首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wound healing is a complex physiologic process that proceeds in overlapping, sequential steps. Plasminogen promotes fibrinolysis and potentiates the inflammatory response during wound healing. We have tested the hypothesis that the novel plasminogen receptor, Plg-RKT, regulates key steps in wound healing. Standardized burn wounds were induced in mice and time dependence of wound closure was quantified. Healing in Plg-RKT−/− mice was significantly delayed during the proliferation phase. Expression of inflammatory cytokines was dysregulated in Plg-RKT−/− wound tissue. Consistent with dysregulated cytokine expression, a significant delay in wound healing during the proliferation phase was observed in mice in which Plg-RKT was specifically deleted in myeloid cells. Following wound closure, the epidermal thickness was less in Plg-RKT−/− wound tissue. Paradoxically, deletion of Plg-RKT, specifically in keratinocytes, significantly accelerated the rate of healing during the proliferation phase. Mechanistically, only two genes were upregulated in Plg-RKT−/− compared with Plg-RKT+/+ wound tissue, filaggrin, and caspase 14. Both filaggrin and caspase 14 promote epidermal differentiation and decrease proliferation, consistent with more rapid wound closure and decreased epidermal thickness during the remodeling phase. Fibrin clearance was significantly impaired in Plg-RKT−/− wound tissue. Genetic reduction of fibrinogen levels to 50% completely abrogated the effect of Plg-RKT deletion on the healing of burn wounds. Remarkably, the effects of Plg-RKT deletion on cytokine expression were modulated by reducing fibrinogen levels. In summary, Plg-RKT is a new regulator participating in different phases of cutaneous burn wound healing, which coordinately plays a role in the interrelated responses of inflammation, keratinocyte migration, and fibrinolysis.Subject terms: Extracellular matrix, Mechanisms of disease  相似文献   

2.
3.
The reasons that cause delay in wound healing in diabetes are a decrease in the level of growth factors secretion, an increase in the destruction of growth factors and in oxidative stress. Platelet derived growth factor (PDGF) is one of the important growth factors that play a role in all phases of wound healing. This study investigates time-dependent effects of topically PDGF-BB administration on oxidative events on the healing of dorsolateral-excisional wounds in diabetic rats. Forty-two female Wistar-albino rats with streptozotocin-induced diabetes were divided into four groups: control group, untreated group, chitosan-treated group, chitosan?+?PDGF-BB-treated group. Two identical full-thickness excisional skin wounds were made under anaesthesia in all rats except for the control group. In the PDGF-BB-treated and chitosan-treated groups, the wounds were treated topically PDGF-BB (7?ng/mL, single daily dose) and blank chitosan gel (equal amount) after wounding, respectively. After these administrations, on day 3 and day 7 of wound healing, rats were sacrificed. Thiobarbituric acid reactive substances, glutathione, nitric oxide, ascorbic acid levels, and superoxide dismutase activity in wound tissues were spectrophotometrically measured. PDGF-BB administration significantly increased TBARS levels and non-enzymatic antioxidant levels in early phase of diabetic wound healing. PDGF-BB dramatically reduced NOx levels on day 3 and sharply increased NOx levels on day 7 of wound healing. Consequently, PDGF-BB administration can be effective on oxidative balance in the early phase of diabetic wound healing.  相似文献   

4.
Wound repair is regulated by overlapping cellular, physiological and biochemical events. Prostaglandins and nitric oxide have been a focus for inflammation research particularly since the discovery of their inducible isoforms nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Study of the cellular expression of iNOS and COX-2 and arginase which competes with iNOS for its substrate, in an in vivo model of wound healing could reveal important roles for these enzymes in the physiological progression of wound repair. Adult male rats received full thickness dermal wounds which were harvested at different times. Protein levels and activities of the enzymes were assessed by western blot and biochemical assays respectively. The cellular distribution and the colocalization were assessed by immunostaining. The protein levels and activities of iNOS, arginase, and COX-2 increased only during the inflammatory phase of wound. Immunocytochemistry showed that the three enzymes were coexpressed and the main cellular source was inflammatory cells mainly macrophages. iNOS was induced at the wound site and was the earliest to increase significantly (p < 0.05) for only up to 3 days postwounding. However, arginase and COX-2 significant ( p < 0.05) upregulation started at a later time points and continued for up to 14 days postwounding. Therefore iNOS, compared with arginase and COX-2, showed a temporal difference in expression during wound healing which could be explained by their products being required at different stages of the healing process. The coordinated expression of the three enzymes at different time points could account for the physiological progression of the healing process.  相似文献   

