首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel series of N,N′-bis-methylenedioxybenzyl-alkylenediamines 5a5g have been designed, synthesized and evaluated as bivalent anti-Alzheimer’s disease ligands. The enzyme inhibition assay results indicated that compounds 5e5g inhibit both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the micromolar range (IC50, 2.76–4.24 µM for AChE and 3.02–5.14 µM for BuChE), which was in the same potential as the reference compound rivastigmine (IC50, 5.50 µM for AChE and 1.60 µM for BuChE). It was found that compounds could bind simultaneously to the peripheral and catalytic sites of AChE. β-Amyloid (Aβ) aggregation inhibition assay results showed that compound 5e exhibited highest self-mediated Aβ fibril aggregation inhibition activity (40.3%) with a similar potential as curcumin (41.6%). It was also found that 5e5g did not affect neuroblastoma cell viability at the concentration of 50 μM.  相似文献   

2.
A new series of coumarin‐3‐carboxamide‐N‐morpholine hybrids 5a – 5l was designed and synthesized as cholinesterases inhibitors. The synthetic approach for title compounds was started from the reaction between 2‐hydroxybenzaldehyde derivatives and Meldrum's acid to afford corresponding coumarin‐3‐carboxylic acids. Then, amidation of the latter compounds with 2‐morpholinoethylamine or N‐(3‐aminopropyl)morpholine led to the formation of the compounds 5a – 5l . The in vitro inhibition screen against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) revealed that most of the synthesized compounds had potent AChE inhibitory while their BuChE inhibitions are moderate to weak. Among them, propylmorpholine derivative 5g (N‐[3‐(morpholin‐4‐yl)propyl]‐2‐oxo‐2H‐chromene‐3‐carboxamide) bearing an unsubstituted coumarin moiety and ethylmorpholine derivative 5d (6‐bromo‐N‐[2‐(morpholin‐4‐yl)ethyl]‐2‐oxo‐2H‐chromene‐3‐carboxamide) bearing a 6‐bromocoumarin moiety showed the most activity against AChE and BuChE, respectively. The inhibitory activity of compound 5g against AChE was 1.78 times more than that of rivastigmine and anti‐BuChE activity of compound 5d is approximately same as rivastigmine. Kinetic and docking studies confirmed the dual binding site ability of compound 5g to inhibit AChE.  相似文献   

3.
A novel family of cinnamic acid derivatives has been developed to be multifunctional cholinesterase inhibitors against AD by fusing N-benzyl pyridinium moiety and different substituted cinnamic acids. In vitro studies showed that most compounds were endowed with a noteworthy ability to inhibit cholinesterase, self-induced Aβ (1–42) aggregation, and to chelate metal ions. Especially, compound 5l showed potent cholinesterase inhibitory activity (IC50, 12.1?nM for eeAChE, 8.6?nM for hAChE, 2.6?μM for eqBuChE and 4.4?μM for hBuChE) and the highest selectivity toward AChE over BuChE. It also showed good inhibition of Aβ (1–42) aggregation (64.7% at 20?μM) and good neuroprotection on PC12 cells against amyloid-induced cell toxicity. Finally, compound 5l could penetrate the BBB, as forecasted by the PAMPA-BBB assay and proved in OF1 mice by ex vivo experiments. Overall, compound 5l seems to be a promising lead compound for the treatment of Alzheimer’s diseases.  相似文献   

4.
Acetylcholinesterase (AChE) is the key enzyme targeted in Alzheimer's disease (AD) therapy, nevertheless butyrylcholinesterase (BuChE) has been drawing attention due to its role in the disease progression. Thus, we aimed to synthesize novel cholinesterases inhibitors considering structural differences in their peripheral site, exploiting a moiety replacement approach based on the potent and selective hAChE drug donepezil. Hence, two small series of N-benzylpiperidine based compounds have successfully been synthesized as novel potent and selective hBuChE inhibitors. The most promising compounds (9 and 11) were not cytotoxic and their kinetic study accounted for dual binding site mode of interaction, which is in agreement with further docking and molecular dynamics studies. Therefore, this study demonstrates how our strategy enabled the discovery of novel promising and privileged structures. Remarkably, compound 11 proved to be one of the most potent (0.17?nM) and selective (>58,000-fold) hBuChE inhibitor ever reported.  相似文献   

