首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Transport of various amphipathic organic compounds is mediated by organic anion transporting polypeptides (OATPs in humans, Oatps in rodents), which belong to the solute carrier family 21A (SLC21A/Slc21a). Several of these transporters exhibit a broad and overlapping substrate specificity and are expressed in a variety of different tissues. We have isolated and functionally characterized OATP-F (SLC21A14), a novel member of the OATP family. The cDNA (3059 bp) contains an open reading frame of 2136 bp encoding a protein of 712 amino acids. Its gene containing 15 exons is located on chromosome 12p12. OATP-F exhibits 47-48% amino acid identity with OATP-A, OATP-C, and OATP8, the genes of which are clustered on chromosome 12p12. OATP-F is predominantly expressed in multiple brain regions and Leydig cells of the testis. OATP-F mediates high affinity transport of T(4) and reverse T(3) with apparent K(m) values of approximately 90 nM and 128 nM, respectively. Substrates less well transported by OATP-F include T(3), bromosulfophthalein, estrone-3-sulfate, and estradiol-17beta-glucuronide. Furthermore, OATP-F-mediated T(4) uptake could be cis-inhibited by L-T(4) and D-T(4), but not by 3,5-diiodothyronine, indicating that T(4) transport is not stereospecific, but that 3',5'-iodination is important for efficient transport by OATP-F. Thus, in contrast to most other family members, OATP-F has a more selective substrate preference and may play an important role in the disposition of thyroid hormones in brain and testis.  相似文献   

3.
Organic anion transporting polypeptides (OATP/SLCO) are generally believed to function as electroneutral anion exchangers, but direct evidence for this contention has only been provided for one member of this large family of genes, rat Oatp1a1/Oatp1 (Slco1a1). In contrast, a recent study has indicated that human OATP1B3/OATP-8 (SLCO1B3) functions as a GSH-bile acid cotransporter. The present study examined the transport mechanism and possible GSH requirement of the two members of this protein family that are expressed in relatively high levels in the human liver, OATP1B3/OATP-8 and OATP1B1/OATP-C (SLCO1B1). Uptake of taurocholate in Xenopus laevis oocytes expressing either OATP1B1/OATP-C, OATP1B3/OATP-8, or polymorphic forms of OATP1B3/OATP-8 (namely, S112A and/or M233I) was cis-inhibited by taurocholate and estrone sulfate but was unaffected by GSH. Likewise, taurocholate and estrone sulfate transport were trans-stimulated by estrone sulfate and taurocholate but were unaffected by GSH. OATP1B3/OATP-8 also did not mediate GSH efflux or GSH-taurocholate cotransport out of cells, indicating that GSH is not required for transport activity. In addition, estrone sulfate uptake in oocytes microinjected with OATP1B3/OATP-8 or OATP1B1/OATP-C cRNA was unaffected by depolarization of the membrane potential or by changes in pH, suggesting an electroneutral transport mechanism. Overall, these results indicate that OATP1B3/OATP-8 and OATP1B1/OATP-C most likely function as bidirectional facilitated diffusion transporters and that GSH is not a substrate or activator of their transport activity.  相似文献   

4.
To determine whether the liver toxin phalloidin is transported into hepatocytes by one of the known bile salt transporters, we expressed the sodium-dependent Na+/taurocholate cotransporting polypeptide (Ntcp) and several sodium-independent bile salt transporters of the organic anion transporting polypeptide (OATP/SLCO) superfamily in Xenopus laevis oocytes and measured uptake of the radiolabeled phalloidin derivative [3H]demethylphalloin. We found that rat Oatp1b2 (previously called Oatp4 (Slc21a10)) as well as human OATP1B1 (previously called OATP-C (SLC21A6)) and OATP1B3 (previously called OATP8 (SLC21A8)) mediate uptake of [3H]demethylphalloin when expressed in X. laevis oocytes. Transport of increasing [3H]demethylphalloin concentrations was saturable with apparent Km values of 5.7 microM (Oatp1b2), 17 microM (OATP1B1) and 7.5 microM (OATP1B3). All other tested Oatps/OATPs as well as the rat liver Ntcp did not transport [3H]demethylphalloin. Therefore, we conclude that rat Oatp1b2 as well as human OATP1B1 and OATP1B3 are responsible for phalloidin uptake into rat and human hepatocytes.  相似文献   