5.
Sediment and water samples collected from one acidic and three alkaline high temperature hot springs at the Tengchong terrestrial geothermal field, Southwest China, were examined using mineralogical, geochemical, and molecular biological techniques. The mineralogical and geochemical analyses suggested that these hot springs contained relatively high concentrations of S, Fe and N chemical species. Specifically, the acidic water was rich in Fe2+, SO42? and NH4+, while the alkaline waters were high in NO3?, H2S and S2O3?. Analyses of 16S rRNA gene sequences showed their bacterial communities were dominated by phyla Aquificae, Cyanobacteria, Deinococci-Thermus, Firmicutes, Proteobacteria, and Thermodesulfobacteria, while the archaeal clone libraries were dominated by orders Desulfurococcales, Sulfolobales, and Thermoproteales. Potential S-, N- and Fe-metabolizing prokaryotes were present at a relatively high proportion, but with large differences in the diversity and metabolic functions of each sample. These findings provide implications for uncovering microbial functions in elemental biogeochemical cycles within the Tengchong geothermal environments: i). the distinct differences in abundance and diversity of microbial communities in geothermal sediments were related to different in situ physicochemical conditions; ii). the S-, N- and Fe-related prokaryotes would take advantage of the strong chemical disequilibria in the hot springs; and iii). in return, their metabolic activities could promote the transformation of the S, Fe and N chemical species, thereby forming the basis of biogeochemical cycles in the terrestrial geothermal environments.  相似文献   

6.
7.
A series of (S)-tryptamine derivatives containing an allyl group and an aryl sulfonamide unit were designed, synthesized and evaluated for their potential application as anticancer agents. The structures of the synthesized compounds were characterized by 1H NMR, 13C NMR and ESI-MS spectral analyses. The target compounds were evaluated for their in vitro cytotoxicity against HepG2, HeLa, CNE1 and A549 human cancer cell lines. Some of the synthesized compounds showed moderate to good anticancer activities against four selected cancer cell lines, among of which 6ag was found to be the most active analogue possessing IC50 values 16.5–18.7?μM. Further mechanism studies revealed that compound 6ag could significantly induce HepG2 cell cycle arrest at G1 phase, promote cell apoptosis, and inhibit the colony formation as well.  相似文献   

8.
Diabetes is characterized by poor wound healing which currently lacks an efficacious treatment. The innate repair receptor (IRR) is a master regulator of tissue protection and repair which is expressed as a response injury or metabolic stress, including in diabetes. Activation of the IRR might provide benefit for diabetic wound healing. A specific IRR agonist cibinetide was administered in an incisional wound healing model performed mice with genetic diabetes (db+/db+) and compared to the normal wild-type. Animals were treated daily with cibinetide (30 μg/kg/s.c.) or vehicle and euthanized 3, 7, and 14 days after the injury to quantitate vascular endothelial growth factor (VEGF), malondialdehyde (MAL), phospho-Akt (pAkt), phospho e-NOS (p-eNOS), and nitrite/nitrate content within the wound. Additional evaluations included quantification of skin histological change, angiogenesis, scar strength, and time to complete wound closure. Throughout the wound healing process diabetic animals treated with vehicle exhibited increased wound MAL with reduced VEGF, pAkt, peNOS and nitrite/nitrate, all associated with poor re-epitheliziation, angiogenesis, and wound breaking strength. Cibenitide administration significantly improved these abnormalities. The results suggest that cibinetide-mediated IRR activation may represent an interesting strategy to treat diabetes-associated wound healing.  相似文献   

