首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Recurrent events data are commonly encountered in medical studies. In many applications, only the number of events during the follow‐up period rather than the recurrent event times is available. Two important challenges arise in such studies: (a) a substantial portion of subjects may not experience the event, and (b) we may not observe the event count for the entire study period due to informative dropout. To address the first challenge, we assume that underlying population consists of two subpopulations: a subpopulation nonsusceptible to the event of interest and a subpopulation susceptible to the event of interest. In the susceptible subpopulation, the event count is assumed to follow a Poisson distribution given the follow‐up time and the subject‐specific characteristics. We then introduce a frailty to account for informative dropout. The proposed semiparametric frailty models consist of three submodels: (a) a logistic regression model for the probability such that a subject belongs to the nonsusceptible subpopulation; (b) a nonhomogeneous Poisson process model with an unspecified baseline rate function; and (c) a Cox model for the informative dropout time. We develop likelihood‐based estimation and inference procedures. The maximum likelihood estimators are shown to be consistent. Additionally, the proposed estimators of the finite‐dimensional parameters are asymptotically normal and the covariance matrix attains the semiparametric efficiency bound. Simulation studies demonstrate that the proposed methodologies perform well in practical situations. We apply the proposed methods to a clinical trial on patients with myelodysplastic syndromes.  相似文献   

2.
    
A continuous time discrete state cumulative damage process {X(t), t ≥ 0} is considered, based on a non‐homogeneous Poisson hit‐count process and discrete distribution of damage per hit, which can be negative binomial, Neyman type A, Polya‐Aeppli or Lagrangian Poisson. Intensity functions considered for the Poisson process comprise a flexible three‐parameter family. The survival function is S(t) = P(X(t) ≤ L) where L is fixed. Individual variation is accounted for within the construction for the initial damage distribution {P(X(0) = x) | x = 0, 1, …,}. This distribution has an essential cut‐off before x = L and the distribution of LX(0) may be considered a tolerance distribution. A multivariate extension appropriate for the randomized complete block design is developed by constructing dependence in the initial damage distributions. Our multivariate model is applied (via maximum likelihood) to litter‐matched tumorigenesis data for rats. The litter effect accounts for 5.9 percent of the variance of the individual effect. Cumulative damage hazard functions are compared to nonparametric hazard functions and to hazard functions obtained from the PVF‐Weibull frailty model. The cumulative damage model has greater dimensionality for interpretation compared to other models, owing principally to the intensity function part of the model.  相似文献   

3.
    
Weibin Zhong  Guoqing Diao 《Biometrics》2023,79(3):1959-1971
Two-phase studies such as case-cohort and nested case-control studies are widely used cost-effective sampling strategies. In the first phase, the observed failure/censoring time and inexpensive exposures are collected. In the second phase, a subgroup of subjects is selected for measurements of expensive exposures based on the information from the first phase. One challenging issue is how to utilize all the available information to conduct efficient regression analyses of the two-phase study data. This paper proposes a joint semiparametric modeling of the survival outcome and the expensive exposures. Specifically, we assume a class of semiparametric transformation models and a semiparametric density ratio model for the survival outcome and the expensive exposures, respectively. The class of semiparametric transformation models includes the proportional hazards model and the proportional odds model as special cases. The density ratio model is flexible in modeling multivariate mixed-type data. We develop efficient likelihood-based estimation and inference procedures and establish the large sample properties of the nonparametric maximum likelihood estimators. Extensive numerical studies reveal that the proposed methods perform well under practical settings. The proposed methods also appear to be reasonably robust under various model mis-specifications. An application to the National Wilms Tumor Study is provided.  相似文献   

4.
    
In this paper, the panel count data analysis for recurrent events is considered. Such analysis is useful for studying tumor or infection recurrences in both clinical trial and observational studies. A bivariate Gaussian Cox process model is proposed to jointly model the observation process and the recurrent event process. Bayesian nonparametric inference is proposed for simultaneously estimating regression parameters, bivariate frailty effects, and baseline intensity functions. Inference is done through Markov chain Monte Carlo, with fully developed computational techniques. Predictive inference is also discussed under the Bayesian setting. The proposed method is shown to be efficient via simulation studies. A clinical trial dataset on skin cancer patients is analyzed to illustrate the proposed approach.  相似文献   

5.
    