5.
Accompanying the gradual rise in the average age of the population of most industrialized countries is a regrettable progressive rise in the number of individuals afflicted with age-related neurodegenerative disorders, epitomized by Alzheimer's disease (AD) but, additionally, including Parkinson's disease (PD) and stroke. The primary therapeutic strategy, to date, involves the use of cholinesterases inhibitors (ChEIs) to amplify residual cholinergic activity. The enzyme, acetylcholinesterase (AChE), along with other elements of the cholinergic system is depleted in the AD brain. In contrast, however, its sister enzyme, butyrylcholinesterase (BuChE), that likewise cleaves acetylcholine (ACh), is elevated and both AChE and BuChE co-localize in high amounts with the classical pathological hallmarks of AD. The mismatch between increased brain BuChE and depleted levels of both ACh and AChE, particularly late in the disease, has supported the design and development of new ChEIs with a preference for BuChE; exemplified by the novel agent, cymserine, whose binding kinetics are characterized for the first time. Specifically, as assessed by the Ellman method, cymserine demonstrated potent concentration-dependent binding with human BuChE. The IC50 was determined as 63 to 100 nM at the substrate concentration range of 25 to 800 microM BuSCh. In addition, the following new binding constants were investigated for human BuChE inhibition by cymserine: T(FPnubeta), K(nubeta), K(Bs), K(MIBA), M(IC50), D(Sc), R(f), (O)K(m), OIC100, K(sl), theta(max) and R(i). These new kinetic constants may open new avenues for the kinetic study of the inhibition of a broad array of other enzymes by a wide variety of inhibitors. In synopsis, cymserine proved to be a potent inhibitor of human BuChE in comparison to its structural analogue, phenserine.  相似文献   

6.
A novel series of compounds obtained by fusing the acetylcholinesterase (AChE) inhibitor donepezil and the antioxidant melatonin were designed as multi-target-directed ligands for the treatment of Alzheimer’s disease (AD). In vitro assay indicated that most of the target compounds exhibited a significant ability to inhibit acetylcholinesterase (eeAChE and hAChE), butyrylcholinesterase (eqBuChE and hBuChE), and β-amyloid (Aβ) aggregation, and to act as potential antioxidants and biometal chelators. Especially, 4u displayed a good inhibition of AChE (IC50 value of 193 nM for eeAChE and 273 nM for hAChE), strong inhibition of BuChE (IC50 value of 73 nM for eqBuChE and 56 nM for hBuChE), moderate inhibition of Aβ aggregation (56.3% at 20 μM) and good antioxidant activity (3.28 trolox equivalent by ORAC assay). Molecular modeling studies in combination with kinetic analysis revealed that 4u was a mixed-type inhibitor, binding simultaneously to catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 4u could chelate metal ions, reduce PC12 cells death induced by oxidative stress and penetrate the blood–brain barrier (BBB). Taken together, these results strongly indicated the hybridization approach is an efficient strategy to identify novel scaffolds with desired bioactivities, and further optimization of 4u may be helpful to develop more potent lead compound for AD treatment.  相似文献   

7.
Rational modification of known drug candidates to design more potent ones using computational methods has found application in drug design, development, and discovery. Herein, we integrate computational and theoretical methodologies to unveil rivastigmine derivatives as dual inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) for Alzheimer's disease (AD) management. The investigation entails pharmacokinetics screening, density functional theory (DFT) mechanistic study, molecular docking, and molecular dynamics (MD) simulation. We designed over 20 rivastigmine substituents, subject them to some analyses, and identified RL2 with an appreciable blood-brain barrier score and no permeability glycoprotein binding. The compound shows higher acylation energy and a favored binding affinity to the cholinesterase enzymes. RL2 interacts with the AChE and BuChE active sites showing values of −41.1/−39.5 kcal mol−1 while rivastigmine binds with −32.7/−30.7 kcal mol−1 for these enzymes. The study revealed RL2 (4-fluorophenyl rivastigmine) as a potential dual inhibitor for AChE and BuChE towards Alzheimer's disorder management.  相似文献   

8.
AChE and BuChE are druggable targets for the discovery of anti-Alzheimer’s disease drugs, while dual-inhibition of these two targets seems to be more effective. In this study, we synthesised a series of novel isoflavone derivatives based on our hit compound G from in silico high-throughput screening and then tested their activities by in vitro AChE and BuChE bioassays. Most of the isoflavone derivatives displayed moderate inhibition against both AChE and BuChE. Among them, compound 16 was identified as a potent AChE/BuChE dual-targeted inhibitor (IC50: 4.60?μM for AChE; 5.92?μM for BuChE). Molecular modelling study indicated compound 16 may possess better pharmacokinetic properties, e.g. absorption, blood–brain barrier penetration and CYP2D6 binding. Taken together, our study has identified compound 16 as an excellent lead compound for the treatment of Alzheimer’s disease.  相似文献   