9.
The tumor stroma has been described as “normal wound healing gone awry”. We explored whether the restoration of a wound healing-like microenvironment may facilitate tumor healing. Firstly, we screened three natural compounds (shikonin, notoginsenoside R1 and aconitine) from wound healing agents and evaluated the efficacies of wound healing microenvironment for limiting single agent-elicited carcinogenesis and two-stage carcinogenesis. The results showed that three compounds used alone could promote wound healing but had unfavorable efficacy to exert wound healing, and that the combination of three compounds made up treatment disadvantage of a single compound in wound healing and led to optimal wound healing. Although individual treatment with these agents may prevent cancer, they were not effective for the treatment of established tumors. However, combination treatment with these three compounds almost completely prevented urethane-induced lung carcinogenesis and reduced tumor burden. Different from previous studies, we found that urethane-induced lung carcinogenesis was associated with lung injury independent of pulmonary inflammation. LPS-induced pulmonary inflammation did not increase lung carcinogenesis, whereas decreased pulmonary inflammation by macrophage depletion promoted lung carcinogenesis. In addition, urethane damaged wound healing in skin excision wound model, reversed lung carcinogenic efficacy by the combination of three compounds was consistent with skin wound healing. Further, the combination of these three agents reduced the number of lung cancer stem cells (CSCs) by inducing cell differentiation, restoration of gap junction intercellular communication (GJIC) and blockade of the epithelial-to-mesenchymal transition (EMT). Our results suggest that restoration of a wound healing microenvironment represents an effective strategy for cancer prevention.  相似文献   

10.
11.
The biosynthetic pathway of vitamin B6 (abbreviated as Be) has been studied with the cell-suspension of B6-producing bacteria, Achromobacter cycloclastes A.M.S. 6201. The distribution of 14C in the Be molecule prepared with the cell-suspensions containing glycerol-1,3-14C, glycerol-2-14C or γ-aminobutyric acid-U-14C was investigated by using three novel degradation methods. The results showed that carbon skeletons of glycerol and γ-aminobutyric acid were used for the formation of the major part of B6 carbon skeleton respectively. The implication of these compounds as precursors of B6 was discussed.  相似文献   

12.
Skin wound healing involves Notch/Jagged1 signaling. However, little is known how Jag1 expression level in epidermal stem cells (ESCs) contributes to wound healing and scar formation. We applied multiple cellular and molecular techniques to examine how Jag1 expression in ESCs modulates ESCs differentiation to myofibroblasts (MFB) in vitro, interpret how Jag1 expression in ESCs is involved in wound healing and scar formation in mice, and evaluate the effects of porcine acellular dermal matrix (ADM) treatment on wound healing and scar formation. We found that Jag1, Notch1 and Hes1 expression was up-regulated in the wound tissue during the period of wound healing. Furthermore, Jag1 expression level in the ESCs was positively associated with the level of differentiation to MFB. ESC-specific knockout of Jag1 delayed wound healing and promoted scar formation in vivo. In addition, we reported that porcine ADM treatment after skin incision could accelerate wound closure and reduce scar formation in vivo. This effect was associated with decreased expression of MFB markers, including α-SMA Col-1 and Col-III in wound tissues. Finally, we confirmed that porcine ADM treatment could increase Jag1, Notch1 and Hesl expression in wound tissues. Taken together, our results suggested that ESC-specific Jag1 expression levels are critical for wound healing and scar formation, and porcine ADM treatment would be beneficial in promoting wound healing and preventing scar formation by enhancing Notch/Jagged1 signaling pathway in ESCs.  相似文献   

