首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the present investigation was to design a targeted polyethylenimine (PEI)-based polyplex by conjugating lactose bearing galactose groups on low molecular weight PEI (LMW PEI) grafted to a high molecular weight PEI (HMW PEI) via a succinic acid linker in order to restore the amine content of the whole conjugate used for ligand conjugation. The PEI conjugate was synthesized and characterized in terms of buffering capacity, particle size, zeta potential, plasmid condensation ability, and protection of DNA against degrading enzymes. Also, the transfection efficiency and cytotoxicity were evaluated in the cell line over-expressing asialoglycoprotein receptors (ASGPRs) and compared with the cells lacking the receptors. The results demonstrated the ability of PEI conjugate in condensation of plasmid DNA and protection against enzyme degradation. The PEI conjugate formed nanoparticles of around 75 nm with higher buffering capacity compared with unmodified PEI. The polyplexes prepared by the modified PEI could increase the level of transgene up to four folds in the cells over-expressing the receptor. The results demonstrated the separation of targeting and delivery domains could be considered as a strategy to restore the amine content of the PEI molecule utilized for targeting ligand conjugation.  相似文献   

2.
Methylmercury (MeHg) is a potent neurotoxin. The mechanism(s) that governs MeHg transport across the blood-brain barrier and other biological membranes remains unclear. This study addressed the role of the L-type large neutral amino acid transporter, LAT1, in MeHg transport. Studies were carried out in CHO-k1 cells. Over-expression of LAT1 in these cells was associated with enhanced uptake of [(14)C]-MeHg when treated with L-cysteine, but not with the D-cysteine conjugate. In the presence of excess L-methionine, a substrate for LAT1, L-cysteine-conjugated [(14)C]-MeHg uptake was significantly attenuated. Treatment of LAT-1 over-expressing CHO-k1 cells with L-cysteine-conjugated MeHg was also associated with increased leakage of lactate dehydrogenase into the media as well as reduced cell viability measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. In contrast, knock-down of LAT1 decreased the uptake of l-cysteine-conjugated MeHg and attenuated the effects of MeHg on lactate dehydrogenase leakage and CHO-k1 cell viability. These results indicate that the MeHg-L-cysteine conjugate is a substrate for the neutral amino acid transporter, LAT1, which actively transports MeHg across membranes.  相似文献   

3.
Cell specific gene silencing effects of antisense oligodeoxynucleotide (AS-ODN), synthetic small interfering RNA (siRNA-S), and siRNA expressing plasmid (siRNA-P) were comparatively evaluated. Poly(ethylenimine) (PEI) and PEI-graft-poly(ethylene glycol)-folate (PEI-PEG-FOL) conjugate were used to form nanosized polyelectrolyte complexes with the above three nucleic acids coding for inhibition of green fluorescent protein (GFP) expression. The three nucleic acid complexes formulated with either PEI or PEI-PEG-FOL had comparable sizes and surface zeta potential values. Among the three inhibitory nucleic acids, siRNA-S, when complexed with PEI-PEG-FOL, exhibited the most dose-effective and fastest gene silencing effect for FOL receptor overexpressing KB cells, because the siRNA-S could be directly delivered, via FOL receptor-mediated endocytosis, into the cytoplasm compartment where the degradation processing of target GFP mRNA occurred in a sequence-specific manner.  相似文献   