9.
We recently reported that synthetic derivatives of rutaecarpine alkaloid exhibited high acetyl cholinesterase (AChE) inhibitory activity and high selectivity for AChE over butyrylcholinesterases (BuChE). To explore novel effective drugs for the treatment of Alzheimer’s disease (AD), in this paper, further research results were presented. Starting from a structure-based drug design, a series of novel 2-(2-indolyl-)-4(3H)-quinazolines derivates were designed and synthesized as the ring-opened analogues of rutaecarpine alkaloid and subjected to pharmacological evaluation as AChE inhibitors. Among them, derivates 3a–c and 3g–h exhibited strong inhibitory activity for AChE and high selectivity for AChE over BuChE. The structure–activity relationships were discussed and their binding conformation and simultaneous interactions mode were further clarified by kinetic characterization and the molecular docking studies.  相似文献   

10.
Abstract

Three new mono-pyridinium compounds were prepared: 1-phenacyl-2-methylpyridinium chloride (1), 1-benzoylethylpyridinium chloride (2) and 1-benzoylethylpyridinium-4-aldoxime chloride (3) and assayed in vitro for their inhibitory effect on human blood acetylcholinesterase (EC 3.1.1.7, AChE). All the three compounds inhibited AChE reversibly; their binding affinity for the enzyme was compared with their protective effect (PI) on AChE phosphonylation by soman and VX. Compound 1 was found to bind to both the catalytic and the allosteric (substrate inhibition) sites of the enzyme with estimated dissociation constants of 6.9 μM (Kcat) and 27 μM (Kall), respectively. Compound 2 bound to the catalytic site with Kcat= 59 μM and compound 3 only to the allosteric site with Kall = 328 μM. PI was evaluated from phosphonylation measured in the absence and in presence of the compounds applied in a concentration corresponding to their Kcat or Kall value, and was also calculated from theoretical equations deduced from the reversible inhibition of the enzyme. Compounds 1 and 3 protected the enzyme from phosphonylation by soman and VX, whereas no protection was observed in the presence of compound 2 under the same conditions. Irrespective of the binding sites to AChE, PI for compounds 1 and 3 evaluated from phosphonylation agreed with PI calculated from reversible inhibition. Compound 3 was found to be a weak reactivator of methylphosphonylated AChE with kr = 1.1 × 102Lmol-1 min-1.  相似文献   

11.
A series of tacrine-(β-carboline) hybrids (11aq) were designed, synthesized and evaluated as multifunctional cholinesterase inhibitors against Alzheimer’s disease (AD). In vitro studies showed that most of them exhibited significant potency to inhibit acetylcholinesterase (eeAChE and hAChE), butyrylcholinesterase (BuChE) and self-induced β-amyloid (Aβ) aggregation, Cu2+-induced Aβ (1–42) aggregation, and to chelate metal ions. Especially, 11l presented the greatest ability to inhibit cholinesterase (IC50, 21.6 nM for eeAChE, 63.2 nM for hAChE and 39.8 nM for BuChE), good inhibition of Aβ aggregation (65.8% at 20 μM) and good antioxidant activity (1.57 trolox equivalents). Kinetic and molecular modeling studies indicated that 11l was a mixed-type inhibitor, binding simultaneously to the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 11l could chelate metal ions, reduce PC12 cells death induced by oxidative stress and penetrate the blood–brain barrier (BBB). These results suggested that 11l might be an excellent multifunctional agent for AD treatment.  相似文献   

12.
A novel series of coumarin derivatives were designed, synthesized and investigated for inhibition of cholinesterase, including acetyl cholinesterase (AChE) and butyrylcholinesterase (BuChE). This biological study showed that these compounds containing piperazine ring had significant inhibition activities on AChE rather than BuChE. Further study suggested that 9x, as one of this kind of structure derivative, showed the strongest inhibition activity on AChE with an IC50 value of 34 nM. Moreover, molecular docking, flow cytometry (FCM), and western blot assay suggested that 9x could induce cytoprotective autophagy to attenuate H2O2-induced cell death in human neuroblastoma SH-SY5Y cells. These findings highlight a new approach for the development of a novel potential neuroprotective compound targeting AChE with autophagy-inducing activity in future Alzheimer’s disease (AD) therapy.  相似文献   

