首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recurrent events data are commonly encountered in medical studies. In many applications, only the number of events during the follow‐up period rather than the recurrent event times is available. Two important challenges arise in such studies: (a) a substantial portion of subjects may not experience the event, and (b) we may not observe the event count for the entire study period due to informative dropout. To address the first challenge, we assume that underlying population consists of two subpopulations: a subpopulation nonsusceptible to the event of interest and a subpopulation susceptible to the event of interest. In the susceptible subpopulation, the event count is assumed to follow a Poisson distribution given the follow‐up time and the subject‐specific characteristics. We then introduce a frailty to account for informative dropout. The proposed semiparametric frailty models consist of three submodels: (a) a logistic regression model for the probability such that a subject belongs to the nonsusceptible subpopulation; (b) a nonhomogeneous Poisson process model with an unspecified baseline rate function; and (c) a Cox model for the informative dropout time. We develop likelihood‐based estimation and inference procedures. The maximum likelihood estimators are shown to be consistent. Additionally, the proposed estimators of the finite‐dimensional parameters are asymptotically normal and the covariance matrix attains the semiparametric efficiency bound. Simulation studies demonstrate that the proposed methodologies perform well in practical situations. We apply the proposed methods to a clinical trial on patients with myelodysplastic syndromes.  相似文献   

2.
Recurrent event data are commonly encountered in biomedical studies. In many situations, they are subject to an informative terminal event, for example, death. Joint modeling of recurrent and terminal events has attracted substantial recent research interests. On the other hand, there may exist a large number of covariates in such data. How to conduct variable selection for joint frailty proportional hazards models has become a challenge in practical data analysis. We tackle this issue on the basis of the “minimum approximated information criterion” method. The proposed method can be conveniently implemented in SAS Proc NLMIXED for commonly used frailty distributions. Its finite-sample behavior is evaluated through simulation studies. We apply the proposed method to model recurrent opportunistic diseases in the presence of death in an AIDS study.  相似文献   

3.
4.
Zeng D  Lin DY 《Biometrics》2009,65(3):746-752
Summary .  We propose a broad class of semiparametric transformation models with random effects for the joint analysis of recurrent events and a terminal event. The transformation models include proportional hazards/intensity and proportional odds models. We estimate the model parameters by the nonparametric maximum likelihood approach. The estimators are shown to be consistent, asymptotically normal, and asymptotically efficient. Simple and stable numerical algorithms are provided to calculate the parameter estimators and to estimate their variances. Extensive simulation studies demonstrate that the proposed inference procedures perform well in realistic settings. Applications to two HIV/AIDS studies are presented.  相似文献   

5.
6.
In a longitudinal study where the recurrence of an event and a terminal event such as death are observed, a certain portion of the subjects may experience no event during a long follow-up period; this often denoted as the cure group which is assumed to be the risk-free from both recurrent events and death. However, this assumption ignores the possibility of death, which subjects in the cure group may experience. In the present study, such misspecification is investigated with the addition of a death hazard model to the cure group. We propose a joint model using a frailty effect, which reflects the association between a recurrent event and death. For the estimation, an expectation-maximization (EM) algorithm was developed and PROC NLMIXED in SAS was incorporated under a piecewise constant baseline. Simulation studies were performed to check the performance of the suggested method. The proposed method was applied to leukemia patients experiencing both infection and death after bone marrow transplant.  相似文献   

7.
Shared frailty models for recurrent events and a terminal event   总被引:1,自引:0,他引:1  
Liu L  Wolfe RA  Huang X 《Biometrics》2004,60(3):747-756
There has been an increasing interest in the analysis of recurrent event data (Cook and Lawless, 2002, Statistical Methods in Medical Research 11, 141-166). In many situations, a terminating event such as death can happen during the follow-up period to preclude further occurrence of the recurrent events. Furthermore, the death time may be dependent on the recurrent event history. In this article we consider frailty proportional hazards models for the recurrent and terminal event processes. The dependence is modeled by conditioning on a shared frailty that is included in both hazard functions. Covariate effects can be taken into account in the model as well. Maximum likelihood estimation and inference are carried out through a Monte Carlo EM algorithm with Metropolis-Hastings sampler in the E-step. An analysis of hospitalization and death data for waitlisted dialysis patients is presented to illustrate the proposed methods. Methods to check the validity of the proposed model are also demonstrated. This model avoids the difficulties encountered in alternative approaches which attempt to specify a dependent joint distribution with marginal proportional hazards and yields an estimate of the degree of dependence.  相似文献   