4.
Graft-copolymers, containing poly(ethylene glycol) (PEG) and polyethyleneimine (PEI) chains have been proposed as carriers for delivery of phosphorothioate oligonucleotides (SODNs). Complexes of such copolymers with SODN self-assemble into particles having a core of neutralized PEI and SODN and a corona of PEG. Transferrin molecules are attached to the PEG corona using avidin/biotin construct. For this purpose, biotin moieties are covalently linked to the free ends of the PEG chains in the PEG-g-PEI copolymer. SODNs are reacted with mixtures of biotinylated and biotin-free PEG-g-PEI copolymers of various compositions to adjust the number of the biotin moieties in the complex. Resulting complexes have small size (ca. 40 nm) and do not aggregate in aqueous solutions for at least several days. To attach transferrin, they are supplemented first with avidin and then with biotin-transferrin conjugate. This increases the effective diameter of the particles to ca. 75-103 nm, depending on the composition of the complex. Cellular accumulation and fluorescence microscopy studies characterize the effects of these modifications on interaction of fluorescently labeled SODNs with KBv cell monolayers. The data suggest significant enhancement of SODN association with cells resulting from modification of the complex with transferrin. SODN complimentary to the site 546-565 of human mdr 1-mRNA was used to inhibit expression of the drug efflux transporter, P-glycoprotein (P-gp), in multiple drug resistant (MDR) cancer cells (KBv, MCF-7 ADR). Accumulation of a P-gp specific probe, rhodamine 123, in the cell monolayers is used to characterize the effects on P-gp efflux system following the treatment of the cells with antisense SODN or its complexes. This study suggests that antisense SODN incorporated in the complexes retain the ability to inhibit P-gp efflux system, while complexes of the randomized control SODN are inactive. Therefore, the antisense SODN is released from the complex and interacts with its intracellular target upon interaction of the complexes with the cells. Furthermore, modification of the complexes with transferrin leads to a significant increase of the effects of the antisense SODN on the P-gp efflux system in the cells. Overall, this study suggests that polyion complex micelles with protein-modified corona are promising tools for the delivery of antisense SODN.  相似文献   

5.
We have previously shown that the heterodimer CD98/LAT-2 (LAT-2: amino acid transporter) is expressed in the basolateral membrane of intestinal epithelia and is associated with beta1 integrin (Merlin, D., Sitaraman, S., Liu, X., Easterburn, K., Sun, J., Kucharzik, T., Lewis, B., and Madara, J. L. (2001) J. Biol. Chem. 276, 39282-39289). In the present study we examined the interaction of CD98/LAT2 with intracellular adhesion molecule I (ICAM-1) and the potential of such interaction on the activation of intracellular signal in Caco2-BBE cell monolayers. ICAM-1 was found to be expressed to the basolateral domain and to selectively coimmunoprecipitate with CD98/LAT-2 in Caco2-BBE monolayers. Using antibodies as ligands to CD98 and ICAM-1, we demonstrate that the basolateral cross-linking of CD98 and ICAM-1 differentially affects the intrinsic activity of the LAT-2 transporter. Whereas CD98 ligation decreases the Km and Vm of the LAT-2 transporter, ICAM-1 ligation increases Km and Vm of the amino acid transporter LAT-2. In addition, basolateral cross-linking of CD98 or ICAM-1 induces threonine phosphorylation of an approximately 160-kDa supramolecular complex that is consistent with CD98/LAT-2-ICAM-1 complex. Together these findings demonstrate that (i). CD98/LAT-2 interacts with ICAM-1 in Caco2-BBE cell monolayers, and (ii). CD98 and ICAM-1 ligands generate intracellular signals that regulate the amino acids transporter (LAT-2) activity. Our data provide a novel mechanism by which events such as adhesion may be integrated by amino acid transport activity resulting from the direct interaction of cell surface molecules such as CD98 and ICAM-1.  相似文献   

