首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The extracts of five invasive plants were investigated for antifungal and antibiofilm activities against Candida albicans, C. glabrata, C. krusei, and C. parapsilosis. The antifungal activity was evaluated using the microdilution assay and the antibiofilm effect by measurement of the metabolic activity. Ethanol and ethanol-water extracts of Reynoutria japonica leaves inhibited 50 % of planktonic cells at 250 μg mL−1 and 15.6 μg mL−1, respectively. Ethanol and ethanol-water extracts of Baccharis halimifolia inhibited >75 % of the mature biofilm of C. albicans at 500 μg mL−1. The essential oil (EO) of B. halimifolia leaves was the most active (50 % inhibition (IC50) at 4 and 74 μg mL−1against the maturation phase and 24 h old-biofilms of C. albicans, respectively). Oxygenated sesquiterpenes were the primary contents in this EO (62.02 %), with β-caryophyllene oxide as the major component (37 %). Aromadendrene oxide-(2), β-caryophyllene oxide, and (±)-β-pinene displayed significant activities against the maturation phase (IC50=9–310 μ mol l−1) and preformed 24 h-biofilm (IC50=38–630 μ mol l−1) of C. albicans with very low cytotoxicity for the first two compounds. C. albicans remained the most susceptible species to this EO and its components. This study highlighted for the first time the antibiofilm potential of B. halimifolia, its EO and some of its components.  相似文献   

2.
Zanthoxylum limoncello is a native plant from southern Mexico which is used as a timber source, condiment and as a traditional medicine. Herein, we report on the volatile content of the leaf essential oil and its biological activities. The annual essential oils (2015–2018) contained volatile organic compounds which exhibited a moderate growth inhibitory activity against H. pylori ATCC 53504 (MIC 121.4–139.7 μg mL?1), 26695 (MIC 85.5–94.9 μg mL?1) and J99 (MIC 94.7–110.4 μg mL?1). These hydrodistillates contained 2‐undecanone (31.6–36.8 %; MIC 185.3–199.2 μg mL?1) and 2‐undecenal (25.1–35.7 %; MIC 144.8–111.3 μg mL?1) as the most abundant compounds which were partially involved in the anti‐H. pylori activity. The human ornithine decarboxylase enzyme (ODC1), which shows increased activity in several cancer types, was non‐competitively inhibited (Vmax 2.7>0.8 Kcat s?1) by the essential oil of Z. limoncello as well as by 2‐undecanone and 2‐undecenal in accordance to in vitro kinetic studies. In silico calculations strongly suggest that the carbonyl group of these oxygenated hydrocarbons interacts with both Asn319 and Ala39 at the subunit A of ODC1. Considering that Ala39 is located close to Asn44, a crucial amino acid of the ODC's allosteric site, the non‐competitive inhibition of the enzyme by 2‐undecanone and 2‐undecenal is endorsed. Finally, the essential oil of Z. limoncello and its main volatiles showed a significant (p<0.01) and prolonged repellent effect against Aedes aegypti.  相似文献   

3.
Terminalia citrina (T. citrina) belongs to the Combretaceae family and is included in the class of medicinal plants in tropical countries such as Bangladesh, Myanmar, and India. The antioxidant activities of lyophilized water (WTE) and alcohol extracts (ETE) of T. citrina fruits, their phenolic content by LC-HRMS, and their effects on cholinesterases (ChEs; AChE, acetylcholinesterase, and BChE, butyrylcholinesterase) were investigated. Especially ten different analytical methods were applied to determine the antioxidant capacity. Compared with similar studies for natural products in the literature, it was determined that both WTE and ETE exhibited strong antioxidant capacity. Syringe and ellagic acids were higher than other acids in ETE and WTE. IC50 values for ETE and WTE in DPPH radical and ABTS⋅+ scavenging activities were calculated as 1.69–1.68 μg mL−1 and 6.79–5.78 μg mL−1, respectively. The results of the biological investigations showed that ETE and WTE had an inhibition effect against ChEs, with IC50 values of 94.87 and 130.90 mg mL−1 for AChE and 262.55 and 279.70 mg mL−1 for BChE, respectively. These findings indicate that with the prominence of herbal treatments, T. citrina plant may guide the literature in treating Alzheimer's Disease, preventing oxidative damage, and mitochondrial dysfunction.  相似文献   

