首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dry MeOH extracts of the twig barks of Pyrus communis subsp. pyraster, P. spinosa and their hybrid P.×jordanovii nothosubsp. velenovskyi, collected in wild in Serbia, were analyzed. By LC/MS, the contents of arbutin (99.9–131.0 mg/g), chlorogenic acid (2.2–6.3 mg/g), catechin (1.0–5.3 mg/g) and total dimeric and trimeric procyanidins (42.2–61.3 mg/g), including procyanidin B2 (8.9–17.2 mg/g), were determined. Colorimetrically, high contents of total phenolics (436.2–533.4 mg GAE/g) and tannins (339.4–425.7 mg GAE/g), as well as strong total antioxidant activities (FRAP values 4.5–5.9 mmol Fe2+/g), and DPPH (SC50=6.6–7.1 μg/ml) and hydroxyl radical (SC50=447.1–727.7 μg/ml) scavenging abilities were revealed. In vitro, all extracts exhibited notable inhibition of α-amylase (IC50=310.8–617.7 μg/ml) and particularly strong inhibition of α-glucosidase (IC50=2.1–3.7 μg/ml). Molecular docking predicted that among identified compounds procyanidin B2 is the best inhibitor of these carbohydrate-digesting enzymes. Obtained results showed that the barks of investigated Pyrus hybrid and its parent taxa have similar composition and bioactivity.  相似文献   

2.
Herein, new derivatives of α,β-unsaturated ketones based on oleanolic acid ( 4 a – i ) were designed, synthesized, characterized, and tested against human prostate cancer (PC3). According to the in vitro cytotoxic study, title compounds ( 4 a – i ) showed significantly lower toxicity toward healthy cells (HUVEC) in comparison with the reference drug doxorubicin. The compounds with the lowest IC50 values on PC3 cell lines were 4 b (7.785 μM), 4 c (8.869 μM), and 4 e (8.765 μM). The results of the ADME calculations showed that the drug-likeness parameters were within the defined ranges according to Lipinski's and Jorgensen's rules. For the most potent compounds 4 b , 4 c , and 4 e , a molecular docking analysis using the induced fit docking (IFD) protocol was performed against three protein targets (PARP, PI3K, and mTOR). Based on the IFD scores, compound 4 b had the highest calculated affinity for PARP1, while compound 4 c had higher affinities for mTOR and PI3K. The MM-GBSA calculations showed that the most potent compounds had high binding affinities and formed stable complexes with the protein targets. Finally, a 50 ns molecular dynamics simulation was performed to study the behavior of protein target complexes under in silico physiological conditions.  相似文献   

3.
Cellulose triacetate prepared from bacterial cellulose of Acetobacter xylinum subsp. sucrofermentans BPR3001A showed a higher degree of polymerization and higher mechanical strength than that from the cotton linter. The fine fibrils of bacterial cellulose required only a short time for acetylation which preserved the high degree of polymerization.  相似文献   

4.
A cloned alpha-amylase cDNA sequence from the mouse is homologous to a small set of DNA sequences from Drosophila melanogaster under appropriate conditions of hybridization. A number of recombinant lambda phage that carry homologous Drosophila genomic DNA sequences were isolated using the mouse clone as a hybridization probe. Putative amylase clones hybridized in situ to one or the other of two distinct sites in polytene chromosome 2R and were assigned to one of two classes, A and B. Clone lambda Dm32, representing class A, hybridizes within chromosome section 53CD. Clone lambda Dm65 of class B hybridizes within section 54A1-B1. Clone lambda Dm65 is homologous to a 1450- to 1500-nucleotide RNA species, which is sufficiently long to code for alpha-amylase. No RNA homologous to lambda Dm32 was detected. We suggest that the class B clone, lambda Dm65, contains the functional Amy structural gene(s) and that class A clones contain an amylase pseudogene.  相似文献   

5.
The methanol extract of salted radish roots contains several precursors of yellow pigment. The main compound was isolated by the use of Toyopearl HW-40S column chromatography, and its structure was determined to be 1-(2′-pyrrolidinethion-3′-yl)-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid on the basis of an elemental analysis, and IR, UV, FAB-MS and NMR spectroscopy. This compound is presumed to have been the condensation product from the degradation of 4-methylthio-3-butenyl isothiocyanate and l-tryptophan. This carboline compound is considered to play an important role in the formation of the yellow pigment in salted radish roots.  相似文献   