6.
Solute and macromolecular transport studies may elucidate nutritional requirements and drug effects in healthy and diseased peripheral nerves. Endoneurial endothelial cells are specialized microvascular cells that form the restrictive blood-nerve barrier (BNB). Primary human endoneurial endothelial cells (pHEndECs) are difficult to isolate, limiting their widespread availability for biomedical research. We developed a simian virus-40 large T-antigen (SV40-LTA) immortalized human BNB cell line via stable transfection of low passage pHEndECs and observed continuous growth in culture for >45 population doublings. As observed with pHEndECs, the immortalized BNB endothelial cells were Ulex Europaeus agglutinin-1-positive and endocytosed low density lipoprotein, but lost von Willebrand factor expression. Glucose transporter-1, P-glycoprotein (P-gp), γ-glutamyl transpeptidase (γ-GT), large neutral amino acid transporter-1 (LAT-1), creatine transporter (CRT), and monocarboxylate transporter-1 (MCT-1) mRNA expression were retained at all passages with loss of alkaline phosphatase (AP) expression after passages 16–20. Compared with an SV40-LTA immortalized human blood-brain barrier endothelial cell line, there was increased γ-GT protein expression, equivalent expression of organic anion transporting polypeptide-C (OATP-C), organic anion transporter 3 (OAT-3), MCT-1, and LAT-1, and reduced expression of AP, CRT, and P-gp by the BNB cell line at passage 20. Further studies demonstrated lower transendothelial electrical resistance (~181 vs. 191 Ω cm2), equivalent permeability to fluoresceinated sodium (4.84 vs. 4.39 %), and lower permeability to fluoresceinated high molecular weight (70 kDa) dextran (0.39 vs. 0.52 %) by the BNB cell line. This cell line retained essential molecular and biophysical properties suitable for in vitro peripheral nerve permeability studies.  相似文献   

7.
《Phytomedicine》2014,21(12):1725-1732
Chemotherapy resistance represents a major problem for the treatment of patients with breast cancer and greatly restricts the use of first-line chemotherapeutics paclitaxel. The purpose of this study was to investigate the role of transgelin 2 in human breast cancer paclitaxel resistance cell line (MCF-7/PTX) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. Western blotting and real-time quantitative polymerase chain reaction (qRT-PCR) indicated that transgelin 2 may mediate paclitaxel resistance by activating the phosphatidylinositol 3-kinase (PI3 K)/Akt signaling pathway to suppress MCF-7/PTX cells apoptosis. The reversal ability of SAA was confirmed by MTT assay and flow cytometry, with a superior 9.1-fold reversal index and enhancement of the apoptotic cytotoxicity induced by paclitaxel. In addition, SAA effectively prevented transgelin 2 and adenosine-triphosphate binding cassette transporter (ABC transporter) including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP) up-regulation and exhibited inhibitory effect on PI3 K/Akt signaling pathway in MCF-7/PTX cells. Taken together, SAA can reverse paclitaxel resistance through suppressing transgelin 2 expression by mechanisms involving attenuation of PI3 K/Akt pathway activation and ABC transporter up-regulation. These results not only provide insight into the potential application of SAA in reversing paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer.  相似文献   

8.
《Phytomedicine》2014,21(7):984-991
Paclitaxel (PTX) is a first-line antineoplastic drug that is commonly used in clinical chemotherapy for breast cancer treatment. However, the occurrence of drug resistance in chemotherapeutic treatment has greatly restricted its use. There is thus an urgent need to find ways of reversing paclitaxel chemotherapy resistance in breast cancer. Plant-derived agents have great potential in preventing the onset of the carcinogenic process and enhancing the efficacy of mainstream antitumor drugs. Paeonol, a main compound derived from the root bark of Paeonia suffruticosa, has various biological activities, and is reported to have reversal drug resistance effects. This study established a paclitaxel-resistant human breast cancer cell line (MCF-7/PTX) and applied the dual-luciferase reporter gene assay, MTT assay, flow cytometry, transfection assay, Western blotting and the quantitative real-time polymerase chain reaction (qRT-PCR) to investigate the reversing effects of paeonol and its underlying mechanisms. It was found that transgelin 2 may mediate the resistance of MCF-7/PTX cells to paclitaxel by up-regulating the expressions of the adenosine-triphosphate binding cassette transporter proteins, including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP). Furthermore, the ability of paeonol to reverse paclitaxel resistance in breast cancer was confirmed, with a superior 8.2-fold reversal index. In addition, this study found that paeonol down-regulated the transgelin 2-mediated paclitaxel resistance by reducing the expressions of P-gp, MRP1, and BCRP in MCF-7/PTX cells. These results not only provide insight into the potential application of paeonol to the reversal of paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer.  相似文献   