Sangbum Choi  Xuelin Huang 《Biometrics》2012,68(4):1126-1135
Summary We propose a semiparametrically efficient estimation of a broad class of transformation regression models for nonproportional hazards data. Classical transformation models are to be viewed from a frailty model paradigm, and the proposed method provides a unified approach that is valid for both continuous and discrete frailty models. The proposed models are shown to be flexible enough to model long‐term follow‐up survival data when the treatment effect diminishes over time, a case for which the PH or proportional odds assumption is violated, or a situation in which a substantial proportion of patients remains cured after treatment. Estimation of the link parameter in frailty distribution, considered to be unknown and possibly dependent on a time‐independent covariates, is automatically included in the proposed methods. The observed information matrix is computed to evaluate the variances of all the parameter estimates. Our likelihood‐based approach provides a natural way to construct simple statistics for testing the PH and proportional odds assumptions for usual survival data or testing the short‐ and long‐term effects for survival data with a cure fraction. Simulation studies demonstrate that the proposed inference procedures perform well in realistic settings. Applications to two medical studies are provided.  相似文献   

6.
    
Data on doe longevity in a rabbit population were analysed using a semiparametric log-Normal animal frailty model. Longevity was defined as the time from the first positive pregnancy test to death or culling due to pathological problems. Does culled for other reasons had right censored records of longevity. The model included time dependent covariates associated with year by season, the interaction between physiological state and the number of young born alive, and between order of positive pregnancy test and physiological state. The model also included an additive genetic effect and a residual in log frailty. Properties of marginal posterior distributions of specific parameters were inferred from a full Bayesian analysis using Gibbs sampling. All of the fully conditional posterior distributions defining a Gibbs sampler were easy to sample from, either directly or using adaptive rejection sampling. The marginal posterior mean estimates of the additive genetic variance and of the residual variance in log frailty were 0.247 and 0.690.  相似文献   

7.
    
  相似文献   

8.
    
In the study of multiple failure time data with recurrent clinical endpoints, the classical independent censoring assumption in survival analysis can be violated when the evolution of the recurrent events is correlated with a censoring mechanism such as death. Moreover, in some situations, a cure fraction appears in the data because a tangible proportion of the study population benefits from treatment and becomes recurrence free and insusceptible to death related to the disease. A bivariate joint frailty mixture cure model is proposed to allow for dependent censoring and cure fraction in recurrent event data. The latency part of the model consists of two intensity functions for the hazard rates of recurrent events and death, wherein a bivariate frailty is introduced by means of the generalized linear mixed model methodology to adjust for dependent censoring. The model allows covariates and frailties in both the incidence and the latency parts, and it further accounts for the possibility of cure after each recurrence. It includes the joint frailty model and other related models as special cases. An expectation-maximization (EM)-type algorithm is developed to provide residual maximum likelihood estimation of model parameters. Through simulation studies, the performance of the model is investigated under different magnitudes of dependent censoring and cure rate. The model is applied to data sets from two colorectal cancer studies to illustrate its practical value.  相似文献   

9.
Population models concern collections of discrete entities such as atoms, cells, humans, animals, etc., where the focus is on the number of entities in a population. Because of the complexity of such models, simulation is usually needed to reproduce their complete dynamic and stochastic behaviour. Two main types of simulation models are used for different purposes, namely micro-simulation models, where each individual is described with its particular attributes and behaviour, and macro-simulation models based on stochastic differential equations, where the population is described in aggregated terms by the number of individuals in different states. Consistency between micro- and macro-models is a crucial but often neglected aspect. This paper demonstrates how the Poisson Simulation technique can be used to produce a population macro-model consistent with the corresponding micro-model. This is accomplished by defining Poisson Simulation in strictly mathematical terms as a series of Poisson processes that generate sequences of Poisson distributions with dynamically varying parameters. The method can be applied to any population model. It provides the unique stochastic and dynamic macro-model consistent with a correct micro-model. The paper also presents a general macro form for stochastic and dynamic population models. In an appendix Poisson Simulation is compared with Markov Simulation showing a number of advantages. Especially aggregation into state variables and aggregation of many events per time-step makes Poisson Simulation orders of magnitude faster than Markov Simulation. Furthermore, you can build and execute much larger and more complicated models with Poisson Simulation than is possible with the Markov approach.  相似文献   

10.
    