4.
Reported is the preparation of wheat germ (WG) hydrolyzate with potent angiotensin I‐converting enzyme (ACE) inhibitory activity, and the characterization of peptides responsible for ACE inhibition. Successful hydrolyzate with the most potent ACE inhibitory activity was obtained by 0.5 wt.%–8 h Bacillus licheniformis alkaline protease hydrolysis after 3.0 wt.%–3 h α‐amylase treatment of defatted WG (IC50; 0.37 mg protein ml−1). The activity of WG hydrolyzate was markedly increased by ODS and subsequent AG50W purifications (IC50; 0.018 mg protein ml−1). As a result of isolations by high performance liquid chromatographies, 16 peptides with the IC50 value of less than 20 μm , composed of 2–7 amino acid residues were identified from the WG hydrolyzate. Judging from the high content (260 mg in 100 g of AG50W fraction) and powerful ACE inhibitory activity (IC50; 0.48 μm ), Ile‐Val‐Tyr was identified as a main contributor to the ACE inhibition of the hydrolyzate. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Ferric nitrilotriacetate (Fe-NTA) is a well-established renal carcinogen. Here, we have shown that Pluchea lanceolata (PL) belonging to the family Asteraceae. PL attenuates Fe-NTA induced renal oxidative stress, hyperproliferative response and renal carcinogenesis in rats. It promoted DEN (N-diethyl nitrosamine) initiated renal carcinogenesis by increasing the percentage incidence of tumors and induces early tumor markers viz. ornithine decarboxylase (ODC) and renal DNA synthesis. Fe-NTA (9 mg Fe/kg body weight, intraperitoneally) also enhances renal lipid peroxidation (LPO), xanthine oxidase (XO) and hydrogen peroxide (H2O2) generation with reduction in renal glutathione content (GSH), antioxidant enzymes, viz., glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), glucose-6-phosphate dehydrogenase and phase-II metabolizing enzymes such as glutathione-S-transferase and quinone reductase (QR). It also enhances blood urea nitrogen (BUN) and serum creatinine. Oral treatment of rats with PL extract (100 and 200 mg/kg body weight) resulted in significant decrease in lipid peroxidation (LPO), xanthine oxidase (XO), H2O2 generation, blood urea nitrogen (BUN), serum creatinine, renal ODC activity, DNA synthesis (p < 0.001) and incidence of tumors. Renal glutathione content (p < 0.01), its metabolizing enzymes (p < 0.001) and antioxidant enzymes were also recovered to significant level (p < 0.001). Thus, present study supports PL as a potent chemopreventive agent and suppresses Fe-NTA-induced renal carcinogenesis and oxidative damage response in Wistar rat.  相似文献   

6.
In this study, we investigated the phenolic composition of the crude extract (MeOH 80 %) of Alnus cordata (Loisel .) Duby stem bark (ACE) and its antioxidant and skin whitening properties. RP‐LC‐DAD analysis showed a high content of hydroxycinnamic acids (47.64 %), flavanones (26.74 %) and diarylheptanoids (17.69 %). Furthermore, ACE exhibited a dose‐dependent antioxidant and free‐radical scavenging activity, expressed as half‐maximal inhibitory concentration (IC50): Oxygen radical absorbance capacity (ORAC, IC50 1.78 μg mL?1)>Trolox equivalent antioxidant capacity (TEAC, IC50 3.47 μg mL?1)>2,2‐Diphenyl‐1‐picrylhydrazyl (DPPH, IC50 5.83 μg mL?1)>β‐carotene bleaching (IC50 11.58 μg mL?1)>Ferric reducing antioxidant power (FRAP, IC50 17.28 μg mL?1). Moreover, ACE was able to inhibit in vitro tyrosinase activity (IC50 77.44 μg mL?1), l ‐DOPA auto‐oxidation (IC50 39.58 μg mL?1) and in an in vivo model it exhibited bleaching effects on the pigmentation of zebrafish embryos (72 h post fertilization) without affecting their development and survival. In conclusion, results show that A. cordata stem bark may be considered a potential source of agents for the treatment of skin disorders due to its bleaching properties and favorable safety profiles, associated to a good antioxidant power.  相似文献   

