首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The objective of this study was to develop an optimized assay for Salmonella Typhi biofilm that mimics the environment of the gallbladder as an experimental model for chronic typhoid fever. Multi-factorial assays are difficult to optimize using traditional one-factor-at-a-time optimization methods. Response surface methodology (RSM) was used to optimize six key variables involved in S. Typhi biofilm formation on cholesterol-coated polypropylene 96-well microtiter plates. The results showed that bile (1.22%), glucose (2%), cholesterol (0.05%) and potassium chloride (0.25%) were critical factors affecting the amount of biofilm produced, but agitation (275 rpm) and sodium chloride (0.5%) had antagonistic effects on each other. Under these optimum conditions the maximum OD reading for biofilm formation was 3.4 (λ600 nm), and the coefficients of variation for intra-plate and inter-plate assays were 3% (n?=?20) and 5% (n?=?8), respectively. These results showed that RSM is an effective approach for biofilm assay optimization.  相似文献   

3.
To identify genes essential to biofilm formation in Pseudomonas putida KT2440, 12 mutants defective in oxidative stress-related or metabolic pathway-related genes were evaluated. Of them, only the dsbA mutant lacking the disulfide bond isomerase exhibited significantly increased attachment to the polystyrene surface. Visual evaluation by extracellular matrix staining and scanning electron microscopy indicated that the KT2440-Δ dsbA strain displays enhanced extracellular matrix production, rugose colony morphology on agar plates and floating pellicles in static culture. Accordingly, we propose that deletion of the dsbA gene may stimulate production of the extracellular matrix, resulting in those phenotypes. In addition, the lack of detectable fluorescence in the KT2440-Δ dsbA under UV light as well as in both the wild type and the KT2440-Δ dsbA when grown on Luria–Bertani plates containing ferrous iron suggests that the fluorescent molecule may be a fluorescent siderophore with its synthesis/secretion controlled by DsbA in KT2440. These phenotypic defects observed in the dsbA mutant were complemented by the full-length KT2440 and Escherichia coli dsbA genes. In contrast to the role of DsbA in other bacteria, our results provide the first evidence that disruption of P. putida KT2440 dsbA gene overproduces the extracellular matrix and thus promotes biofilm formation.  相似文献   

4.
本研究旨在探讨伤寒沙门菌(Salmonella enterica serovar Typhi, S. Typhi)中非编码RNA617(non-coding RNA617,ncRNA617)的分子特性,并研究其对生物膜形成的影响及作用机制。采用Northern blot方法检测ncRNA617的表达,通过cDNA 5’末端快速扩增技术(5’-rapid amplification of cDNA end,5’RACE)和逆转录-聚合酶链式反应(reverse transcriotion-polymerase chain reaction,3’RT-PCR)实验分析ncRNA617可能的转录起始位点和终止位点;构建ncRNA617缺陷菌株、回补菌株和过表达菌株等相关菌株,通过生物膜形成实验,观察ncRNA617对伤寒沙门菌生物膜形成的影响,并用实时荧光定量聚合酶链式反应(quantitative real-time polymerase chain reaction,qPCR)分析生物膜形成相关基因表达水平的变化,综合运用生物信息学方法预测ncRNA617和差异基因的结合区域,初步分析ncRNA617发挥调控作用的机制。结果显示,伤寒沙门菌确有ncRNA617的表达,长度约300 nt,其转录起始位点位于mig-14终止密码子下游967 nt处,终止位点位于t2681起始密码子上游 2 378~2 560 nt处。与野生对照菌株相比,ncRNA617缺陷菌株生物膜形成能力增强(P<0.05),回补菌株的生物膜形成能力恢复至野生菌株水平,过表达菌株的生物膜形成能力有所下降(P<0.05)。qPCR结果表明,ncRNA617可负向调控多个生物膜形成相关基因的转录表达水平(P<0.05)。经生物信息学方法预测发现,ncRNA617与差异基因有不同的结合区域。本研究结果提示,ncRNA617在伤寒沙门菌中存在,其长度约270~452 nt。ncRNA617可能通过靶向结合生物膜形成相关基因下调基因表达,从而负向调控伤寒沙门菌生物膜的生成。  相似文献   

5.
Adipocytes were recently shown to secrete adipocytokines, such as adiponectin and leptin, which may have an endocrine role. Subcutaneous adipose tissue lies just beneath the dermis, and dermal condition is correlated with body mass index (BMI). However, it is not clear whether adipocytokines released by adipocytes in subcutaneous adipose tissue influence the adjacent dermis. We found that human dermal fibroblasts express genes encoding receptors for adiponectin and leptin, and that those cytokines both significantly increase production of hyaluronic acid (HA), a major extracellular matrix component (ECM) of dermis, by dermal fibroblasts. This effect is accompanied with up-regulation of HA synthase 2 gene expression. Moreover, adiponectin significantly increases production of collagen, the most abundant component of ECM in dermis, by dermal fibroblasts. These results suggest that subcutaneous adipocytes influence dermal condition by up-regulating collagen and HA production by dermal fibroblasts via secretion of adiponectin and leptin.  相似文献   

