首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water‐soluble ZnS:Mn quantum dots (QDs) were synthesized using a hydrothermal method with 3‐mercaptopropionic acid as stabilizer. The optical properties of ZnS:Mn QDs were thoroughly investigated by tuning the doping concentration of Mn2+ and the Zn/S precursor ratio, to obtain an optimal parameter for QDs with excellent fluorescence characteristics. ZnS:Mn QDs excited at only one wavelength, however, which seriously limited their further application. Here, a trace Cd ion was doped into a ZnS host, resulting in QD excitation covering a wide adjustable waveband. Furthermore, when a ZnS shell was coated onto the surface of the ZnCdS:Mn QDs, photoluminescence intensity and stability were further enhanced. After coupling with an anti‐CK 19 antibody, the ZnCdS:Mn/ZnS core/shell QDs were able to function by labeling cancer cells, indicating that they could be considered as a suitable bio‐probe for cells and tissue imaging.  相似文献   

2.
量子点荧光标记技术的研究热点及面临的挑战   总被引:1,自引:1,他引:1  
半导体量子点作为新型荧光标记物,在生物医学领域具有重要应用.与传统的有机染料及荧光蛋白等荧光标记物相比,半导体量子点具有发光颜色可调、激发范围宽、发射光谱窄、化学及光稳定性好、表面化学丰富以及生物偶联技术成熟等诸多优势,为生命体系的靶向示踪,高灵敏、原位、实时、动态荧光成像,DNA及蛋白质检测,靶向药物,临床医学,生物芯片和传感器等研究提供了新的发展契机.基于作者在半导体量子点生物荧光成像和安全性评价研究的基础,综述了半导体量子点荧光标记物在生命科学与医学领域应用的研究热点,并对半导体量子点荧光标记技术走向实用面临的挑战进行了评述.  相似文献   

3.
Carbon quantum dots (CQDs) are promising carbonaceous nanomaterials fortuitously discovered in 2004. CQDs are the rising stars in the nanotechnology ensemble because of their unique properties and widespread applications in sensing, imaging, medicine, catalysis, and optoelectronics. CQDs are notable for their excellent solubility and effective luminescence and, as a result, they are also known as carbon nanolights. Many strategies are used for the efficient and economical preparation of CQDs; however, CQDs prepared from waste or green sustainable methods have greater requirements due to their safety and ease of synthesis. Sustainable chemical strategies for CQDs have been developed, emphasizing green synthetic methodologies based on ‘top-down’ and ‘bottom-up’ approaches. This review summarizes many such studies relevant to the development of sustainable methods for photoluminescent CQDs. Furthermore, we have emphasized recent advances in CQDs' photoluminescence applications in chemical and biological fields. Finally, a brief overview of synthetic processes using the green source and their associated applications are tabulated, providing a clear understanding of the new optoelectronic materials.  相似文献   

4.
量子点是一种半导体纳米晶体,它可发出激发荧光,具有亮度高、稳定时间长和发射光谱可调节等特性,是同时检测多信号的良好材料.这些独特性质使得它们在肿瘤诊治领域中的应用日益受到人们的重视.对量子点进行功能化修饰,如偶联抗体等活性物质后,可以对肿瘤细胞进行特异性识别及示踪,以实现对肿瘤的诊断和治疗.文中分别从分子靶向识别、淋巴结定位和药物传递等方面探讨了功能化量子点在肿瘤诊断和治疗中的最新进展.此外,还讨论了量子点的毒性以及用于肿瘤检测和治疗的多功能量子点的设计方法,并提出了其实际应用的潜在方向.  相似文献   

5.
In this paper, based on the fluorescence of carbon quantum dots (CQDs) quenched by mercury ions (Hg2+) and the nonresponse of Hg2+ to rhodamine B fluorescence, a dual emission ratio fluorescence sensor was constructed to realize the quantitative detection of Hg2+. Under excitation at 365 nm, the fluorescence spectrum showed double emission peaks at 437 nm and 590 nm, corresponding to the fluorescence emissions of CQDs and rhodamine B, respectively. This method quantitatively detected Hg2+ based on the linear relationship between the ratio of the intensities of the two emission peaks F437/F590 and the concentration of Hg2+. The detection range was 10–70 nM, and the limit of detection (S/N = 3) was 3.3 nM. In addition, this method could also realize the qualitative and semiquantitative detection of Hg2+ according to the fluorescence colour change of the probe under ultraviolet light. After various evaluations, the method could be successfully applied to the quantitative and visual detection of Hg2+ in tap water, and demonstrated excellent selectivity, anti-interference performance, and repeatability of the method.  相似文献   