13.
The cholinergic hypothesis has long been a “polar star” in drug discovery for Alzheimer’s disease (AD), resulting in many small molecules and biological drug candidates. Most of the drugs marketed for AD are cholinergic. Herein, we report our efforts in the discovery of cholinesterases inhibitors (ChEIs) as multi-target-directed ligands. A series of tacrine-ferulic acid hybrids have been designed and synthesised. All these compounds showed potent acetyl-(AChE) and butyryl cholinesterase(BuChE) inhibition. Among them, the optimal compound 10g, was the most potent inhibitor against AChE (electrophorus electricus (eeAChE) half maximal inhibitory concentration (IC50)?=?37.02?nM), it was also a strong inhibitor against BuChE (equine serum (eqBuChE) IC50?=?101.40?nM). Besides, it inhibited amyloid β-protein self-aggregation by 65.49% at 25?μM. In subsequent in vivo scopolamine-induced AD models, compound 10g obviously ameliorated the cognition impairment and showed preliminary safety in hepatotoxicity evaluation. These data suggest compound 10g as a promising multifunctional agent in the drug discovery process against AD.  相似文献   

14.
Rivastigmine is a very important drug prescribed for the treatment of Alzheimer’s disease (AD) symptoms. It is a dual inhibitor, in that it inhibits both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). For our screening program on the discovery of new rivastigmine analogue hits for human butyrylcholinesterase (hBuChE) inhibition, we investigated the interaction of this inhibitor with BuChE using the complimentary approach of the biophysical method, saturation transfer difference (STD)-NMR and molecular docking. This allowed us to obtain essential information on the key binding interactions between the inhibitor and the enzyme to be used for screening of hit compounds. The main conclusions obtained from this integrated study was that the most dominant interactions were (a) H-bonding between the carbamate carbonyl of the inhibitor and the NH group of the imidazole unit of H434, (b) stacking of the aromatic unit of the inhibitor and the W82 aromatic unit in the choline binding pocket via π-π interactions and (c) possible CH/π interactions between the benzylic methyl group and the N-methyl groups of the inhibitor and W82 of the enzyme.  相似文献   

15.
A series of novel tacrine-isatin Schiff base hybrid derivatives (7a-p) were designed, synthesized and evaluated as multi-target candidates against Alzheimer’s disease (AD). The biological assays indicated that most of these compounds displayed potent inhibitory activity toward acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) and specific selectivity for AChE over BuChE. It was also found that they act as excellent metal chelators. The compounds 7k and 7m were found to be good inhibitors of AChE-induced amyloid-beta (Aβ) aggregation. Most of the compounds inhibited AChE with the IC50 values, ranging from 0.42 nM to 79.66 nM. Amongst them, 7k, 7m and 7p, all with a 6 carbon linker between tacrine and isatin Schiff base exhibited the strongest inhibitory activity against AChE with IC50 values of 0.42 nM, 0.62 nM and 0.95 nM, respectively. They were 92-, 62- and 41-fold more active than tacrine (IC50 = 38.72 nM) toward AChE. Most of the compounds also showed a potent BuChE inhibition among which 7d with an IC50 value of 0.11 nM for BuChE is the most potent one (56-fold more potent than that of tacrine (IC50 = 6.21 nM)). In addition, most compounds exhibited the highest metal chelating property. Kinetic and molecular modeling studies revealed that 7k is a mixed-type inhibitor, capable of binding to catalytic and peripheral site of AChE. Our findings make this hybrid scaffold an excellent candidate to modify current drugs in treating Alzheimer’s disease (AD).  相似文献   

16.
Chalcones and chalcone epoxides are important synthetic intermediates in organic and medicinal chemistry. Chalcones possess a broad spectrum of biological activities; however, 1,3‐diphenyl‐2‐propenone or chalcone has not been given the attention it deserve as its substituted derivatives. In this study, the inhibition effects of chalcone and its epoxidated derivative chalcone epoxide against human carbonic anhydrase isozymes I and II (hCA I and hCA II), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) were evaluated. The results obtained showed that both compounds exhibited potent inhibitory activity, with IC50 values less than 10 µM. IC 50 values in the submicromolar (hCA I and hCA II) to low micromolar range (AChE and BuChE) were observed for both compounds. The mechanism of inhibition and the inhibitory constants ( K i values) for each compound were also determined. Furthermore, chalcone epoxide was docked within the active sites of hCA I, hCA II, AChE, and BuChE to explore its binding mode with the enzymes.  相似文献   