7.
The essential oil from the annual plant Lepidium virginicum L. was chemically characterized in three consecutive years (2018–2020). The essential oils were evaluated in vitro and in situ on the causal agent of anthracnose in tamarillo fruits (Solanum betaceum). The main volatile constituents were phenylacetonitrile (>60 %), linalool (>10 %), limonene (>7 %) and α-terpineol (>5 %). The essential oil (MIC, 19–30 μg mL−1), phenylacetonitrile (MIC, 45 μg mL−1) and α-terpineol (MIC, 73 μg mL−1) caused a significant inhibition in the conidial viability from a wild strain of Colletotrichum acutatum, which was isolated and identified as a causal agent of anthracnose. The inoculation of conidia from C. acutatum in non-symptomatic tamarillo fruits, followed by the in situ treatment with different concentrations of the essential oil (>30 μg mL−1), phenylacetonitrile and α-terpineol, significantly (p<0.01) avoided the degradation of anthocyanins (delphinidin 3-O-rutinoside, cyanidin 3-O-rutinoside and pelargonidin 3-O-rutinoside) and carotenoids (β-cryptoxanthin and β-carotene) as well as retarded yellowing and necrosis triggered by anthracnose at least for 10 days. Our results suggest the potential use of the essential oil from L. virginicum as a natural component to preserve the nutraceutical content of tamarillo fruits against C. acutatum infection.  相似文献   

8.
In Brazil, there is a large diversity of species of small edible fruits that are considered sources of nutrients and functional properties. They present a high innovation domain for the pharmaceutical, cosmetic and food industries due to their health-promoting properties. Edible fruits from Brosimum gaudichaudii (Moraceae) are widely consumed and used in folk medicine and in feed by the population of the Brazilian Cerrado. Nevertheless, detailed information on the chemical fingerprint, antiradical activity and safety aspects of these fruits is still unknown. Thus, the aim of this work was to investigate the bioactive compounds of hydroethanolic extracts of fruits from Brosimum gaudichaudii using high-performance liquid chromatography combined with mass spectrometry using electrospray ionization (HPLC ESI-MS). Eighteen different compounds, including flavonoids, coumarins, arylbenzofurans, terpenoids, stilbenes, xanthones and esters, were detected. Moreover, the study indicated that the hydroethanolic extract of fruits from B. gaudichaudii presented low scavenging activity against 2,2-diphenyl-1-picrylhydrazyl radicals (IC50>800 μg mL−1) and was cytotoxic (IC50<30 μg mL−1) in Chinese hamster ovary cells (CHO−K1) by an in vitro assay. This is the first report of the chemical profile, antioxidant activity and cytotoxic properties of the hydroethanolic extract of fruits from B. gaudichaudii.  相似文献   

9.
The chemotherapy of schistosomiasis remains centered in the use of praziquantel, however, there has been growing resistant parasites to this drug. Thus, the aim of this work was to evaluate in vitro schistosomicidal activity of the hexanes/dichloromethane 1 : 1 extract of Brazilian green propolis (Pex), as well as its major isolated compounds artepillin C, caffeic acid, coumaric acid and drupanin against Schistosoma mansoni. The Pex was active by displaying an IC50 value of 36.60 (26.26–51.13) μg mL?1 at 72 h against adult worms of S. mansoni. The major isolated compounds were inactive with IC50 values >100 μM, however, the combination of the isolated compounds (CM) in the same range found in the extract was active with an IC50 value of 41.17 (39.89–42.46) μg mL?1 at 72 h. Pex and CM induced alteration in the tegument of S. mansoni, and caffeic acid caused alteration in egg's maturation. Pex displayed in vitro activity against adult worms’ and eggs’ viability of S. mansoni, which opens new perspectives to better understand the synergistic and/or additive effects promoted by both Pex extract and CM against schistosomiasis features.  相似文献   

10.
Brazilian green and red propolis stand out as commercial products for different medical applications. In this article, we report the antimicrobial activities of the hydroalcoholic extracts of green (EGP) and red (ERP) propolis, as well as guttiferone E plus xanthochymol (8) and oblongifolin B (9) from red propolis, against multidrug-resistant bacteria (MDRB). We undertook the minimal inhibitory (MIC) and bactericidal (MBC) concentrations, inhibition of biofilm formation (MICB50), catalase, coagulase, DNase, lipase, and hemolysin assays, along with molecular docking simulations. ERP was more effective by displaying MIC and MBC values <100 μg mL−1. Compounds 8 and 9 displayed the lowest MIC values (0.98 to 31.25 μg mL−1) against all tested Gram-positive MDRB. They also inhibited the biofilm formation of S. aureus (ATCC 43300 and clinical isolate) and S. epidermidis (ATCC 14990 and clinical isolate), with MICB50 values between 1.56 and 6.25 μg mL−1. The molecular docking results indicated that 8 and 9 might interact with the catalase's amino acids. Compounds 8 and 9 have great antimicrobial potential.  相似文献   