9.
Expression of P-glycoprotein in human cerebral cortex microvessels.   总被引:11,自引:0,他引:11  
P-Glycoprotein (P-gp) is an ATP-dependent efflux transporter that extrudes non-polar molecules, including cytotoxic substances and drugs, from the cells. It was initially found in cancer cells and then was shown to be a normal component of complex transport systems working at the blood-brain barrier (BBB). Previous studies have demonstrated that, in the brain, P-gp is localized on the luminal plasmalemma of BBB endothelial cells and that it may interact with the caveolar compartment of these cells. The aim of this study was to identify the site of cellular expression of P-gp in human brain in situ and to morphologically determine whether an association may exist between P-gp and caveolin-1, a structural and functional protein of the caveolar frame. The study was carried out on human cerebral cortex by immunoconfocal microscopy with antibodies to both P-gp and caveolin-1. The results show that P-gp marks the microvessels of the cortex and that the transporter is localized in the luminal endothelial compartment, where it co-localizes with caveolin-1. The demonstration of this co-localization of P-gp with caveolin-1 contributes a morphological backing to biochemical studies on P-gp/caveolin-1 relationships and leads us to suggest that interactions between these molecules may occur at the BBB endothelia.  相似文献   

10.
Genexol-PM, produced by Samyang Company (Korea) is an excellent preparation of paclitaxel (PTX) for clinical cancer treatment. However, it cannot resolve the issue of multidrug resistance (MDR)—a significant problem in the administration of PTX to cancer patients. To increase the efficacy of Genexol-PM against MDR tumors, a mixed micelle capable of serving as a vehicle for PTX was developed, and two substances were chosen as carrier materials: 1) Polyethylene glycol–polylactic acid (PEG-PLA), the original vehicle of Genexol-PM. 2) Vitamin E-TPGS, an inhibitor of P-glycoprotein (P-gp). P-gp has been proven to be the main cause of MDR. In vitro evaluation indicated that the mixed micelle was an ideal PTX delivery system for the treatment of MDR tumors; the mixed micelle also showed a significantly better drug-loading coefficient than Genexol-PM.  相似文献   

11.
We have isolated a cDNA from rat small intestine that encodes a novel Na+-independent neutral amino acid transporter with distinctive characteristics in substrate selectivity and transport property. The encoded protein, designated L-type amino acid transporter-2 (LAT-2), shows amino acid sequence similarity to the system L Na+-independent neutral amino acid transporter LAT-1 (Kanai, Y., Segawa, H., Miyamoto, K., Uchino, H., Takeda, E., and Endou, H. (1998) J. Biol. Chem. 273, 23629-23632) (50% identity) and the system y+L transporters y+LAT-1 (47%) and KIAA0245/y+LAT-2 (45%) (Torrents, D., Estevez, R., Pineda, M., Fernandez, E., Lloberas, J., Shi, Y.-B., Zorzano, A., and Palacin, M. (1998) J. Biol. Chem. 273, 32437-32445). LAT-2 is a nonglycosylated membrane protein. It requires 4F2 heavy chain, a type II membrane glycoprotein, for its functional expression in Xenopus oocytes. LAT-2-mediated transport is not dependent on Na+ or Cl- and is inhibited by a system L-specific inhibitor, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH), indicating that LAT-2 is a second isoform of the system L transporter. Compared with LAT-1, which prefers large neutral amino acids with branched or aromatic side chains, LAT-2 exhibits remarkably broad substrate selectivity. It transports all of the L-isomers of neutral alpha-amino acids. LAT-2 exhibits higher affinity (Km = 30-50 microM) to Tyr, Phe, Trp, Thr, Asn, Ile, Cys, Ser, Leu, Val, and Gln and relatively lower affinity (Km = 180-300 microM) to His, Ala, Met, and Gly. In addition, LAT-2 mediates facilitated diffusion of substrate amino acids, as distinct from LAT-1, which mediates amino acid exchange. LAT-2-mediated transport is increased by lowering the pH level, with peak activity at pH 6.25, because of the decrease in the Km value without changing the Vmax value. Because of these functional properties and a high level of expression of LAT-2 in the small intestine, kidney, placenta, and brain, it is suggested that the heterodimeric complex of LAT-2 and 4F2 heavy chain is involved in the trans-cellular transport of neutral amino acids in epithelia and blood-tissue barriers.  相似文献   