5.
OATP1B1 (a.k.a. OATP-C, OATP2, LST-1, or SLC21A6) is a liver-specific organic anion uptake transporter and has been shown to be a higher affinity bilirubin uptake transporter than OATP1B3. Using human embryonic kidney (HEK 293) cells stably transfected with OATP1B1, we have studied the effects of indinavir, saquinavir, cyclosporin A, and rifamycin SV on human OATP1B1 transport function. These drugs are potent inhibitors of OATP1B1 transport activity in vitro. We further provide evidence that the calculated fraction of OATP1B1 inhibited at the clinical exposure level correlated very well with the observed hyperbilirubinemia outcome for these drugs in humans. Our data support the hypothesis that inhibition of OATP1B1 is an important mechanism for drug-induced unconjugated hyperbilirubinemia. Inhibition of OATPs may be an important mechanism in drug-drug and drug-endogenous substance interactions.  相似文献   

6.
Organic anion-transporting polypeptides (human, OATPs; other animals, Oatps; gene symbol, SLCO/Slco) form a transport protein superfamily that mediates the translocation of amphipathic substrates across the plasma membrane of animal cells. So far, OATPs/Oatps have been identified in human, rat and mouse tissues. In this study, we used bioinformatic tools to detect new members of the OATP/SLCO superfamily in nonmammalian species and to build models for the three-dimensional structure of OATPs/Oatps. New OATP/SLCO superfamily members, some of which form distinct novel families, were identified in chicken, zebrafish, frog, fruit fly and worm species. The lack of OATP/SLCO superfamily members in plants, yeast and bacteria suggests the emergence of an ancient Oatp protein in an early ancestor of the animal kingdom. Structural models were generated for the representative members OATP1B3 and OATP2B1 based on the known structures of the major facilitator superfamily of transport proteins. A model was also built for the large extracellular region between transmembrane helices 9 and 10, following the identification of a novel homology with the Kazal-type serine protease inhibitors. Along with the electrostatic potential and the conservation of key amino acid residues, we propose a common transport mechanism for all OATPs/Oatps, whereby substrates are translocated through a central, positively charged pore in a rocker-switch type of mechanism. Several amino acid residues were identified that may play crucial roles in the proposed transport mechanism.  相似文献   

7.
To determine whether the liver toxin phalloidin is transported into hepatocytes by one of the known bile salt transporters, we expressed the sodium-dependent Na+/taurocholate cotransporting polypeptide (Ntcp) and several sodium-independent bile salt transporters of the organic anion transporting polypeptide (OATP/SLCO) superfamily in Xenopus laevis oocytes and measured uptake of the radiolabeled phalloidin derivative [3H]demethylphalloin. We found that rat Oatp1b2 (previously called Oatp4 (Slc21a10)) as well as human OATP1B1 (previously called OATP-C (SLC21A6)) and OATP1B3 (previously called OATP8 (SLC21A8)) mediate uptake of [3H]demethylphalloin when expressed in X. laevis oocytes. Transport of increasing [3H]demethylphalloin concentrations was saturable with apparent Km values of 5.7 μM (Oatp1b2), 17 μM (OATP1B1) and 7.5 μM (OATP1B3). All other tested Oatps/OATPs as well as the rat liver Ntcp did not transport [3H]demethylphalloin. Therefore, we conclude that rat Oatp1b2 as well as human OATP1B1 and OATP1B3 are responsible for phalloidin uptake into rat and human hepatocytes.  相似文献   