13.
The present work describes the synthesis, characterization, and wound healing properties of α/γ hybrid peptides: Boc-Phe-γ4-Phe-Val-OMe ( S1 ), Boc-DPhe-γ4-Phe-Val-OMe ( S2 ), Boc-Ala-γ4-Phe-Val-OMe ( S3 ), Boc-DAla-γ4-Phe-Val-OMe ( S4 ), Boc-Leu-γ4-Phe-Val-OMe ( S5 ), and Boc-DLeu-γ4-Phe-Val-OMe ( S6 ). Peptides S1–S6 were screened against human keratinocytes (HaCaT) and RAW 264.7 cells. Among all, S1 - and S2 -treated cells exhibited high cell viability; S1 and S2 induced keratinocyte migration and inhibited the production of the cytokines IL-6 and TNF-α. In vivo results demonstrated that the hybrid peptides S1 and S2 accelerate wound healing in Wistar rats with 83% and 88% at 50 μg/ml, and 74% and 76% at 25 μg/ml, respectively.  相似文献   

14.
Two new chiral mononuclear Mn(III) complexes, [Mn L ( R )Cl (C2H5OH)]?C2H5OH ( 1 ) and [Mn L ( S ) (CH3OH)2]Cl?CH3OH ( 2 ), {H2 L = (R,R)‐or (S,S)‐N,N’‐bis‐(2‐hydroxy‐1‐naphthalidehydene)‐cyclohexanediamine} were synthesized and characterized by various physicochemical techniques. Bond valence sum (BVS) calculations and the Jahn‐Teller effect indicate that the Mn centers are in a +3 oxidation state. The statuses of the two complexes in the solution were confirmed as a pair of enantiomers by electrospray ionization, mass spectrometry (ESI‐MS) spectrum. The binding ability of the complexes with calf thymus CT‐DNA was investigated by spectroscopic and viscosity measurements. Both of the complexes could interact with CT‐DNA via an intercalative mode with the order of 1 ( R ‐enantiomer) > 2 ( S ‐enantiomer). Under the physiological conditions, the two compounds exhibit efficient DNA cleavage activities without any external agent, which also follows the order of R ‐enantiomer > S ‐enantiomer. Interestingly, the concentration‐dependent DNA cleavage experiments indicate an optimal concentration of 17.5 μM. In addition, the interaction of the compounds with bovine serum albumin (BSA) was also investigated, which indicated that the complexes could quench the intrinsic fluorescence of BSA by a static quenching mechanism. Chirality 27:142‐150, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
BackgroundThe delay of dermal burn wound healing caused by vascular disorders is a critical problem for many diabetic patients. Thymosin β4 (Tβ4), identified by subtractive cloning of endothelial cells on plastic versus basement membrane substrates, has been found to promote angiogenesis and dermal wound repair in rats, aged mice, and db/db diabetic mice. However, previous studies involving the role of Tβ4 in wound repair were limited to mechanical damage and dermal impairment. Thus, this study aimed to evaluate the improvement of healing of burn wounds by Tβ4 in relation to advanced glycation end products (AGE), which are pathological factors in diabetes.MethodsWe adapted a dermal burn wound in vivo model in which the dorsal skin of db/db mice was exposed for 10 s to 100 °C heated water to produce a deep second-degree burn 10 mm in diameter. Five mg/kg of Tβ4 was then injected intradermally near the burn wound twice a week for 2 weeks.ResultsAfter treatment, Tβ4 improved wound healing markers such as wound closure, granulation, and vascularization. Interestingly, Tβ4 reduced levels of receptor of AGE (RAGE) during the wound healing period.Conclusions4 exerts effects to remedy burn wounds via downregulation of RAGE.General significanceOur results suggest the potential importance of Tβ4 as a new therapy for impaired burn wound healing that is associated with diabetes.  相似文献   