Mixed case interval‐censored data arise when the event of interest is known only to occur within an interval induced by a sequence of random examination times. Such data are commonly encountered in disease research with longitudinal follow‐up. Furthermore, the medical treatment has progressed over the last decade with an increasing proportion of patients being cured for many types of diseases. Thus, interest has grown in cure models for survival data which hypothesize a certain proportion of subjects in the population are not expected to experience the events of interest. In this article, we consider a two‐component mixture cure model for regression analysis of mixed case interval‐censored data. The first component is a logistic regression model that describes the cure rate, and the second component is a semiparametric transformation model that describes the distribution of event time for the uncured subjects. We propose semiparametric maximum likelihood estimation for the considered model. We develop an EM type algorithm for obtaining the semiparametric maximum likelihood estimators (SPMLE) of regression parameters and establish their consistency, efficiency, and asymptotic normality. Extensive simulation studies indicate that the SPMLE performs satisfactorily in a wide variety of settings. The proposed method is illustrated by the analysis of the hypobaric decompression sickness data from National Aeronautics and Space Administration.  相似文献   

11.
Posterior distribution of hierarchical models using CAR(1) distributions   总被引:1,自引:0,他引:1  
Sun  D; Tsutakawa  RK; Speckman  PL 《Biometrika》1999,86(2):341-350
  相似文献   

12.
    
Recurrent event data are commonly encountered in biomedical studies. In many situations, they are subject to an informative terminal event, for example, death. Joint modeling of recurrent and terminal events has attracted substantial recent research interests. On the other hand, there may exist a large number of covariates in such data. How to conduct variable selection for joint frailty proportional hazards models has become a challenge in practical data analysis. We tackle this issue on the basis of the “minimum approximated information criterion” method. The proposed method can be conveniently implemented in SAS Proc NLMIXED for commonly used frailty distributions. Its finite-sample behavior is evaluated through simulation studies. We apply the proposed method to model recurrent opportunistic diseases in the presence of death in an AIDS study.  相似文献   

13.
    
The Eastern Pacific leatherback turtle population (Dermochelys coriacea) has declined precipitously in recent years. One of the major causes is bycatch from coastal and pelagic fisheries. Fisheries observations are often underutilized, despite strong potential for this data to affect policy. In this study, we created a spatiotemporal species distribution model that synthesizes fisheries observations with remotely sensed environmental data. The model will be developed into a dynamic management tool for the Eastern Pacific leatherback population. We obtained leatherback observation data from multiple fisheries that have operated in the Southeast Pacific (2001–2018). A dynamic Poisson point process model was applied to predict leatherback intensity (observation per unit area) as a function of dynamic environmental covariates. This model serves as a tool for application by managers and stakeholders toward the reduction of leatherback turtle bycatch and provides a modeling framework for analyzing fisheries observations from other vulnerable populations and species.  相似文献   

14.
On autocorrelation in a Poisson regression model   总被引:3,自引:0,他引:3  
Davis  RA; Dunsmuir  WTM; Wang  Y 《Biometrika》2000,87(3):491-505
  相似文献   

15.
16.
17.
    
In many studies in medicine, including clinical trials and epidemiological investigations, data are clustered into groups such as health centers or herds in veterinary medicine. Such data are usually analyzed by hierarchical regression models to account for possible variation between groups. When such variation is large, it is of potential interest to explore whether additionally the effect of a within‐group predictor varies between groups. In survival analysis, this may be investigated by including two frailty terms at group level in a Cox proportional hazards model. Several estimation methods have been proposed to estimate this type of frailty Cox models. We review four of these methods, apply them to real data from veterinary medicine, and compare them using a simulation study.  相似文献   

18.
19.
    
Summary In this article, we propose a positive stable shared frailty Cox model for clustered failure time data where the frailty distribution varies with cluster‐level covariates. The proposed model accounts for covariate‐dependent intracluster correlation and permits both conditional and marginal inferences. We obtain marginal inference directly from a marginal model, then use a stratified Cox‐type pseudo‐partial likelihood approach to estimate the regression coefficient for the frailty parameter. The proposed estimators are consistent and asymptotically normal and a consistent estimator of the covariance matrix is provided. Simulation studies show that the proposed estimation procedure is appropriate for practical use with a realistic number of clusters. Finally, we present an application of the proposed method to kidney transplantation data from the Scientific Registry of Transplant Recipients.  相似文献   

20.
    
Leveraging information in aggregate data from external sources to improve estimation efficiency and prediction accuracy with smaller scale studies has drawn a great deal of attention in recent years. Yet, conventional methods often either ignore uncertainty in the external information or fail to account for the heterogeneity between internal and external studies. This article proposes an empirical likelihood-based framework to improve the estimation of the semiparametric transformation models by incorporating information about the t-year subgroup survival probability from external sources. The proposed estimation procedure incorporates an additional likelihood component to account for uncertainty in the external information and employs a density ratio model to characterize population heterogeneity. We establish the consistency and asymptotic normality of the proposed estimator and show that it is more efficient than the conventional pseudopartial likelihood estimator without combining information. Simulation studies show that the proposed estimator yields little bias and outperforms the conventional approach even in the presence of information uncertainty and heterogeneity. The proposed methodologies are illustrated with an analysis of a pancreatic cancer study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号