6.
d ‐penicillamine‐capped cadmium telluride quantum dots (DPA‐capped CdTe QDs) were synthesized as the new fluorescent semiconductor nanocrystal in aqueous solution. Fourier transmission infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, ultraviolet‐visible and photoluminescence spectroscopy were used for characterization of the QDs. Based on the quenching effect of Cu2+ ions on the fluorescence intensity of DPA‐capped CdTe QDs, a new fluorometric sensor for copper(II) detection was developed that showed good linearity over the concentration range 5 × 10–9–3 × 10–6 m with the detection limit 0.4 × 10–9 m . Owing to the strong affinity of the DPA to copper(II), the sensor showed appropriate selectivity for copper(II) compared with conventional QDs. The DPA‐capped CdTe QDs was successfully applied for determination of Cu2+ concentration in river, well and tap waters with satisfactory results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, 573 nm quantum dots (QDs)-rabbit IgG-goat anti-rabbit IgG-638 nm QDs immunocomplexes were prepared, utilizing antigen-antibody interaction. 573 nm-emitting QDs were conjugated to antigen (rabbit IgG) and 638 nm-emitting QDs were conjugated to antibody (goat anti-rabbit IgG) via electrostatic/hydrophilic self-assembly, respectively. The mutual affinity of the antigen and antibody brought two kinds of QDs close enough to result in fluorescence resonance energy transfer (FRET) between them; the luminescence emission of 573 nm QDs was quenched, while that of 638 nm QDs was enhanced. The luminescence emission of 573 nm QDs could be recovered when the immunocomplexes were exposed to the unlabelled rabbit IgG antigen. The FRET efficiency (E) and the distance between the donor and the acceptor were calculated.  相似文献   

8.
Carbon‐based quantum dots (C‐QDs) were synthesized through microwave‐assisted carbonization of an aqueous starch suspension mediated by sulphuric and phosphoric acids. The as‐prepared C‐QDs showed blue, green and yellow luminescence without the addition of any surface‐passivating agent. The C‐QDs were further analyzed by UV?vis spectroscopy to measure the optical response of the organic compound. The energy gaps revealed narrow sizing of C‐QDs in the semiconductor range. The optical refractive index and dielectric constant were investigated. The C‐QDs size distribution was characterized. The results suggested an easy route to the large scale production of C‐QDs materials.  相似文献   

9.
In this paper, two types of carbon quantum dot (CQDs) were prepared using biocompatible l ‐methionine as the carbon source and urea as the nitrogen source and a one‐step hydrothermal treatment. By changing the reaction solvents (deionized (DI) water and dimethylformamide (DMF)), the maximum emission of the resulting CQDs shifted from blue to red light. Specifically, the emission wavelength of the CQDs moved from 433 nm to 625 nm following embedding of a new functional group (–CONH–) on the surface of the CQDs. Photoluminescence quantum yields of the CQDs with blue and red emission reached 64% and 61%, respectively. The R‐CQDs were used to detect metal ions and a linear relationship was demonstrated between ln(F/F0) and Fe3+ concentration in the range 0–0.5 mmol/L with a detection limit of 0.067 μM. Therefore these R‐CQDs have great potential as fluorescent probes for Fe3+ detection. We expect that the excellent water‐soluble, biocompatible and optical properties of the CQDs developed in this work mean that they will be widely used to detect biological cells.  相似文献   