6.
Carboxysomes are proteinaceous bacterial microcompartments that increase the efficiency of the rate-limiting step in carbon fixation by sequestering reaction substrates. Typically, α-carboxysomes are genetically encoded as a single operon expressing the structural proteins and the encapsulated enzymes of the microcompartment. In addition, depending on phylogeny, as many as 13 other genes are found to co-occur near or within α-carboxysome operons. One of these genes codes for a protein with distant homology to pterin-4α-carbinolamine dehydratase (PCD) enzymes. It is present in all α-carboxysome containing bacteria and has homologs in algae and higher plants. Canonical PCDs play an important role in amino acid hydroxylation, a reaction not associated with carbon fixation. We determined the crystal structure of an α-carboxysome PCD-like protein from the chemoautotrophic bacterium Thiomonas intermedia K12, at 1.3-Å resolution. The protein retains a three-dimensional fold similar to canonical PCDs, although the prominent active site cleft present in PCD enzymes is disrupted in the α-carboxysome PCD-like protein. Using a cell-based complementation assay, we tested the PCD-like proteins from T. intermedia and two additional bacteria, and found no evidence for PCD enzymatic activity. However, we discovered that heterologous co-expression of the PCD-like protein from Halothiobacillus neapolitanus with RuBisCO and GroELS in Escherichia coli increased the amount of soluble, assembled RuBisCO recovered from cell lysates compared with co-expression of RuBisCO with GroELS alone. We conclude that this conserved PCD-like protein, renamed here α-carboxysome RuBisCO assembly factor (or acRAF), is a novel RuBisCO chaperone integral to α-carboxysome function.  相似文献   

7.
This study aimed to quantify verbascoside (VEB), perform molecular docking studies of VEB with the α-glucosidase (GL) of Bacillus stearothermophilus, and evaluate the inhibition of the enzyme by L. dulcis preparations. The substrate concentration and presence of reduced glutathione were evaluated for their effect on the in vitro inhibition of the GL enzyme. Assays were also performed in the presence and absence of simulated gastric fluid. The antidiabetic fractions 2 and 3 were the most inhibited GL, but their activity were significantly decreased in the presence of gastric fluid. Chromatographic analyses confirmed the predominant presence of VEB in the samples. The samples had VEB concentrations between 49.9 and 243.5 mg/g. Simulation of the molecular docking of VEB were consistent with its GL-inhibitory activity. It can conclude that the crude ethanol extract and fractions show inhibitory activity against the GL enzyme.  相似文献   

8.
The development of a very sensitive and highly specific screening method for detection of new cell wall inhibitors of the fosfomycin type is described. A fosfomycin-hypersensitive mutant, f-360, was isolated from Staphylococcus aureus Newman by selection with fosfomycin, an antibiotic that inhibits synthesis of the bacterial cell wall. The mutant f-360 was 50-fold more sensitive than the parent strain to fosfomycin. The mutant was constitutive for the hexose phosphate transport system. Using the organism in screening, BA-3796, which had an antibacterial activity against mutant f-360 was found to be produced by a bacterium designated Bacillus sp. BA-3796. Starch and beef extract were the most suitable carbon and nitrogen sources for BA-3796 production and the amount of BA-3796 reached 3 g/l at a maximum level. The purified BA-3796 was identified as α-d-glucose-l-phosphate by its various physiochemical properties. α-d-Glucose-1-phosphate showes an antibacterial activity against Staphylococci in the presence of a slight amount pf α-d-glucose-6-phosphate.  相似文献   

9.
Abstract

Streptomyces sp. strain SB9 was isolated from perm frost soil samples in Spitsbergen, Arctic Ocean; it grows in a temperature range between 4°C and 28°C. During the survey of biologically active metabolites biosynthesized by this strain, significant amounts of α,α-trehalose (1) and glycerol (2) were detected. The compounds were isolated from the mycelium, were chromatographically separated, and the structures were elucidated on the basis of MS and NMR measurements. A possible role of trehalose in cold adaptation of the strain was examined. It was determined that the mycelium of the strain cultivated at 4°C accumulated 5-fold higher amounts of trehalose in comparison with the cells cultivated at 28°C. The mesofilic reference strains, Streptomyces spectabilis NRRL 2494 and Streptomyces lividans TK64, accumulated 100-fold less trahalose than the psychrotolerant Streptomyces sp. SB9. High amounts of trehalose in the cells could be a reason for adaptation of the strain to life at Arctic conditions.  相似文献   

10.
Human α-defensins [human neutrophil peptides (HNPs)] are immune defense mini-proteins that act by disrupting microbial cell membranes. Elucidating the three-dimensional (3D) structures of HNPs in lipid membranes is important for understanding their mechanisms of action. Using solid-state NMR (SSNMR), we have determined the 3D structure of HNP-1 in a microcrystalline state outside the lipid membrane, which provides benchmarks for structure determination and comparison with the membrane-bound state. From a suite of two-dimensional and 3D magic-angle spinning experiments, 13C and 15N chemical shifts that yielded torsion angle constraints were obtained, while inter-residue distances were obtained to restrain the 3D fold. Together, these constraints led to the first high-resolution SSNMR structure of a human defensin. The SSNMR structure has close similarity to the crystal structures of the HNP family, with the exception of the loop region between the first and second β-strands. The difference, which is partially validated by direct torsion angle measurements of selected loop residues, suggests possible conformational variation and flexibility of this segment of the protein, which may regulate HNP interaction with the phospholipid membrane of microbial cells.  相似文献   