8.
9.
Organic anion-transporting polypeptides (human, OATPs; other animals, Oatps; gene symbol, SLCO/Slco) form a transport protein superfamily that mediates the translocation of amphipathic substrates across the plasma membrane of animal cells. So far, OATPs/Oatps have been identified in human, rat and mouse tissues. In this study, we used bioinformatic tools to detect new members of the OATP/SLCO superfamily in nonmammalian species and to build models for the three-dimensional structure of OATPs/Oatps. New OATP/SLCO superfamily members, some of which form distinct novel families, were identified in chicken, zebrafish, frog, fruit fly and worm species. The lack of OATP/SLCO superfamily members in plants, yeast and bacteria suggests the emergence of an ancient Oatp protein in an early ancestor of the animal kingdom. Structural models were generated for the representative members OATP1B3 and OATP2B1 based on the known structures of the major facilitator superfamily of transport proteins. A model was also built for the large extracellular region between transmembrane helices 9 and 10, following the identification of a novel homology with the Kazal-type serine protease inhibitors. Along with the electrostatic potential and the conservation of key amino acid residues, we propose a common transport mechanism for all OATPs/Oatps, whereby substrates are translocated through a central, positively charged pore in a rocker-switch type of mechanism. Several amino acid residues were identified that may play crucial roles in the proposed transport mechanism. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users.  相似文献   

10.
Cellular uptake of organic solutes is mediated in large part by a gene family of membrane transporters called OATPs (SLC21A). To study the structural determinants and evolutionary development of the SLC21A family, we have cloned and functionally characterized a highly expressed evolutionarily primitive Oatp from the liver of the small skate, Raja erinacea. A full-length cDNA (2.3 kb) was obtained that encodes a protein of 689 amino acids. The characteristics of this novel skate Oatp, including tissue expression, subcellular localization, substrate selectivity, Na(+) dependence, and inhibitor selectivity were generally similar to liver-specific human OATP-C and rat Oatp4. However, sequence comparisons with other OATPs indicate that this skate Oatp shares only approximately 40-50% amino acid identity with the liver-specific OATPs/Oatps and with human OATP-F. Further computer analysis revealed that the highest amino acid identities reside in the first external (78%) and internal loops (75%) and transmembrane domains 2 (76%), 3 (62%), 4 (70%), and 11 (64%). We propose that the conserved regions of the SLC21A transporter family may be critical structural determinants of substrate specificity and function.  相似文献   

11.
Bilirubin, the end product of heme catabolism, is taken up from the blood circulation into the liver. This work identifies a high-affinity transport protein mediating the uptake of bilirubin and its conjugates into human hepatocytes. Human embryonic kidney cells (HEK293) permanently expressing the recombinant organic anion-transporting polypeptide 2 (human OATP2, also known as LST-1 or OATP-C; symbol SLC21A6) showed uptake of [(3)H]monoglucuronosyl bilirubin, [(3)H]bisglucuronosyl bilirubin, and [(3)H]sulfobromophthalein with K(m) values of 0.10, 0.28, and 0.14 microm, respectively. High-affinity uptake of unconjugated [(3)H]bilirubin by OATP2 occurred in the presence of albumin and was not mediated by another basolateral hepatic uptake transporter, human OATP8 (symbol SLC21A8). OATP2 and OATP8 differed by their capacity to extract substrates from albumin before transport. In comparison to the high-affinity transport by OATP2, OATP8 transported [(3)H]sulfobromophthalein and [(3)H]monoglucuronosyl bilirubin with lower affinity, with K(m) values of 3.3 and 0.5 microm, respectively. The organic anion indocyanine green potently inhibited transport mediated by OATP2, with a K(i) value of 112 nm, but did not inhibit transport mediated by OATP8. Human OATP2 may play a key role in the prevention of hyperbilirubinemia by facilitating the selective entry of unconjugated bilirubin and its glucuronate conjugates into human hepatocytes.  相似文献   