12.
The present study examined the functional characteristics of L-DOPA transporters in two functionally different clonal subpopulations of opossum kidney (OKLC and OKHC) cells. The uptake of L-DOPA was largely Na+-independent, though in OKHC cells a minor component (approximately 15%) required extracellular Na+. At least two Na+-independent transporters appear to be involved in L-DOPA uptake. One of these transporters has a broad specificity for small and large neutral amino acids, is stimulated by acid pH and inhibited by 2-aminobicyclo(2,2,l)-heptane-2-carboxylic acid (BCH; OKLC, Ki = 291 mM; OKHC, Ki = 380 mM). The other Na+-independent transporter binds neutral and basic amino acids and also recognizes the di-amino acid cystine. [14C]-L-DOPA efflux from OKLC and OKHC cells over 12 min corresponded to a small amount of intracellular [14C]-L-DOPA. L-Leucine, nonlabelled L-DOPA, BCH and L-arginine, stimulated the efflux of [14C]-L-DOPA in a Na+-independent manner. It is suggested that L-DOPA uses at least two major transporters, systems LAT-2 and b0,+. The transport of L-DOPA by LAT-2 corresponds to a Na+-independent transporter with a broad specificity for small and large neutral amino acids, stimulated by acid pH and inhibited by BCH. The transport of L-DOPA by system b0,+ is a Na+-independent transporter for neutral and basic amino acids that also recognizes cystine. LAT-2 was found equally important at the apical and basolateral membranes, whereas system b0,+ had a predominant distribution in apical membranes.  相似文献   

13.
In non-polarized cells, CD98 has been shown to both influence beta(1) integrins and heterodimerize with LAT-2, which confers amino acid transport capability on the LAT-2/CD98 heterodimer. Since LAT-2 is most heavily expressed in intestine and CD98 associates with the beta(1) integrin splice form selectively found in such epithelia, we investigated the relationship and polarity of these proteins using the intestinal epithelial model Caco2-BBE. CD98 was found to selectively coimmunoprecipitate with both LAT-2 and beta(1) integrin, and, logically, all three proteins were polarized to the same (basolateral) domain. Furthermore, expression of CD98 in polarized epithelia lacking human CD98 (MDCK cells) disrupted beta(1) integrin surface distribution and cytoskeletal architecture, suggesting that CD98 can influence integrin function. Expression of a CD98 mutant lacking the specific residues conferring LAT-2 binding similarly affected cells, confirming that the latter effect was not due to LAT-2 sequestration. Use of CD98 truncation mutants suggest that a 10-amino acid domain located at the putative cytoplasmic tail/transmembrane domain interface was necessary and sufficient to induce the phenotype change. We conclude that the CD98/LAT-2 amino acid transporter is polarized to the same domain on which beta(1) integrin resides. CD98 appears to associate with beta(1) integrin and, in doing so, may influence its function as revealed by disruption of the outside-in signaling that confers cytoskeletal organization. Furthermore, such findings suggest a link between classic transport events and a critical element of barrier function: integrin-mediated influences on cytoskeletal organization.  相似文献   