17.
Tinosporide and 8-hydroxytinosporide isolated from Tinospora cordifolia were evaluated for acetylcholinesterase (AChE) and butylcholinesterase (BuChE) inhibitory activities. The structure of the compound was confirmed by spectroscopic analysis, whereas cholinesterase inhibition was investigated by Ellman method using donepezil as standard drug and the data were presented as IC50 (μg/ml ± SEM). Furthermore, donepezil, tinosporide and 8-hydroxytinosporide were executed for docking analysis. The results from the isolated compounds TC-16R confirmed as tinosporide promisingly inhibited AChE with IC50 value of 13.45 ± 0.144, whereas TC-19R confirmed as 8-hydroxytinosporide moderately inhibited AChE with IC50 value of 46.71 ± 0.511. In case of BuChE inhibition, the IC50 values were found to be 408.50 ± 17.197 and 317.26 ± 6.918 for tinosporide and 8-hydroxytinosporide, respectively. The in silico studies revealed that the ligand tinosporide fit with the binding sites and inhibited AChE. Overall, the study findings suggested that tinosporide would be a complementary noble molecule of donepezil which is correlated with its pharmacological activity through in vitro studies, while 8-hydroxytinosporide modestly inhibited BuChE and the results are very close to the standard donepezil.  相似文献   

18.

Background

Many studies have been conducted in an extensive effort to identify alterations in blood cholinesterase levels as a consequence of disease, including the analysis of acetylcholinesterase (AChE) in plasma. Conventional assays using selective cholinesterase inhibitors have not been particularly successful as excess amounts of butyrylcholinesterase (BuChE) pose a major problem.

Principal Findings

Here we have estimated the levels of AChE activity in human plasma by first immunoprecipitating BuChE and measuring AChE activity in the immunodepleted plasma. Human plasma AChE activity levels were ∼20 nmol/min/mL, about 160 times lower than BuChE. The majority of AChE species are the light G1+G2 forms and not G4 tetramers. The levels and pattern of the molecular forms are similar to that observed in individuals with silent BuChE. We have also compared plasma AChE with the enzyme pattern obtained from human liver, red blood cells, cerebrospinal fluid (CSF) and brain, by sedimentation analysis, Western blotting and lectin-binding analysis. Finally, a selective increase of AChE activity was detected in plasma from Alzheimer''s disease (AD) patients compared to age and gender-matched controls. This increase correlates with an increase in the G1+G2 forms, the subset of AChE species which are increased in Alzheimer''s brain. Western blot analysis demonstrated that a 78 kDa immunoreactive AChE protein band was also increased in Alzheimer''s plasma, attributed in part to AChE-T subunits common in brain and CSF.

Conclusion

Plasma AChE might have potential as an indicator of disease progress and prognosis in AD and warrants further investigation.  相似文献   

19.
A group of N-benzylpiperidine-3/4-carbohydrazide-hydrazones were designed, synthesized and evaluated for acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) activities, Aβ42 self-aggregation inhibitory potentials, and antioxidant capacities, in vitro. All of the compounds displayed eeAChE and huAChE inhibitory activity in a range of IC50 = 5.68–11.35 µM and IC50 = 8.80–74.40 µM, respectively and most of the compounds exhibited good to moderate inhibitory activity on BuChE enzyme. Kinetic analysis and molecular modeling studies were also performed for the most potent compounds (1g and 1j). Not only the molecular modeling studies but also the kinetic analysis suggested that these compounds might be able to interact with the catalytic active site (CAS) and the peripheral anionic site (PAS) of the enzymes. In the light of the results, compound 1g and compound 1j may be suggested as lead compounds for multifunctional therapy of AD.  相似文献   

20.
Substrate inhibition is considered a defining property of acetylcholinesterase (AChE), whereas substrate activation is characteristic of butyrylcholinesterase (BuChE). To understand the mechanism of substrate inhibition, the pH dependence of acetylthiocholine hydrolysis by AChE was studied between pH 5 and 8. Wild-type human AChE and its mutants Y337G and Y337W, as well as wild-type Bungarus fasciatus AChE and its mutants Y333G, Y333A and Y333W were studied. The pH profile results were unexpected. Instead of substrate inhibition, wild-type AChE and all mutants showed substrate activation at low pH. At high pH, there was substrate inhibition for wild-type AChE and for the mutant with tryptophan in the π-cation subsite, but substrate activation for mutants containing small residues, glycine or alanine. This is particularly apparent in the B. fasciatus AChE. Thus a single amino acid substitution in the π-cation site, from the aromatic tyrosine of B. fasciatus AChE to the alanine of BuChE, caused AChE to behave like BuChE. Excess substrate binds to the peripheral anionic site (PAS) of AChE. The finding that AChE is activated by excess substrate supports the idea that binding of a second substrate molecule to the PAS induces a conformational change that reorganizes the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号