11.
Pomelo seeds (PS) are important by-product of pomelo fruits (Citrus grandis Osbeck). The value-added utilization of PS remains highly challenged. This study aimed to investigate the utilization potential of PS as natural antioxidant, antibacterial, herbicidal agents, and their functional components. The ethanolic extract (EE) of PS and its four fractions as PEE (petroleum ether extract), AcOEtE (ethyl acetate extract), BTE (butanol extract), and WE (water extract), were prepared and biologically evaluated. BTE exhibited the best antioxidant activity among all these extracts, in both ABTS (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) and FRAP (ferric reducing antioxidant power) assays. AcOEtE was superior to other extracts in herbicidal assay against both Festuca elata Keng (IC50 of 0.48 mg mL−1) and Amaranthus retroflexus L. (IC50 of 0.94 mg mL−1). Meanwhile, both AcOEtE and BTE demonstrated inhibitory effects against Bacillus subtilis, Escherichia coli, and Xanthomonas citri subsp. citri, with MIC ranging 2.5–5.0 mg mL−1. Furthermore, the primary chemical components involving naringin, deacetylnomilin, limonin, nomilin, and obacunone, were quantified in all these extracts. PCA (principal component analysis) suggested that naringin might highly contribute to the antioxidant activity of PS, and the herbicidal activity should be ascribed to limonoids. This study successfully identified AcOEtE and BTE as naturally occurring antioxidant, antibacterial, and herbicidal agents, showing application potential in food and cosmetics industries, and organic farming agriculture.  相似文献   

12.
Root-knot nematode, Meloidogyne incognita is one of the most destructive nematodes worldwide. Essential oils (EOs) are being extensively utilized as eco-benign bionematicides, although the precise mechanism of action remains unclear. Pogostemon cablin Benth. is well-known as “Patchouli”. It is native to South East Asia and known for ethno-pharmacological properties. In this study, chemical composition and potential nematicidal effect of EOs hydrodistilled from the leaves of P. cablin grown at three different locations in India were comprehensively investigated to correlate their mechanism of action for target specific binding affinities toward nematode proteins. Aromatic volatile Pogostemon essential oils (PEO) from Northern India (PEO-NI), Southern India (PEO-SI) and North Eastern India (PEO-NEI) were analyzed by Gas Chromatography-Mass Spectrometry (GC/MS) to characterize forty volatile compounds. Maximum thirty-three components were identified in PEO-NEI. Sesquiterpenes were predominant with higher content of α-guaiene (2.3–24.4 %), patchoulol (6.1–32.7 %) and α-bulnesene (5.9–27.1 %). Patchoulol was the major component in PEO-SI (32.7±1.2 %) and PEO-NEI (29.2±1.1 %), while α-guaiene in PEO-NI (24.4±1.2 %). In vitro nematicidal assay revealed significant nematicidal action (LC50 44.6–87.0 μg mL−1) against juveniles of M. incognita within 24 h exposure. Mortality increases with increasing time to 48 h (LC50 33.6–71.6 μg mL−1) and 72 h (LC50 27.7–61.2 μg mL−1). Molecular modelling and in silico studies revealed multi-modal inhibitive action of α-bulnesene (−22 to −13 kJ mol−1) and α-guaiene (−22 to −12 kJ mol−1) against three target proteins namely, acetyl cholinesterase (AChE), odorant response gene-1 (ODR1), odorant response gene-3 (ODR3). Most preferable binding mechanism was observed against AChE due to pi-alkyl, pi-sigma, and hydrophobic interactions. Structure nematicidal activity relationship suggested the presence of hydroxy group for nematicidal activity is nonessential, rather highly depends on synergistic composition of sesquiterpene hydrocarbons.  相似文献   

13.
Many gallate esters have been applied as food additives due to their good biological properties. Herein, nine novel gallate ester derivatives were synthesized by a Friedel-Crafts alkylation reaction and characterized by melting point (m.p.), infrared (IR) spectroscopy, nuclear magnetic resonance (1H- and 13C-NMR) spectra, and high-resolution mass spectrometry (HR-ESI-MS). Their antioxidant and antibacterial activities were measured using a series of classical assays. Studies found that the products showed favorable antioxidant and antibacterial activities. Their 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH) scavenging effect IC50 values were less than 5.00 μg mL−1 and their reducing power was not less than that of vitamin C (Vc). Furthermore, the antibacterial results showed that the minimum inhibitory concentration (MIC) values of the products were not greater than 8.00 μg mL−1, and their antibacterial rates were over 95 % at 300 μg mL−1. The above data add valuable and novel information that gallate ester derivatives can be considered potential food additives to address food safety issues because of their high biological activity and health benefits.  相似文献   