6.
Despite major treatment and prevention efforts, millions of new typhoid infections occur worldwide each year. For a subset of infected individuals, Salmonella enterica subsp. enterica serovar Typhi colonizes the gall bladder and remains there long after symptoms subside, serving as a reservoir for the further spread of the disease. In this Progress article, we explore recent advances in our understanding of the mechanisms by which Salmonella spp.--predominantly S. Typhi--colonize and persist in the human gall bladder.  相似文献   

7.
8.
Lysozyme is an antimicrobial compound, which has been used in pharmaceutical and food industries. Chicken egg is the commercial source of lysozyme. However, human lysozyme is more effective and safer than egg-white lysozyme. Human milk is an important source for human lysozyme, but it is not feasible to provide the needed lysozyme commercially. Biofilm reactors provide passive immobilization of cells onto the solid support, which may lead to higher productivity. The aim was to evaluate the fermentation medium composition for enhanced human lysozyme production by Kluyveromyces lactis K7 in biofilm reactor with plastic composite supports. Yeast nitrogen base was selected as the best nitrogen source when compared to the yeast extract and corn steep liquor. Moreover, inhibition effect of NaCl and NH4Cl at the concentrations of 25 and 50 mM was observed. Three factors Box–Behnken response surface design was conducted and the results suggested 16.3% lactose, 1.2% casamino acid, 0.8% yeast nitrogen base as optimum medium composition for maximum human lysozyme production. Overall, the human lysozyme production by K. lactis K7 was increased to 173 U/ml, which is about 23% improvement in biofilm reactor and 57% improvement compared to the suspended-cell fermentation.  相似文献   

9.
Vascular inflammation plays a key role in the pathogenesis of atherosclerosis. The first step in vascular inflammation is endothelial exocytosis, in which endothelial granules fuse with the plasma membrane, releasing prothrombotic and proinflammatory messenger molecules. The development of cell culture models to study endothelial exocytosis has been challenging because the factors that modulate exocytosis in vitro are not well understood. Here we report a method for studying endothelial exocytosis that optimizes extracellular matrix components, cell density, and duration of culture. Human umbilical vein endothelial cells plated on collagen I-coated plates and cultured in the confluent state for 7–12 days in low-serum medium showed robust secretion of von Willebrand factor when stimulated with various agonists. This exocytosis assay is rapid and applicable to high-throughput screening.  相似文献   

10.
Pullulan is a linear homopolysaccharide that is composed of glucose units and often described as α-1, 6-linked maltotriose. In this study, response surface methodology using Box–Behnken design was employed to study the effects of sucrose and nitrogen concentrations on pullulan production. A total of 15 experimental runs were carried out in a plastic composite support biofilm reactor. Three-dimensional response surface was generated to evaluate the effects of the factors and to obtain the optimum condition of each factor for maximum pullulan production. After 7-day fermentation with optimum condition, the pullulan production reached 60.7 g/l, which was 1.8 times higher than the result from initial medium, and was the highest yield reported to date. The quality analysis demonstrated that the purity of produced pullulan was 95.2%, and its viscosity was 2.5 centipoise (cP), which is higher than the commercial pullulan and related to its molecular weight. Fourier transform infrared spectroscopy (FTIR) also suggested that the produced exopolysaccharide was pullulan.  相似文献   

11.
Enterococcus faecium has emerged as an important cause of nosocomial infections over the last two decades. We recently demonstrated collagen type I (CI) as a common adherence target for some E. faecium isolates and a significant correlation was found to exist between acm -mediated CI adherence and clinical origin. Here, we evaluated 60 diverse E. faecium isolates for their adherence to up to 15 immobilized host extracellular matrix and serum components. Adherence phenotypes were most commonly observed to fibronectin (Fn) (20% of the 60 isolates), fibrinogen (17%) and laminin (Ln) (13%), while only one or two of the isolates adhered to collagen type V (CV), transferrin or lactoferrin and none to the other host components tested. Adherence to Fn and Ln was almost exclusively restricted to clinical isolates, especially the endocarditis-enriched nosocomial genogroup clonal complex 17 (CC17). Thus, the ability to adhere to Fn and Ln, in addition to CI, may have contributed to the emergence and adaptation of E. faecium , in particular CC17, as a nosocomial pathogen.  相似文献   