10.
《Chirality》2017,29(8):403-408
Chirality strongly influences many biological properties of materials, such as cell accumulation, enzymatic activity, and toxicity. In the past decade, it has been shown that quantum dots (QDs), fluorescent semiconductor nanoparticles with unique optical properties, can demonstrate optical activity due to chiral ligands bound on their surface. Optically active QDs could find potential applications in biomedical research, therapy, and diagnostics. Consequently, it is very important to investigate the interaction of QDs capped with chiral ligands with living cells. The aim of our study was to investigate the influence of the induced chirality of Mn‐doped ZnS QDs on the viability of A549 cells. These QDs were stabilized with D‐ and L‐cysteine using a ligand exchange technique. The optical properties of QDs were studied using UV–Vis, photoluminescence (PL), and circular dichroism (CD) spectroscopy. The cytotoxicity of QDs was investigated by high content screening analysis. It was found that QDs stabilized by opposite ligand enantiomers, had identical PL and UV–Vis spectra and mirror‐imaged CD spectra, but displayed different cytotoxicity: QDs capped with D‐cysteine had greater cytotoxicity than L‐cysteine capped QDs.  相似文献   

11.
Coptisine (COP), one of the bioactive components in Rhizoma Coptidis, has many pharmacological effects. Meanwhile, the determination of COP is essential in pharmacological and clinical applications. Herein, we prepared carbon quantum dots (CQDs) by one-step oil-thermal method using paper mill sludge (PMS) as precursor, and developed a ratiometric fluorescence method for the determination of COP. The structural and optical properties of PMS-CQDs were evaluated through high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), ultraviolet-visible (UV-vis), fluorescence, zeta potential and fluorescence lifetime experiments. Fluorescence intensity ratio at 550 nm and 425 nm (I550/I425) was recorded as an index for quantitative detection of COP. The detection concentration of COP ranges from 0.1 to 50 μM in good linear correlation (R2 = 0.9974) with a limit of detection of 0.028 μM (3σ/k). The quenching mechanism was deduced to be inner filter effect and static quenching. The ratiometric fluorescent probe showed impressive selectivity and sensitivity towards COP, and was successfully applied to the detection of COP in human urine with expected recoveries (95.22–111.00%) and relative standard deviations (0.46–2.95%), indicating that our developed method has a great application prospect in actual sample detection.  相似文献   

12.
A novel fluorescence assay system for glucose was developed with thioglycollic acid (TGA)‐capped CdTe quantum dots (QDs) as probes. The luminescence quantum yield of the TGA‐capped CdTe QDs was highly sensitive to H2O2 and pH. In the presence of glucose oxidase, glucose is oxidized to yield, gluconic acid and H2O2. H2O2 and H+ (dissociated from gluconic acid) intensively quenched the fluorescence of QDs. The experimental results showed that the quenched fluorescence was proportional to the glucose concentration within the range of 0.01–5.0 mm under optimized experimental conditions. Compared with most of the existing methods, this newly developed system possesses many advantages, including simplicity, low cost, high flexibility, and good sensitivity. Furthermore, no complicated chemical modification of QDs and enzyme immobilization was needed in this system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
ABSTRACT: In this study, a one‐step approach for aqueous synthesis of highly luminescent semiconductors, CdTe quantum dots (QDs), using long‐chain thiols‐mercaptoundecanoic acid (MUA) as surface ligand, was developed in a microwave irradiation system. The synthetic conditions were systematically investigated. The as‐prepared MUA‐coated QDs were characterized by various spectroscopy techniques, transmission electron microscopy (TEM) and X‐ray powder diffraction (XRD). The experimental results document that MUA‐coated CdTe QDs have small diameter, good stability, high luminescence and long lifetime. Particularly, it was confirmed, using fluorescence correlation spectroscopy (FCS) that, compared with other ligand, MUA formed a thicker ligand layer on the QD surfaces, which will help their stability and conjugation with biomolecules. Furthermore, MUA‐coated QDs were successfully used for HeLa cell imaging. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
High luminescence quantum yield water‐soluble CdTe/ZnS core/shell quantum dots (QDs) stabilized with thioglycolic acid were synthesized. QDs were chemically coupled to fully humanized antivascular endothelial growth factor165 monoclonal antibodies to produce fluorescent probes. These probes can be used to assay the biological affinity of the antibody. The properties of QDs conjugated to an antibody were characterized by ultraviolet and visible spectrophotometry, fluorescent spectrophotometry, sodium dodecyl sulfate–polyacrylamide gel electrophoresis, transmission electron microscopy and fluorescence microscopy. Cell‐targeted imaging was performed in human breast cancer cell lines. The cytotoxicity of bare QDs and fluorescent probes was evaluated in the MCF‐7 cells with an MTT viability assay. The results proved that CdTe/ZnS QD–monoclonal antibody nanoprobes had been successfully prepared with excellent spectral properties in target detections. Surface modification by ZnS shell could mitigate the cytotoxicity of cadmium‐based QDs. The therapeutic effects of antivascular endothelial growth factor antibodies towards cultured human cancer cells were confirmed by MTT assay. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
This work explores the potential use of cadmium-based quantum dots (QDs) coupled to mycolic acids (MAs) as a fluorescent probe to detect anti-MA antibodies which are biomarkers for tuberculosis (TB). The use of free MAs as antigens for the serodiagnosis of TB is known but has not been developed into a point of care test. This study focuses on the synthesis, solubility, and lateral flow of QDs coupled to MAs. Water-soluble CdSe/ZnS QDs capped with l -cysteine were synthesised and covalently coupled to MAs via amide linkages to form a water-soluble fluorescent probe: MA-CdSe/ZnS QDs. The MA-CdSe/ZnS QDs showed broad absorption bands and coupling, confirmed by the presence of amide bonds in the Fourier-transform infrared (FTIR) spectrum, resulting in a blue shift in fluorescence. Powder X-ray diffraction (XRD) revealed a shift and increase in the number of peaks for MA-CdSe/ZnS QDs relative to the L-cys-CdSe/ZnS QDs, suggesting that coupling changed the crystal structure. The average particle size of MA-CdSe/ZnS QDs was ~3.0 nm. Visual paper-based lateral flow of MA-CdSe/ZnS QDs was achieved on strips of nitrocellulose membrane with both water and membrane blocking solution eluents. The highly fluorescent MA-CdSe/ZnS QDs showed good water solubility and lateral flow, which are important properties for fluorescence sensing applications.  相似文献   