12.
In the present study we isolated two splice variants of organic anion transporting polypeptide 3A1 (OATP3A1_v1 and OATP3A1_v2) from human brain. OATP3A1_v2 lacks 18 amino acids (aa) at the COOH-terminal end (692 aa) but is otherwise similar in sequence to OATP3A1_v1 (710 aa). OATP3A1_v1 exhibits a wide tissue distribution, with expression in testis, various brain regions, heart, lung, spleen, peripheral blood leukocytes, and thyroid gland, whereas OATP3A1_v2 is predominantly expressed in testis and brain. On the cellular and subcellular levels OATP3A1_v1 could be immunolocalized in testicular germ cells, the basolateral plasma membrane of choroid plexus epithelial cells, and neuroglial cells of the gray matter of human frontal cortex. Immunolocalization of OATP3A1_v2 included Sertoli cells in testis, apical and/or subapical membranes in choroid plexus epithelial cells, and neurons (cell bodies and axons) of the gray and white matter of human frontal cortex. The rodent ortholog Oatp3a1 was also widely distributed in rat brain, and its localization included somatoneurons as well as astroglial cells. Transport studies in cRNA-injected Xenopus laevis oocytes and in stably transfected Chinese hamster ovary FlpIn cells revealed a similar broad substrate specificity for both splice variants. Transported substrates include prostaglandin (PG)E1 and PGE2, thyroxine, and the cyclic oligopeptides BQ-123 (endothelin receptor antagonist) and vasopressin. These studies provide further evidence for the involvement of OATPs in oligopeptide transport. They specifically suggest that OATP3A1 variants might be involved in the regulation of extracellular vasopressin concentration in human brain and thus might influence the neuromodulation of neurotransmission by cerebral neuropeptides such as vasopressin. peptide; transport; neuron  相似文献   

13.
A novel human organic transporter, OATP2, has been identified that transports taurocholic acid, the adrenal androgen dehydroepiandrosterone sulfate, and thyroid hormone, as well as the hydroxymethylglutaryl-CoA reductase inhibitor, pravastatin. OATP2 is expressed exclusively in liver in contrast to all other known transporter subtypes that are found in both hepatic and nonhepatic tissues. OATP2 is considerably diverged from other family members, sharing only 42% sequence identity with the four other subtypes. Furthermore, unlike other subtypes, OATP2 did not transport digoxin or aldosterone. The rat isoform oatp1 was also shown to transport pravastatin, whereas other members of the OATP family, i.e. rat oatp2, human OATP, and the prostaglandin transporter, did not. Cis-inhibition studies indicate that both OATP2 and roatp1 also transport other statins including lovastatin, simvastatin, and atorvastatin. In summary, OATP2 is a novel organic anion transport protein that has overlapping but not identical substrate specificities with each of the other subtypes and, with its liver-specific expression, represents a functionally distinct OATP isoform. Furthermore, the identification of oatp1 and OATP2 as pravastatin transporters suggests that they are responsible for the hepatic uptake of this liver-specific hydroxymethylglutaryl-CoA reductase inhibitor in rat and man.  相似文献   

14.
Organic anion transporting polypeptides (OATPs) have been extensively recognized as key determinants of absorption, distribution, metabolism and excretion (ADME) of various drugs, xenobiotics and toxins. Putative N-glycosylation sites located in the extracellular loops 2 and 5 is considered a common feature of all OATPs and some members have been demonstrated to be glycosylated proteins. However, experimental evidence is still lacking on how such a post-translational modification affect the transport activity of OATPs and which of the putative glycosylation sites are utilized in these transporter proteins. In the present study, we substituted asparagine residues that are possibly involved in N-glycosylation with glutamine residues and identified three glycosylation sites (Asn134, Asn503 and Asn516) within the structure of OATP1B1, an OATP member that is mainly expressed in the human liver. Our results showed that Asn134 and Asn516 are used for glycosylation under normal conditions; however, when Asn134 was mutagenized, an additional asparagine at position 503 is involved in the glycosylation process. Simultaneously replacement of all three asparagines with glutamines led to significantly reduced protein level as well as loss of transport activity. Further studies revealed that glycosylation affected stability of the transporter protein and the unglycosylated mutant was retained within endoplasmic reticulum.  相似文献   