14.
It is of great significance to develop an effective method for methyl parathion (MP) detection. Herein, a novel nitrogen-doped titanium carbide quantum dots (N-Ti3C2 QDs) was prepared and used to construct a simple and sensitive fluorescence sensing platform of MP by making use of inner filter effect (IFE). The prepared N-Ti3C2 QDs can exhibit strong blue fluorescence at 434 nm. Meanwhile, MP could hydrolyze to produce p-nitrophenol (p-NP) under alkaline conditions, which showed a characteristic ultraviolet-visible (UV-visible) absorption peak at 405 nm, resulting in the fluorescence of N-Ti3C2 QDs is effectively quenched by p-NP. In addition, the investigation of time-resolved fluorescence decays indicated that the corresponding quenching mechanism of p-NP on N-Ti3C2 QDs is due to the IFE. After optimizing the conditions, the as-developed fluorescence sensing platform displayed wide detection range (0.1–30 μg mL−1) and low detection limit (0.036 μg mL−1) for MP, and it was also successfully applied for MP analysis in real water samples, thus it is expected that this simple, sensitive and enzyme-free sensing platform shows great applications.  相似文献   

15.
We grew 2.4 m2 wheat canopies in a large growth chamber under high photosynthetic photon flux (1000 μmol m−2 s−1) and using two CO2 concentrations, 360 and 1200 μmol mol−1. Photosynthetically active radiation (400–700 nm) was attenuated slightly faster through canopies grown in 360μmol mol−1 than through canopies grown in 1200μmol mol−1, even though high-CO2 canopies attained larger leaf area indices. Tissue fractions were sampled from each 5-cm layer of the canopies. Leaf tissue sampled from the tops of canopies grown in 1200μmol mol−1 accumulated significantly more total non-structural carbohydrate, starch, fructan, sucrose, and glucose (p≤ 0.05) than for canopies grown in 360μmol mol−1. Non-structural carbohydrate did not significantly increase in the lower canopy layers of the elevated CO2 treatment. Elevated CO2 induced fructan synthesis in all leaf tissue fractions, but fructan formation was greatest in the uppermost leaf area. A moderate temperature reduction of 10 °C over 5d increased starch, fructan and glucose levels in canopies grown in 1200μmol mol−1, but concentrations of sucrose and fructose decreased slightly or remained unchanged. Those results may correspond with the use of fructosyl-residues and release of glucose when sucrose is consumed in fructan synthesis.  相似文献   

16.
The phenolic composition and antioxidant capacity of four Tunisian lichen species, Cladonia rangiformis, Flavoparmelia caperata, Squamarina cartilaginea and Xanthoria parietina, were determined in order to provide a better understanding of their lichenochemical composition. Powdered material of F. caperata was the richest in total phenolic content (956.68 μg GAE g−1 DW) and S. cartilaginea in proanthocyanidin content (77.31 μg CE g−1 DW), while the acetone extract of X. parietina showed the highest flavonoid content (9.56 μg CE g−1 DW). The antioxidant capacity of all lichen extracts and crude material was evaluated by DPPH. scavenging, iron-chelating, and iron-reducing powers. Results showed that methanol extracts of S. cartilaginea had the highest DPPH. antioxidant capacity (IC50=0.9 μg mL−1) and the highest iron-reducing power was attributed to the acetone extract of this species. All extracts of all species were further screened by Fourier-transform infrared spectroscopy (FT-IR) and nuclear resonance spectroscopy (NMR); results showed an abundance of phenols, aromatic compounds, and fatty acids. Overall, our results showed that the investigated species are a rich source of potentially bioactive compounds with valuable properties.  相似文献   