14.
BackgroundNobiletin (N), a polymethoxylated flavone from citrus fruits, enhanced anti-cancer effects of paclitaxel (PTX) in multi-drug resistance (MDR) cancer cells via inhibiting P-glycoprotein (P-gp) in our previous report. But the in vivo chemo-sensitizing effect of nobiletin is unknown. Moreover, considering the nonlinear pharmacokinetics and narrow therapeutic window of PTX, drug-drug interaction should be explored for using nobiletin with PTX together.PurposeIn this study, we wanted to explore whether nobiletin could affect the pharmacokinetic (PK) behavior of PTX and reverse drug resistance in vivo as well as the corresponding mechanisms.Study Design and MethodsAccurate and sensitive UPLC-MS/MS method was developed for the detection of PTX, and was applied to the pharmacokinetic study in rats. In vivo anti-MDR tumor study was carried out with A549/T xenograft nude mice model. Immunohistochemistry and western blot analysis were used for evaluating the levels of P-gp, Nrf2, and AKT/ERK pathways in MDR tumors.ResultsNobiletin significantly enhanced the therapeutic effects of PTX, and inhibited the MDR tumor sizes in the A549/T xenograft model, while PTX or nobiletin alone did not. We found that nobiletin increased the PTX concentrations in tumor tissues but did not affect the PK behavior of PTX. Notably, Nrf2 and phosphorylation of AKT/ERK expression in MDR tumor tissues were significantly inhibited by giving nobiletin and PTX together. However, nobiletin did not affect the expression of P-gp.ConclusionNobiletin reversed PTX resistance in MDR tumor via increasing the PTX content in the MDR tumor and inhibiting AKT/ERK/Nrf2 pathways, but without affecting the systematic exposure of PTX, indicating that nobiletin may be an effective and safe MDR tumor reversal agent.  相似文献   

15.
y+LAT-1 and 4F2hc are the subunits of a transporter complex for cationic amino acids, located mainly in the basolateral plasma membrane of epithelial cells in the small intestine and renal tubules. Mutations in y+LAT-1 impair the transport function of this complex and cause a selective aminoaciduria, lysinuric protein intolerance (LPI, OMIM #222700), associated with severe, complex clinical symptoms. The subunits of an active transporter co-localize in the plasma membrane, but the exact process of dimerization is unclear since direct evidence for the assembly of this transporter in intact human cells has not been available. In this study, we used fluorescence resonance energy transfer (FRET) microscopy to investigate the interactions of y+LAT-1 and 4F2hc in HEK293 cells expressing y+LAT-1 and 4F2hc fused with ECFP or EYFP. FRET was quantified by measuring fluorescence intensity changes in the donor fluorophore (ECFP) after the photobleaching of the acceptor (EYFP). Increased donor fluorescence could be detected throughout the cell, from the endoplasmic reticulum and Golgi complex to the plasma membrane. Therefore, our data prove the interaction of y+LAT-1 and 4F2hc prior to the plasma membrane and thus provide evidence for 4F2hc functioning as a chaperone in assisting the transport of y+LAT-1 to the plasma membrane.  相似文献   