8.
Recurrent events could be stopped by a terminal event, which commonly occurs in biomedical and clinical studies. In this situation, dependent censoring is encountered because of potential dependence between these two event processes, leading to invalid inference if analyzing recurrent events alone. The joint frailty model is one of the widely used approaches to jointly model these two processes by sharing the same frailty term. One important assumption is that recurrent and terminal event processes are conditionally independent given the subject‐level frailty; however, this could be violated when the dependency may also depend on time‐varying covariates across recurrences. Furthermore, marginal correlation between two event processes based on traditional frailty modeling has no closed form solution for estimation with vague interpretation. In order to fill these gaps, we propose a novel joint frailty‐copula approach to model recurrent events and a terminal event with relaxed assumptions. Metropolis–Hastings within the Gibbs Sampler algorithm is used for parameter estimation. Extensive simulation studies are conducted to evaluate the efficiency, robustness, and predictive performance of our proposal. The simulation results show that compared with the joint frailty model, the bias and mean squared error of the proposal is smaller when the conditional independence assumption is violated. Finally, we apply our method into a real example extracted from the MarketScan database to study the association between recurrent strokes and mortality.  相似文献   

9.
In cardiovascular disease studies, a large number of risk factors are measured but it often remains unknown whether all of them are relevant variables and whether the impact of these variables is changing with time or remains constant. In addition, more than one kind of cardiovascular disease events can be observed in the same patient and events of different types are possibly correlated. It is expected that different kinds of events are associated with different covariates and the forms of covariate effects also vary between event types. To tackle these problems, we proposed a multistate modeling framework for the joint analysis of multitype recurrent events and terminal event. Model structure selection is performed to identify covariates with time-varying coefficients, time-independent coefficients, and null effects. This helps in understanding the disease process as it can detect relevant covariates and identify the temporal dynamics of the covariate effects. It also provides a more parsimonious model to achieve better risk prediction. The performance of the proposed model and selection method is evaluated in numerical studies and illustrated on a real dataset from the Atherosclerosis Risk in Communities study.  相似文献   

10.
In the study of multiple failure time data with recurrent clinical endpoints, the classical independent censoring assumption in survival analysis can be violated when the evolution of the recurrent events is correlated with a censoring mechanism such as death. Moreover, in some situations, a cure fraction appears in the data because a tangible proportion of the study population benefits from treatment and becomes recurrence free and insusceptible to death related to the disease. A bivariate joint frailty mixture cure model is proposed to allow for dependent censoring and cure fraction in recurrent event data. The latency part of the model consists of two intensity functions for the hazard rates of recurrent events and death, wherein a bivariate frailty is introduced by means of the generalized linear mixed model methodology to adjust for dependent censoring. The model allows covariates and frailties in both the incidence and the latency parts, and it further accounts for the possibility of cure after each recurrence. It includes the joint frailty model and other related models as special cases. An expectation-maximization (EM)-type algorithm is developed to provide residual maximum likelihood estimation of model parameters. Through simulation studies, the performance of the model is investigated under different magnitudes of dependent censoring and cure rate. The model is applied to data sets from two colorectal cancer studies to illustrate its practical value.  相似文献   

11.
Semiparametric analysis of correlated recurrent and terminal events   总被引:2,自引:0,他引:2  
In clinical and observational studies, recurrent event data (e.g., hospitalization) with a terminal event (e.g., death) are often encountered. In many instances, the terminal event is strongly correlated with the recurrent event process. In this article, we propose a semiparametric method to jointly model the recurrent and terminal event processes. The dependence is modeled by a shared gamma frailty that is included in both the recurrent event rate and terminal event hazard function. Marginal models are used to estimate the regression effects on the terminal and recurrent event processes, and a Poisson model is used to estimate the dispersion of the frailty variable. A sandwich estimator is used to achieve additional robustness. An analysis of hospitalization data for patients in the peritoneal dialysis study is presented to illustrate the proposed method.  相似文献   

12.
Ghosh D  Lin DY 《Biometrics》2003,59(4):877-885
Dependent censoring occurs in longitudinal studies of recurrent events when the censoring time depends on the potentially unobserved recurrent event times. To perform regression analysis in this setting, we propose a semiparametric joint model that formulates the marginal distributions of the recurrent event process and dependent censoring time through scale-change models, while leaving the distributional form and dependence structure unspecified. We derive consistent and asymptotically normal estimators for the regression parameters. We also develop graphical and numerical methods for assessing the adequacy of the proposed model. The finite-sample behavior of the new inference procedures is evaluated through simulation studies. An application to recurrent hospitalization data taken from a study of intravenous drug users is provided.  相似文献   