16.
Chenghui Li  Peng Wu 《Luminescence》2019,34(8):782-789
Transition metal ion‐doped quantum dots (QDs) exhibit unique optical and photophysical properties that offer significant advantages over undoped QDs, such as larger Stokes shift to avoid self‐absorption/energy transfer, longer excited‐state lifetimes, wider spectral window, and improved chemical and thermal stability. Among the doped QDs emitters, Cu is widely introduced into the doped QDs as novel, efficient, stable, and tunable optical materials that span a wide spectrum from blue to near‐infrared (NIR) light. Their unique physical and chemical characteristics enable the use of Cu‐doped QDs as NIR labels for bioanalysis and bioimaging. In this review, we discuss doping mechanisms and optical properties of Cu‐doped QDs that are capable of NIR emission. Applications of Cu‐doped QDs in in vitro biosensing and in in vivo bioimaging are highlighted. Moreover, a prospect of the future of Cu‐doped QDs for bioanalysis and bioimaging are also summarized.  相似文献   

17.
The development of a rapid, sensitive, and straightforward detection method of prostate‐specific antigen (PSA) is indispensable for the early diagnosis of prostate cancer (PCa). This work relates an electrochemical method using functionalized single‐stranded DNA aptamer to diagnose PCa and benign prostate hyperplasia. The sensing platform relies on PSA recognition by aptamer/Au/GO‐nanohybrid‐modified glassy carbon electrode. Besides ferrocyanide TiO2/carbon quantum dots (CQDs) probe is used to investigate the effect of nanoparticle‐containing electrolyte. Optimization of incubation time of aptamer/Au/GO‐nanohybrid and volume fraction of nafion were done using Design Expert 10 software reporting 42.4 h and 0.095% V/V, respectively. In ferrocyanide medium, PSA detection as low as 3, 2.96, and 0.85 ng mL−1 was achieved with a dynamic range from 0.5 to 7 ng ml−1, in accord with clinical values, using cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy, respectively. Moreover, this sensor exhibited conspicuous performance in TiO2/CQDs‐containing medium with different pH values of 5.4 and 8 to distinguish total PSA and free PSA, resulting in very low limit of detections, 0.028, and 0.007 ng ml−1, respectively. The results manifested the proposed system as a forthcoming sensor in a clinical and point of care analysis of PSA.  相似文献   