16.
The beneficial effect of low doses of ozone on wound healing has been well documented and attributed mainly to its bactericidal and pro-oxidant properties. Because ozone itself does not penetrate the cells but immediately reacts with polyunsaturated fatty acids, its effects are the results of oxidative mediators. Among the molecule produces by the interaction of ozone with biological systems, there are HNE and H2O2. At today, the cellular mechanisms accounting for the positive effects of mild ozonization on wound closure are still largely unexplored. The aim of the present study was to evaluate the effect of different non-toxic doses of ozonated saline ranging from 2 to 300?μM, in an in vitro wound scratch model by the use of human keratinocytes. The results showed that ozonated saline is able to improve in vitro wound healing by stimulating cell proliferation as measured by BrdU assay and PCNA protein levels. In order to better elucidate the molecules that play the main role in the beneficial effect of ozonated saline in wound healing, HNE and H2O2 were used alone or in combination to mimic ozonated saline effect. Surprisingly, keratinocytes treated with different doses of HNE and H2O2 did not significantly improve the wound closure, while the combination of the two compounds was able to improve wound closure. In addition, Nrf2 pathways were also activated as determined by its translocation to the nucleus and the increased HO1 gene expression. The present work suggests that ozonated saline effect on wound closure is the results of the combination of more molecules among which HNE and H2O2 play a key role.  相似文献   

17.
Connective tissue-activating peptide III (CTAP-III) and neutrophil-activating peptide-2 (NAP-2) are both derived from a common precursor, platelet basic protein (PBP), which is stored in the -granules of platelets and released upon their activation. CTAP-III is an 85-residue peptide which is converted to NAP-2 by enzymic removal of the 15 amino-terminal residues. Both peptides play a role in the early stages of wound healing and inflammation through different activities. We have cloned the cDNA for PBP and expressed constructs coding for the CTAP-III and NAP-2 polypeptides in Escherichia coli. We have purified and renatured these recombinant proteins. The integrity of the recombinant proteins has been ascertained by in vitro bioassays. CTAP-III causes 51% histamine release from the basophilic cell lin KU812 at 10–7 M, whereas NAP-2 only causes 28% release at the same concentration. In assays on human neutrophils, NAP-2 had an EC 50 of 2×10–8 M in chemotaxis, an EC 50 of 3×10–8 M for shape change, and could displace IL-8 from neutrophils with a K d of 7.5×10–9 M. CTAP-III had no activity in these assays. The disulfide bonds have been identified by peptide mapping and sequence analysis, and are in the positions predicted by homology to interleukin-8 and platelet factor 4. Measurement of the molecular mass at physiologic concentrations by gel permeation chromatography has shown that CTAP-III forms predominantly tetramers and dimers, whereas NAP-2 is only dimetric. SDS/PAGE analysis of samples cross-linked with disuccinimidyl suberate support these topologies. We postulate a mechanism for tetramer formation based on the interaction of the amino-terminal extension in CTAP-III involving a helix–helix interaction that could stabilize the association of two CTAP-III dimers.  相似文献   

18.
Hydrogen sulfide (H2S), as a reducing agent and an antioxidant molecule, exerts protective effects against hyperglycemic stress in the vascular endothelium. The mitochondrial enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) is an important biological source of H2S. We have recently demonstrated that 3-MST activity is inhibited by oxidative stress in vitro and speculated that this may have an adverse effect on cellular homeostasis. In the current study, given the importance of H2S as a vasorelaxant, angiogenesis stimulator and cellular bioenergetic mediator, we first determined whether the 3-MST/H2S system plays a physiological regulatory role in endothelial cells. Next, we tested whether a dysfunction of this pathway develops during the development of hyperglycemia and μmol/L to diabetes-associated vascular complications. Intraperitoneal (IP) 3-MP (1 mg/kg) raised plasma H2S levels in rats. 3-MP (10 1 mmol/L) promoted angiogenesis in vitro in bEnd3 microvascular endothelial cells and in vivo in a Matrigel assay in mice (0.3–1 mg/kg). In vitro studies with bEnd3 cell homogenates demonstrated that the 3-MP-induced increases in H2S production depended on enzymatic activity, although at higher concentrations (1–3 mmol/L) there was also evidence for an additional nonenzymatic H2S production by 3-MP. In vivo, 3-MP facilitated wound healing in rats, induced the relaxation of dermal microvessels and increased mitochondrial bioenergetic function. In vitro hyperglycemia or in vivo streptozotocin diabetes impaired angiogenesis, attenuated mitochondrial function and delayed wound healing; all of these responses were associated with an impairment of the proangiogenic and bioenergetic effects of 3-MP. The antioxidants dl-α-lipoic acid (LA) in vivo, or dihydrolipoic acid (DHLA) in vitro restored the ability of 3-MP to stimulate angiogenesis, cellular bioenergetics and wound healing in hyperglycemia and diabetes. We conclude that diabetes leads to an impairment of the 3-MST/H2S pathway, and speculate that this may contribute to the pathogenesis of hyperglycemic endothelial cell dysfunction. We also suggest that therapy with H2S donors, or treatment with the combination of 3-MP and lipoic acid may be beneficial in improving angiogenesis and bioenergetics in hyperglycemia.  相似文献   