15.
We describe the cloning, functional characterization and tissue localization of a novel membrane transporter of the OATP/Oatp-gene family obtained from liver and kidney of cattle (Bos taurus). The carrier protein exhibits highest sequence identity to the human OATP1A2 (previously called OATP-A) and is, therefore, named bovine Oatp1a2. Bovine Oatp1a2 received the gene symbol Slco1a2 that is identical to the SLC classification of human OATP1A2 (SLCO1A2, previously called SLC21A3) and is likely an orthologue of the human gene. Two different full-length bOatp1a2 cDNAs of 2316-bp and 3504-bp were obtained and encoded for a 666 amino acid membrane protein, which contains twelve putative transmembrane spanning domains. Bovine Oatp1a2 expression was detected in liver, kidney, brain and adrenal gland. Uptake studies in cRNA-injected oocytes demonstrated that bOatp1a2 transports estrone-3-sulfate and taurocholate, with K(m) values of 9.6 microM and 51 microM, respectively, and estradiol-17beta-glucuronide. However, the structurally-related heart glycosides ouabain (1 microM) and digoxin (1 microM) are neither transported by bovine Oatp1a2 nor by human OATP1A2. We conclude that based on the tested substrates bovine Oatp1a2 shows functional homology to human OATP1A2.  相似文献   

16.
Green tea catechins inhibit the function of organic anion transporting polypeptides (OATPs) that mediate the uptake of a diverse group of drugs and endogenous compounds into cells. The present study was aimed at investigating the effect of green tea and its most abundant catechin epigallocatechin gallate (EGCG) on the transport activity of several drug transporters expressed in enterocytes, hepatocytes and renal proximal tubular cells such as OATPs, organic cation transporters (OCTs), multidrug and toxin extrusion proteins (MATEs), and P-glycoprotein (P-gp). Uptake of the typical substrates metformin for OCTs and MATEs and bromosulphophthalein (BSP) and atorvastatin for OATPs was measured in the absence and presence of a commercially available green tea and EGCG. Transcellular transport of digoxin, a typical substrate of P-gp, was measured over 4 hours in the absence and presence of green tea or EGCG in Caco-2 cell monolayers. OCT1-, OCT2-, MATE1- and MATE2-K-mediated metformin uptake was significantly reduced in the presence of green tea and EGCG (P < 0.05). BSP net uptake by OATP1B1 and OATP1B3 was inhibited by green tea [IC50 2.6% (v/v) and 0.39% (v/v), respectively]. Green tea also inhibited OATP1B1- and OATP1B3-mediated atorvastatin net uptake with IC50 values of 1.9% (v/v) and 1.0% (v/v), respectively. Basolateral to apical transport of digoxin was significantly decreased in the presence of green tea and EGCG. These findings indicate that green tea and EGCG inhibit multiple drug transporters in vitro. Further studies are necessary to investigate the effects of green tea on prototoypical substrates of these transporters in humans, in particular on substrates of hepatic uptake transporters (e.g. statins) as well as on P-glycoprotein substrates.  相似文献   

17.
This review provides an overview of the pharmacogenetics of membrane transporters including selected ABC transporters (ABCB1, ABCC1, ABCC2, and ABCG2) and OATPs (OATP1B1 and OATP1B3). Membrane transporters are heavily involved in drug clearance and alters drug disposition by actively transporting substrate drugs between organs and tissues. As such, polymorphisms in the genes encoding these proteins may have significant effects on the absorption, distribution, metabolism and excretion of compounds, and may alter pharmacodynamics of many agents. This review discusses the techniques used to identify substrates and inhibitors of these proteins and subsequently to assess the effect of genetic mutation on transport, both in vitro and in vivo. A comprehensive list of substrates for the major drug transporters is included. Finally, studies linking transporter genotype with clinical outcomes are discussed.  相似文献   

