiversity that dot their backyards, can represent a better conservation prospect for the endemics of the Atlantic Forest.  相似文献   

12.
试论生物多样性保护理论与实践面临的困难及现实出路   总被引:6,自引:0,他引:6  
保护生物学作为一门新兴的交叉科学,已经在最近的一二十年中迅速发展成为一门独立的学科,然而,人们似乎过分沉湎于保护生物学的理论研究之中,却对这样一个事实置若罔闻;保护生物多样性的实践并未能取得预期的成效,生物多样性的危机不仅远未消除,反而越来越严峻,本文从保护生物多样性的伦理妯,保护生物学的理论,保护生物多样性的实践等多个层面上,分析了生物多样性保护面临的重重困难,着重指出,来自社会人文方面的种种不利因素,尤其是经济方面的驱动力,才是制约生物多样性保护的根源所在,并提出通过人文学科的社会经济,政策,法律等方面与自然学科的技术和理论的密切合作研究,综合地探求解决生物多样性危机的有效途径,应该成为保护生物学研究一个新的重点领域。  相似文献   

13.
Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. "Backyard biodiversity", defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of "backyard biodiversity" specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability.  相似文献   

14.
Many studies have explored the benefits of adopting more sophisticated modelling techniques or spatial data in terms of our ability to accurately predict ecosystem responses to global change. However, we currently know little about whether the improved predictions will actually lead to better conservation outcomes once the costs of gaining improved models or data are accounted for. This severely limits our ability to make strategic decisions for adaptation to global pressures, particularly in landscapes subject to dynamic change such as the coastal zone. In such landscapes, the global phenomenon of sea level rise is a critical consideration for preserving biodiversity. Here, we address this issue in the context of making decisions about where to locate a reserve system to preserve coastal biodiversity with a limited budget. Specifically, we determined the cost‐effectiveness of investing in high‐resolution elevation data and process‐based models for predicting wetland shifts in a coastal region of South East Queensland, Australia. We evaluated the resulting priority areas for reserve selection to quantify the cost‐effectiveness of investment in better quantifying biological and physical processes. We show that, in this case, it is considerably more cost effective to use a process‐based model and high‐resolution elevation data, even if this requires a substantial proportion of the project budget to be expended (up to 99% in one instance). The less accurate model and data set failed to identify areas of high conservation value, reducing the cost‐effectiveness of the resultant conservation plan. This suggests that when developing conservation plans in areas where sea level rise threatens biodiversity, investing in high‐resolution elevation data and process‐based models to predict shifts in coastal ecosystems may be highly cost effective. A future research priority is to determine how this cost‐effectiveness varies among different regions across the globe.  相似文献   

15.
Climate change has direct and indirect impacts on forest ecosystems worldwide. In this context, changing site conditions and altered disturbance regimes as well as forest management responses are challenging the conservation of biodiversity in forests. Climate-induced dynamics and uncertainties related to future forest ecosystem development are calling into question current conservation strategies and concepts. Given the longevity of trees, slow development rates of forest ecosystems and slow migration rates of many forest species, the planning of adaptation measures in response to climate change are especially difficult though highly important for forest biodiversity conservation. This paper introduces a special issue with eight contributions which deal with a variety of aspects of forest biodiversity conservation in the face of climate change. More specifically, the papers address direct impacts of climate change on forest biodiversity, adaptation measures for forest and conservation management, as well as resulting challenges for conservation strategies and concepts. In conclusion, adaptation measures that enhance diversity and provide different options for future action, thereby maintaining ecosystems’ resilience, as well as conservation management operating on a landscape level, are promoted as being beneficial for coping with uncertainties related to climate change. Adaptive management, which constantly reviews conservation goals and measures, and which takes into account both science-based and local ecological knowledge on climate change can be a valuable tool to inform decisions for forest biodiversity conservation.  相似文献   

16.
17.
Here we present a knowledge‐data framework based on the politico‐military statement by Donald Rumsfeld (below) which has, we believe, direct relevance to ecological conservation. Ecological examples of four of the identified categories are provided with discussion of the conservation risks to a species through knowledge or data loss and movement through the categories. We show that so‐called known knowns in terms of global biodiversity are not as accurately known as thought, despite 500 years or more of world‐wide collecting and recording of eukaryotic species. In addition, as fast as new species, living or fossil, are discovered (unknown unknowns), some of which have revolutionised concepts about the biology of particular taxa, meanwhile, sadly other living species are being extirpated, or are assumed to be so (unknown knowns). These often have a high probability of ultimately being rediscovered, especially if small and/or living in remote, under‐sampled regions. Furthermore, we suggest that in some cases it may be possible to predict the existence of known species in new habitats, or the existence of unknown co‐evolved animal species (known unknowns). We discuss how technological advances (e.g. molecular markers and DNA sequencing) are inflating current estimates of biodiversity by identifying the existence of cryptic species. We believe the knowledge‐data matrix provides another tool for conservation practitioners to focus data collection on bridging knowledge gaps for more effective conservation outcomes.  相似文献   

18.
Given the dramatic pace of change of our planet, we need rapid collection of environmental data to document how species are coping and to evaluate the impact of our conservation interventions. To address this need, new classes of “born digital” biodiversity records are now being collected and curated many orders of magnitude faster than traditional data. In addition to the millions of citizen science observations of species that have been accumulating over the last decade, the last few years have seen a surge of sensor data, with eMammal's camera trap archive passing 1 million photo‐vouchered specimens and Movebank's animal tracking database recently passing 1.5 billion animal locations. Data from digital sensors have other advantages over visual citizen science observation in that the level of survey effort is intrinsically documented and they can preserve digital vouchers that can be used to verify species identity. These novel digital specimens are leading spatial ecology into the era of Big Data and will require a big tent of collaborating organizations to make these databases sustainable and durable. We urge institutions to recognize the future of born‐digital records and invest in proper curation and standards so we can make the most of these records to inform management, inspire conservation action and tell natural history stories about life on the planet.  相似文献   

19.
Abstract. Conservation seeks ultimately to protect and maintain biodiversity indefinitely. Most biodiversity features targeted in past conservation planning have been largely aspects of ecological and biogeographical pattern rather than process. However, the persistence of biodiversity can only be ensured through consideration of the ecological and evolutionary processes that underpin biodiversity, as well as its present spatial pattern. This paper identifies spatial surrogates of ecological and evolutionary processes for regional conservation planning in one of the world's biodiversity hotspots, the Cape Floristic Region. We identified six types of spatial components (namely edaphic interfaces, upland–lowland interfaces, sand movement corridors, riverine corridors, upland–lowland gradients and macroclimatic gradients) as surrogates for key processes such as ecological and geographical diversification, and species migration. Spatial components were identified in a GIS using published data and expert knowledge. Options for achieving targets for process components have been seriously compromised by habitat transformation. Between 30 and 75% of the original extent of the spatial components currently remain functional. Options for achieving upland–lowland and macroclimatic gradients are very limited in the lowlands where most of the habitat has been transformed by agriculture. We recommend that future studies place their research on ecological and evolutionary processes in a spatially explicit framework. Areas maintaining adaptive diversification (e.g. environmental gradients, ecotones) or containing historically isolated populations should be identified and protected. The spatial dimensions of eco-logical processes such as drought and fire refugia also need to be determined and such insights incorporated in conservation planning. Finally, connectivity within these areas should be ensured to maintain species migration and gene flow.  相似文献   

20.
《Ecology and evolution》2017,7(1):145-188
The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems ( www.predicts.org.uk )—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号