11.
The importance of 17 glutamate residues of a truncated Bacillus sp. strain TS-23 α-amylase (BACΔNC) was investigated by site-directed mutagenesis. The Ala- and Asp-substituted variants were overexpressed in the recombinant E. coli cells and the 54-kDa proteins were purified to nearly homologous by nickel-chelate chromatography. Glu-295, which locates in the conserved region III of amylolytic enzymes, mutations resulted in a complete loss of enzyme activity. The specific activity for E151A was decreased by more than 30%, while other variants showed activity comparable to that of BACΔNC. A decreased half-life at 70°C was observed for Glu-219 variants with respective to the wild-type enzyme, suggesting that replacement of Glu-219 by either Ala or Asp might have a significant destabilizing effect on the protein structure.  相似文献   

12.
α-Synuclein (α-syn) membrane interactions are implicated in the pathogenesis of Parkinson's disease. Fluorescence and neutron reflectometry (NR) measurements reveal that α-syn penetrates ~9–14 Å into the outer leaflet of the bilayer, with a substantial portion of the membrane-bound polypeptide extending into the aqueous solvent. For the first time, to our knowledge, we used NR to obtain direct quantitative evidence of α-syn-induced membrane thinning. To examine the effect of specific residues on membrane penetration depths, we used a series of W4-containing N-terminal peptides. We identified that the first 15 residues (P15) nearly recapitulate the features of the full-length protein (i.e., partition constants, molecular mobility, and insertion of the W4 side chain into the bilayer), and found that as few as the first four N-terminal residues are sufficient for vesicle binding. Although at least one imperfect amphipathic repeat sequence (KAKEGV) is required for α-helical formation, secondary structural formation has little effect on membrane affinity. To develop an N-terminal α-syn model for bilayer interactions, we performed molecular-dynamics simulations of the P15 peptide submerged in a bilayer. The simulation results are highly consistent with experimental data indicating a broad low-energy region (8.5–14.5 Å) for W4 insertion.  相似文献   

13.
14.
15.
16.
We have reported that the administration of di(2-ethylhexyl)phthalate (DEHP) increased the formations of quinolinic acid (QA) and its lower metabolites on the tryptophan-niacin pathway. To discover the mechanism involved in disruption of the tryptophan-niacin pathway by DEHP, we assessed the daily urinary excretion of QA and its lower metabolites, and enzyme activities on the tryptophan-niacin pathway. Rats were fed with a niacin-free, 20% casein diet or the same diet supplemented with 0.1% DEHP or 0.043% phthalic acid and 0.067% 2-ethylhexanol added for 21 days. Feeding of DEHP increased the urinary excretions of QA and its lower metabolites in a time-dependent manner, and the increase of these excretions reached a peak at 11 days, but feeding of phthalic acid and 2-ethylhexanol had no effect. Feeding of DEHP, however, did not affect any enzyme activity including α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), affecting the formation of QA, on the tryptophan-niacin pathway.  相似文献   

17.
Recently, we confirmed the widespread occurrence of α-tubulin acetylation on Lys40 in angiosperms. In the present study, we found that α-tubulin acetylation is regulated in a growth stage- and organ development-dependent manner in the rapid cycling Brassica rapa, also known as Fast Plants. Organ distribution analysis showed that the proportion of acetylated α-tubulin is high in the cotyledons of young plants and in the true leaves and flowers of mature plants. A correlation between the increase in the levels of α-tubulin acetylation and the maturation of true leaves was observed. In the mature leaves, the acetylated α-tubulin showed an uneven distribution pattern, and the cells in the region of the leaf margins contained a high proportion of acetylated α-tubulin. These results indicate that α-tubulin acetylation is dynamically regulated in plant organs during development, and that it might play an important role in microtubule functioning throughout the angiosperm's life cycle.  相似文献   

18.
19.
Biscoumarin analogs 1–18 have been synthesized, characterized by EI-MS and 1H NMR and evaluated for α-glucosidase inhibitory potential. All compounds showed variety of α-glucosidase inhibitory potential ranging in between 13.5 ± 0.39 and 104.62 ± 0.3 μM when compared with standard acarbose having IC50 value 774.5 ± 1.94 μM. The binding interactions of the most active analogs were confirmed through molecular docking. The compounds showed very good interactions with enzyme. All synthesized compounds 1–18 are new. Our synthesized compounds can further be studied to developed lead compounds.  相似文献   

20.
In a continuing study of hybrid compounds containing the α-bromoacryloyl moiety as potential anticancer drugs, we synthesized a novel series of hybrids 4ah, in which this moiety was linked to a 1,5-diaryl-1,4-pentadien-3-one system. Many of the conjugates prepared (4b, 4c, 4e and 4g) demonstrated pronounced, submicromolar antiproliferative activity against four cancer cell lines. Moreover, compound 4b induced apoptosis through the mitochondrial pathway and activated caspase-3 in a concentration-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号