17.
Plants belonging to Euphorbia L. genus are considered very interesting from a medicinal point of view due to their diverse metabolites and bioactivities. The essential oil (EO) of Euphorbia mauritanica L. is not studied up to date. Therefore, the present study aimed to explore the chemical profile of this EO and evaluate its antioxidant, cytotoxic, and allelopathic potentialities. The EO was extracted from the whole plant via hydrodistillation and then, analyzed by gas chromatography/mass spectrometry (GC/MS). The correlation of E. mauritanica with the other Euphorbia plants was established using chemometric analysis. The antioxidant activity was determined based on scavenging of the free radical, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The anti-proliferation of the EO on the Hep G2 and MCF-7 cells was evaluated. Finally the allelopathic activity of the EO was assessed against the two noxious weeds, Dactyloctenium aegyptium and Urospermum picroides. Forty-one compounds were identified using GC/MS analysis, with an abundance of terpenoids (91.54 %) that were categorized into mono- (30.75 %), sesqui- (15.23 %), and diterpenes (45.56 %). Interestingly, the results revealed the preponderance of diterpenoid constituents although they are rarely found in the EOs of the plant kingdom. The major compounds were (3E)-cembrene A (18.66 %), verticiol (17.05 %), limonene (7.91 %), eucalyptol (7.26 %), α-pinene (5.61 %), neo-cembrene A (3.52 %), kaur-16-ene (3.24 %), and cembrene (3.09 %). The EO showed moderate antioxidant activity where it attained IC50 values of 83.34 and 64.21 μg mL−1 for DPPH and ABTS compared to 23.01 and 19.23 μg mL−1 for ascorbic acid as standard, respectively. The EO exhibited very weak cytotoxic effect on MCF-7 and Hep G2 cells. The EO showed significant allelopathic activities against the weeds D. aegyptium and U. picroides in a concentration-dependent manner. EO was found more effective against U. picroides than D. aegyptium with IC50 values of 0.79, 0.45, and 0.67 mg mL−1 and 1.17, 0.55, and 1.08 mg mL−1 for germination, root, and shoot growth, respectively. Due to the high content of diterpenes in E. mauritanica, further study is recommended for more characterization of pure forms of the identified diterpenes as well as evaluating their bioactivity either solely or synergistically.  相似文献   

18.
Antifouling agents with low toxicity are in high demand for sustaining marine industries and the environment. This study aimed to synthesize 15 isothiocyanates derived from β-citronellol and evaluate their antifouling activities and toxicities against cypris larvae of the barnacle Amphibalanus amphitrite. The synthesized isothiocyanates exhibited effective antifouling activities (EC50=0.10–3.33 μg mL−1) with high therapeutic ratios (LC50/EC50 >30). Four isothiocyanates with an amide or isocyano group showed great potential as effective antifouling agents (EC50=0.10–0.32 μg mL−1, LC50/EC50=104–833). The enantiomers of the isothiocyanates only slightly differed in their antifouling activities. These results may serve as a basis for further research and development of β-citronellol-derived isothiocyanates as effective low-toxic antifouling agents. To the best of our knowledge, this study is the first to report the antifouling activities of isothiocyanates derived from accessible natural products.  相似文献   

19.
Fifteen diterpenoids ( 1 – 15 ), including three undescribed ones with ent‐atisane skeleton, eupnerias G–I ( 1 – 3 ), were obtained from Euphorbia neriifolia. Compounds 1 – 3 were established through comprehensive spectroscopic analysis. Compounds 4 and 5 exhibited obvious anti‐HIV‐1 effect, and their EC50 were 6.6±3.2 and 6.4±2.5 μg mL?1, respectively. Compound 6 exhibited moderate cytotoxicity on HepG2 and HepG2/Adr cells with IC50 at 13.70 and 15.57 μm , respectively. In addition, compound 15 exhibited significant cytotoxicity on HepG2 cell lines (IC50=0.01 μm ), while it did not show any cytotoxicity against HepG2/Adr cell lines.  相似文献   

20.
Several new 10-formyl and 10-hydroxymethyl derivatives of 5,8,10-trideazapteroic acid have been synthesized by a novel and convenient enamine alkylation procedure. Two of these compounds (10a and 10b) were shown to be very powerful inhibitors of L. casei (10a, IC50 = 8 × 10−6 M ; 10b, IC50 = 7 × 10−6 M ) and recombinant mouse (10a, IC50 = 3.4 × 10−5 M ; 10b, IC50 = 2.8 × 10−5 M ) glycinamide ribonucleotide formyltransferase (GARFT). These IC50 values are comparable to the classical GARFT inhibitor (6R)-DDATHF (IC50, L. casei 2.3 × 10−6M ; recombinant mouse 2.3 × 10−5 M ) under identical assay conditions. For both compounds, the inhibition of L. casei GARFT increased with time of incubation, but not markedly with the recombinant mouse enzyme. Due to their potential ability to interfere with purine biosynthesis and to penetrate microbial cells the new nonclassical GARFT inhibitors reported here may be useful for the treatment of infections caused by microorganisms that are sensitive and resistant to conventional antimicrobial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号