12.
13.
Bacterial cellulose has been used in the food industry for applications such as low-calorie desserts, salads, and fabricated foods. It has also been used in the paper manufacturing industry to enhance paper strength, the electronics industry in acoustic diaphragms for audio speakers, the pharmaceutical industry as filtration membranes, and in the medical field as wound dressing and artificial skin material. In this study, different types of plastic composite support (PCS) were implemented separately within a fermentation medium in order to enhance bacterial cellulose (BC) production by Acetobacter xylinum. The optimal composition of nutritious compounds in PCS was chosen based on the amount of BC produced. The selected PCS was implemented within a bioreactor to examine the effects on BC production in a batch fermentation. The produced BC was analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). Among thirteen types of PCS, the type SFYR+ was selected as solid support for BC production by A. xylinum in a batch biofilm reactor due to its high nitrogen content, moderate nitrogen leaching rate, and sufficient biomass attached on PCS. The PCS biofilm reactor yielded BC production (7.05 g/L) that was 2.5-fold greater than the control (2.82 g/L). The XRD results indicated that the PCS-grown BC exhibited higher crystallinity (93%) and similar crystal size (5.2 nm) to the control. FESEM results showed the attachment of A. xylinum on PCS, producing an interweaving BC product. TGA results demonstrated that PCS-grown BC had about 95% water retention ability, which was lower than BC produced within suspended-cell reactor. PCS-grown BC also exhibited higher T max compared to the control. Finally, DMA results showed that BC from the PCS biofilm reactor increased its mechanical property values, i.e., stress at break and Young's modulus when compared to the control BC. The results clearly demonstrated that implementation of PCS within agitated fermentation enhanced BC production and improved its mechanical properties and thermal stability.  相似文献   

14.
《Cell》2021,184(23):5740-5758.e17
  1. Download : Download high-res image (254KB)
  2. Download : Download full-size image
  相似文献   

15.
16.
The effects of growth conditions and chemical or physical treatments on the production of extracellular ice nucleators (ECINs) by Erwinia herbicola cells were investigated. The spontaneous release of ECINs, active at temperatures higher than -4 degrees C, into the environment depended on culture conditions, with optimal production when cells were grown in yeast extract to an early stationary phase at temperatures below 22 degrees C. ECINs were vesicular, released from cell surfaces with sizes ranging from 0.1 to 0.3 &mgr;m as determined by ultrafiltration and transmission electron microscopy. Protein profiles of ECIN fractions during bacterial growth were examined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and Ina proteins were detected by Western blotting. ECIN production was enhanced 5-fold when cells were treated with EDTA and 20- to 30-fold when subjected to sonication. These conditions provide a means for large-scale preparationage> ECINs by E. herbicola.  相似文献   

17.
Vibrio vulnificus is a human and animal pathogen that carries the highest death rate of any food-borne disease agent. It colonizes shellfish and forms biofilms on the surfaces of plankton, algae, fish, and eels. Greater understanding of biofilm formation by the organism could provide insight into approaches to decrease its load in filter feeders and on biotic surfaces and control the occurrence of invasive disease. The capsular polysaccharide (CPS), although essential for virulence, is not required for biofilm formation under the conditions used here. In other bacteria, increased biofilm formation often correlates with increased exopolysaccharide (EPS) production. We exploited the translucent phenotype of acapsular mutants to screen a V. vulnificus genomic library and identify genes that imparted an opaque phenotype to both CPS biosynthesis and transport mutants. One of these encoded a diguanylate cyclase (DGC), an enzyme that synthesizes bis-(3'-5')-cyclic-di-GMP (c-di-GMP). This prompted us to use this DGC, DcpA, to examine the effect of elevated c-di-GMP levels on several developmental pathways in V. vulnificus. Increased c-di-GMP levels induced the production of an EPS that was distinct from the CPS and dramatically enhanced biofilm formation and rugosity in a CPS-independent manner. However, the EPS could not compensate for the loss of CPS production that is required for virulence. In contrast to V. cholerae, motility and virulence appeared unaffected by elevated levels of c-di-GMP.  相似文献   

18.
19.
A strategy for optimizing the extracellular degradation and folding environment of Brevibacillus choshinensis has been used to enhance the extracellular production of recombinant α-amylase. First, a gene (bcp) encoding an extracellular protease and another encoding an extracellular chaperone (prsC) were identified in the genome of B. choshinensis HPD31-SP3. Then, the effect of extracellular protein degradation on recombinant α-amylase production was investigated by establishing a CRISPR/Cas9n system to knock out bcp. The effect of extracellular folding capacity was investigated separately by coexpressing extracellular chaperones genes from different sources (prsA, prsC, prsL, prsQ) in B. choshinensis. The final recombinant strain (BCPPSQ), which coexpressed prsQ in a genetic background lacking bcp, produced an extracellular α-amylase activity of 6940.9 U/ml during shake-flask cultivation. This was 2.1-fold greater than that of the original strain BCWPS (3367.9 U/ml). Cultivation of BCPPSQ in a 3-l fermenter produced an extracellular α-amylase activity of 17925.6 U/ml at 72 h, which was 7.6-fold greater than that of BCWPS (2358.1 U/ml). This strategy demonstrates its great potential in enhancing extracellular α-amylase production in B. choshinensis. What''s more, this study provides a strategic reference for improving the extracellular production of other recombinant proteins in B. choshinensis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号