18.
Recently, graphene nanomaterials have attracted tremendous attention and have been utilized in various fields because of their excellent mechanical, thermal, chemical, optical properties, and good biocompatibility, especially in biomedical aspects. However, there is a concern that the unique characteristics of nanomaterials may have undesirable effects. Therefore, in this study, we sought to systematically investigate the effects of graphene quantum dots (GQDs) on the maturation of mouse oocytes and development of the offspring via in vitro and in vivo studies. In vitro, we found that the first polar body extrusion rate in the high dosage exposure groups (1.0–1.5 mg/ml) 2 decreased significantly and the failure of spindle migration and actin cap formation after GQDs exposure was observed. The underlying mechanisms might be associated with reactive oxygen species accumulation and DNA damage. Moreover, transmission electron microscope studies showed that GQDs may have been internalized into oocytes, tending to accumulate in the nucleus and severely affecting mitochondrial morphology, which included swollen and vacuolated mitochondria accompanied by cristae alteration with a lower amount of dense mitochondrial matrix. In vivo, when pregnant mice were exposed to GQDs at 8.5 days of gestation (GD, 8.5), we found that high dosage of GQD exposure (30 mg/kg) significantly affected mean fetal length; however, all the second generation of female mice grew up normal, attained sexual maturity, and gave birth to a healthy offspring after mating with a healthy male mouse. The results presented in this study are important for the future investigation of GQDs for the biomedical applications.  相似文献   

19.
Reactive oxygen species (ROS) are natural by products of cellular metabolism that were initially considered only deleterious towards the cellular macromolecules. Research advances have broadened the scope and now numerous studies are available rendering ROS molecules essential for plants to combat several biotic and abiotic stresses after being involved in essential defense mechanisms such as hypersensitivity reactions (HR) that lead to programmed cell death (PCD), cell wall reinforcement by cross-linking of cellular glycoproteins with other entities and salicylic acid mediated signal transduction pathways. During fungal attack, the fungal components like chitin and other elicitors activates the plant immune responses that employ ROS with other molecules like nitric oxide (NO), calcium ions to fight back the pathogen attack and restrict its spread to further plant parts. Here, several defense mechanisms mediated by ROS are discussed. Verticillium dahliae is one of the dreadful fungal pathogen to plants that cause wilts in many important plant species causing huge economic burden in food sector. The major constraint in its scenario being the deficit of field management systems based on chemicals or agronomics. It is evident by studying their interactions with the variety of hosts that in most cases, ROS mediated defenses play a key central role via cross-talk with other mechanisms making them a potential target for transgenics as well as resistant genotype selection.  相似文献   

20.
In this study, we report for the first time a one‐pot approach for the synthesis of new CdSeTeS quaternary‐alloyed quantum dots (QDs) in aqueous phase by microwave irradiation. CdCl2 was used as a Cd precursor during synthesis, NaHTe and NaHSe were used as Te and Se precursors and mercaptopropionic acid (MPA) was used as a stabilizer and source of sulfur. A series of quaternary‐alloyed QDs of different sizes were prepared. CdSeTeS QDs exhibited a wide emission range from 549 to 709 nm and high quantum yield (QY) up to 57.7 %. Most importantly, the quaternary‐alloyed QDs possessed significantly long fluorescence lifetimes > 100 ns as well as excellent photostability. Results of high‐resolution transmission electron microscopy (HRTEM), energy dispersive X‐ray spectroscopy (EDX) and powder X‐ray diffraction (XRD) spectroscopy showed that the nanocrystals possessed a quaternary alloy structure with good crystallinity. Fluorescence correlation spectroscopy (FCS) showed that QDs possessed good water solubility and monodispersity in aqueous solution. Furthermore, CdSeTeS QDs were modified with alpha‐thio‐omega‐carboxy poly(ethylene glycol) (HS‐PEG‐COOH) and the modified QDs were linked to anti‐epidermal growth factor receptor (EGFR) antibodies. QDs with the EGFR antibodies as labeling probes were successfully applied to targeted imaging for EGFR on the surface of SiHa cervical cancer cells. We believe that CdSeTeS QDs can become useful probes for in vivo targeted imaging and clinical diagnosis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号