18.
Gui C  Hagenbuch B 《Biochemistry》2008,47(35):9090-9097
Human organic anion transporting polypeptides (OATP) 1B1 and 1B3 are multispecific transporters that mediate uptake of amphipathic organic compounds into hepatocytes. The two OATPs contain 12 transmembrane domains (TMs) and share 80% amino acid sequence identity. Besides common substrates with OATP1B1, OATP1B3 specifically transports cholecystokinin octapeptide (CCK-8). To determine which structural domains and/or residues are important for the substrate selectivity of OATP1B3, we constructed a series of chimeric proteins between OATP1B3 and 1B1, expressed them in HEK293 cells, and determined rates of uptake of CCK-8 along with surface expression of the proteins. Replacing TM10 in OATP1B3 with TM10 of OATP1B1 resulted in a dramatically reduced degree of CCK-8 transport, indicating that TM10 is crucial for recognition and/or translocation of CCK-8. Using site-directed mutagenesis, we identified three key residues within TM10, namely, Y537, S545, and T550. When we replaced these residues with the corresponding amino acid residues found in OATP1B1, the level of CCK-8 transport was similarly low as for the replacement of the whole TM10. Kinetic experiments showed that the K m values for CCK-8 transport in the TM10 replacement and triple mutant were only 1.3 and 1.1 microM, respectively, as compared to 16.3 microM for wild-type OATP1B3. Similarly, the V max values dropped from 495.5 pmol (normalized mg) (-1) min (-1) for wild-type OATP1B3 to 13.3 and 19.0 pmol (normalized mg) (-1) min (-1) for the TM10 replacement and triple mutant, respectively. Molecular modeling indicated that two of the three identified residues might form hydrogen bonds with CCK-8. In conclusion, we have identified three amino acid residues (Y537, S545, and T550) in TM10 of OATP1B3 that are important for CCK-8 transport.  相似文献   

19.
We cloned and expressed a new organic anion transporting polypeptide (OATP), termed human OATP2, (OATP-C, LST-1; symbol SLC21A6), involved in the uptake of various lipophilic anions into human liver. The cDNA encoding OATP2 comprised 2073 base pairs, corresponding to a protein of 691 amino acids, which were 44% identical to the known human OATP. An antibody directed against the carboxy terminus localized OATP2 to the basolateral membrane of human hepatocytes. Northern blot analysis indicated a strong expression of OATP2 only in human liver. Transport mediated by recombinant OATP2 and its localization were studied in stably transfected Madin-Darby canine kidney strain II (MDCKII) and HEK293 cells. Confocal microscopy localized recombinant OATP2 protein to the lateral membrane of MDCKII cells. Substrates included 17beta-glucuronosyl estradiol, monoglucuronosyl bilirubin, dehydroepiandrosterone sulfate, and cholyltaurine. 17beta-Glucuronosyl estradiol was a preferred substrate, with a Michaelis-Menten constant value of 8.2 microM; its uptake was Na(+) independent and was inhibited by sulfobromophthalein, with a inhibition constant value of 44 nM. Our results indicate that OATP2 is important for the uptake of organic anions, including bilirubin conjugates and sulfobromophthalein, in human liver.  相似文献   

20.
Hepatic disposition plays a significant role in the pharmacokinetics and pharmacodynamics of a variety of drugs. Sinusoidal membrane transporters have been shown to participate in the hepatic disposition of many pharmaceuticals. Two sinusoidal membrane transporters with an established role in hepatic disposition are OATP1B1 and OATP1B3 (organic anion-transporting polypeptides 1B1 and 1B3, respectively). OATP1B1 and OATP1B3 have been implicated in the hepatic uptake of statin drugs, and polymorphisms linked to OATP1B1 have been associated with deleterious patient endpoints. As a result, OATP1B1 and OATP1B3 represent sites for potential drug-drug interactions. Numerous methods exist for identifying potential drug-drug interactions with transporters. However, relatively few offer the convenience and speed of fluorescence-based assays. Here a fluorescence-based assay was developed for measuring the OATP1B1- and OATP1B3-mediated transport of 8-fluorescein-cAMP (8-FcA). The OATP1B1- and OATP1B3-mediated transport of 8-FcA was time dependent and saturable (Km = 2.9 and 1.8 μM, Vmax = 0.20 and 0.33 pmol/min/cm2, respectively). Molecules known to interact with OATPs, including cyclosporin A, rifampicin, and glibenclamide, each demonstrated concentration-dependent inhibition of 8-FcA transport by OATP1B1 and OATP1B3. The in vitro fluorescence-based assays described here using 8-FcA as the substrate are convenient and rapid and have utility in screening drug candidates for potential drug-drug interactions with OATP1B1 and OATP1B3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号