13.
In this paper, the panel count data analysis for recurrent events is considered. Such analysis is useful for studying tumor or infection recurrences in both clinical trial and observational studies. A bivariate Gaussian Cox process model is proposed to jointly model the observation process and the recurrent event process. Bayesian nonparametric inference is proposed for simultaneously estimating regression parameters, bivariate frailty effects, and baseline intensity functions. Inference is done through Markov chain Monte Carlo, with fully developed computational techniques. Predictive inference is also discussed under the Bayesian setting. The proposed method is shown to be efficient via simulation studies. A clinical trial dataset on skin cancer patients is analyzed to illustrate the proposed approach.  相似文献   

14.
Recurrent event data are widely encountered in clinical and observational studies. Most methods for recurrent events treat the outcome as a point process and, as such, neglect any associated event duration. This generally leads to a less informative and potentially biased analysis. We propose a joint model for the recurrent event rate (of incidence) and duration. The two processes are linked through a bivariate normal frailty. For example, when the event is hospitalization, we can treat the time to admission and length-of-stay as two alternating recurrent events. In our method, the regression parameters are estimated through a penalized partial likelihood, and the variance-covariance matrix of the frailty is estimated through a recursive estimating formula. Moreover, we develop a likelihood ratio test to assess the dependence between the incidence and duration processes. Simulation results demonstrate that our method provides accurate parameter estimation, with a relatively fast computation time. We illustrate the methods through an analysis of hospitalizations among end-stage renal disease patients.  相似文献   

15.
J. E. Soh  Yijian Huang 《Biometrics》2019,75(4):1264-1275
Recurrent events often arise in follow‐up studies where a subject may experience multiple occurrences of the same event. Most regression models with recurrent events tacitly assume constant effects of covariates over time, which may not be realistic in practice. To address time‐varying effects, we develop a dynamic regression model to target the mean frequency of recurrent events. We propose an estimation procedure which fully exploits observed data. Consistency and weak convergence of the proposed estimator are established. Simulation studies demonstrate that the proposed method works well, and two real data analyses are presented for illustration.  相似文献   

16.
A continuous time discrete state cumulative damage process {X(t), t ≥ 0} is considered, based on a non‐homogeneous Poisson hit‐count process and discrete distribution of damage per hit, which can be negative binomial, Neyman type A, Polya‐Aeppli or Lagrangian Poisson. Intensity functions considered for the Poisson process comprise a flexible three‐parameter family. The survival function is S(t) = P(X(t) ≤ L) where L is fixed. Individual variation is accounted for within the construction for the initial damage distribution {P(X(0) = x) | x = 0, 1, …,}. This distribution has an essential cut‐off before x = L and the distribution of LX(0) may be considered a tolerance distribution. A multivariate extension appropriate for the randomized complete block design is developed by constructing dependence in the initial damage distributions. Our multivariate model is applied (via maximum likelihood) to litter‐matched tumorigenesis data for rats. The litter effect accounts for 5.9 percent of the variance of the individual effect. Cumulative damage hazard functions are compared to nonparametric hazard functions and to hazard functions obtained from the PVF‐Weibull frailty model. The cumulative damage model has greater dimensionality for interpretation compared to other models, owing principally to the intensity function part of the model.  相似文献   

17.
Semiparametric regression analysis for clustered failure time data   总被引:1,自引:0,他引:1  
Cai  T.; Wei  L. J.; Wilcox  M. 《Biometrika》2000,87(4):867-878
  相似文献   

18.
Joint modeling of recurrent events and a terminal event has been studied extensively in the past decade. However, most of the previous works assumed constant regression coefficients. This paper proposes a joint model with time‐varying coefficients in both event components. The proposed model not only accommodates the correlation between the two type of events, but also characterizes the potential time‐varying covariate effects. It is especially useful for evaluating long‐term risk factors' effect that could vary with time. A Gaussian frailty is used to model the correlation between event times. The nonparametric time‐varying coefficients are modeled using cubic splines with penalty terms. A simulation study shows that the proposed estimators perform well. The model is used to analyze the readmission rate and mortality jointly for stroke patients admitted to Veterans Administration (VA) Hospitals.  相似文献   

19.
Nonparametric analysis of recurrent events and death   总被引:4,自引:0,他引:4  
Ghosh D  Lin DY 《Biometrics》2000,56(2):554-562
This article is concerned with the analysis of recurrent events in the presence of a terminal event such as death. We consider the mean frequency function, defined as the marginal mean of the cumulative number of recurrent events over time. A simple nonparametric estimator for this quantity is presented. It is shown that the estimator, properly normalized, converges weakly to a zero-mean Gaussian process with an easily estimable covariance function. Nonparametric statistics for comparing two mean frequency functions and for combining data on recurrent events and death are also developed. The asymptotic null distributions of these statistics, together with consistent variance estimators, are derived. The small-sample properties of the proposed estimators and test statistics are examined through simulation studies. An application to a cancer clinical trial is provided.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号