19.
Pressure ulcer formation depends on various factors among which repetitive ischaemia/reperfusion(I/R) injury plays a vital role. Molecular hydrogen (H2) was reported to have protective effects on I/R injuries of various internal organs. In this study, we investigated the effects of H2 inhalation on pressure ulcer and the underlying mechanisms. H2 inhalation significantly reduced wound area, 8‐oxo‐dG level (oxidative DNA damage) and cell apoptosis rates in skin lesions. H2 remarkably decreased ROS accumulation and enhanced antioxidant enzymes activities by up‐regulating expression of Nrf2 and its downstream components in wound tissue and/or H2O2‐treated endothelia. Meanwhile, H2 inhibited the overexpression of MCP‐1, E‐selectin, P‐selectin and ICAM‐1 in oxidant‐induced endothelia and reduced inflammatory cells infiltration and proinflammatory cytokines (TNF‐α, IL‐1, IL‐6 and IL‐8) production in the wound. Furthermore, H2 promoted the expression of pro‐healing factors (IL‐22, TGF‐β, VEGF and IGF1) and inhibited the production of MMP9 in wound tissue in parallel with acceleration of cutaneous collagen synthesis. Taken together, these data indicated that H2 inhalation suppressed the formation of pressure ulcer in a mouse model. Molecular hydrogen has potentials as a novel and alternative therapy for severe pressure ulcer. The therapeutic effects of molecular hydrogen might be related to its antioxidant, anti‐inflammatory, pro‐healing actions.  相似文献   

20.
BackgroundThe occurrence of chronic wounds, account for significant suffering of diabetic people, together with increasing healthcare burden. The chronic wounds associated with diabetes do not undergo the normal healing process rather stagnate into chronic proinflammatory phase as well as declined fibroblast function and impaired cell migration.HypothesisSIRT1, which is the most studied isoform of the sirtuin family in mammals, has now emerged as a crucial target for improving diabetic wound healing. It is an NAD+ dependent deacetylase, originally characterized to deacetylate histone proteins leading to heterochromatin formation and gene silencing. It is now known to regulate a number of cellular processes like cell proliferation, division, senescence, apoptosis, DNA repair, and metabolism.MethodologyThe retrieval of potentially relevant studies was done by systematically searching of three databases (Google Scholar, Web of science and PubMed) in December 2019. The keywords used as search terms were related to SIRT1 and wound healing. The systematic search retrieved 649 papers that were potentially relevant and after selection procedure, 73 studies were included this review and discussed below.ResultsMany SIRT1 activating compounds (SACs) were found protective and improve diabetic wound healing through regulation of inflammation, cell migration, oxidative stress response and formation of granulation tissue at the wound site.ConclusionsHowever, contradictory reports describe the opposing role of SACs on the regulation of cell migration and cancer incidence. SACs are therefore subjected to intense research for understanding the mechanisms responsible for controlling cell migration and therefore possess prospective to enter the clinical arena in the foreseeable future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号