16.
Nitric oxide (NO) effects are often mediated via S-nitrosothiol (SNO) formation; SNO uptake has recently been shown to be mediated in some cell types via system L-type amino acid transporters (LAT-1, 2). Inhaled NO therapy may exert some biological effects via SNO formation. We therefore sought to determine if pulmonary epithelial SNO uptake depended on LAT or peptide transporter 2 (PEPT2). Both LAT-1 and PEPT2 proteins were detected by immunoblot and immunocytochemistry in L2 cells and rat lung. We tested SNO uptake through the transporters by exposing rat alveolar epithelial cells (L2 and type II) to RSNOs: S-nitrosoglutathione, S-nitrosocysteinylglycine (SNO-Cys-Gly), S-nitrosocysteine (CSNO), and to NO donor diethylamine NONOate (DEA-NONOate). SNO was detected in cell lysates by ozone chemiluminescence. NO uptake was detected by fluorescence in alveolar epithelial cells loaded with 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM) diacetate cultured in submersion and exposed to RSNOs and DEA NONOate. Addition of L-Cys but not D-Cys to RSNOs or DEA NONOate increased SNO and DAF-FM signal that was inhibited by coincubation with LAT competitors. Incubation of cells with PEPT2 substrate SNO-Cys-Gly showed no increase in SNO or DAF-FM signal unless incubated with L-Cys. This was unaffected by PEPT2 inhibition. We conclude that RSNOs (thionitrites, S-nitrosothiols) and NO enter alveolar epithelial cells predominantly by S-nitrosation of L-Cys, which is then imported through LAT.  相似文献   

17.
Zhong X  Safa AR 《Biochemistry》2007,46(19):5766-5775
Development of multidrug resistance (MDR) in cancer frequently involves overexpression of the MDR1 gene product P-glycoprotein (P-gp), a drug transporter which severely impedes the efficacy of chemotherapy. Because intensive efforts to identify therapeutics that reverse MDR by inhibiting the drug transport activity of P-gp have not yet met with success, we have focused on the alternative strategy of targeting MDR1 promoter activation to knockdown P-gp expression in cancer cells. We recently identified RNA helicase A (RHA) inhibition as a rational strategy to downregulate P-gp in leukemia cells by showing that RHA RNAi knockdown abrogated P-gp expression in MDR variants of human leukemia HL-60 cells. In that report, we also demonstrated that RHA activated the MDR1 promoter in the MDR variant cells but not in the drug-sensitive counterpart. This led us to hypothesize that P-gp induction by RHA required cooperation with another factor present only in the MDR variants. Here, we identify the RHA cooperating factor as DNA-PK catalytic subunit (cs), and we show that DNA-PKcs resides with RHA at the MDR1 promoter in a multiprotein complex. Furthermore, targeted DNA-PKcs inhibition abrogated P-gp expression in the MDR variant cells. We demonstrate that constitutive multisite RHA phosphorylation producing retarded migration in SDS-PAGE is catalyzed by DNA-PKcs in the MDR variants, and does not occur in the parental cells, which are DNA-PKcs deficient. The indispensable role played by DNA-PK in P-gp overexpression in MDR leukemia cells in this report identifies targeted DNA-PK inhibition as a rational strategy to reverse drug resistance in cancer.  相似文献   

18.
Lysinuric protein intolerance (LPI) is a rare, yet inimical, genetic disorder characterized by the paucity of essential dibasic amino acids in the cells. Amino acid transporter y+LAT-1 interacts with 4F2 cell-surface antigen heavy chain to transport the required dibasic amino acids. Mutation in y+LAT-1 is rumored to cause LPI. However, the underlying pathological mechanism is unknown, and, in this analysis, we investigate the impact of point mutation in y+LAT-1's interaction with 4F2 cell-surface antigen heavy chain in causing LPI. Using an efficient and extensive computational pipeline, we have isolated M50K and L334R single-nucleotide polymorphisms to be the most deleterious mutations in y+LAT-1s. Docking of mutant y+LAT-1 with 4F2 cell-surface antigen heavy chain showed decreased interaction compared with native y+LAT-1. Further, molecular dynamic simulation analysis reveals that the protein molecules increase in size, become more flexible, and alter their secondary structure upon mutation. We believe that these conformational changes because of mutation could be the reason for decreased interaction with 4F2 cell-surface antigen heavy chain causing LPI. Our analysis gives pathological insights about LPI and helps researchers to better understand the disease mechanism and develop an effective treatment strategy.  相似文献   

19.
Pertussis toxin (PTX) has potent immunologic adjuvant activity in vivo and concomitantly enhances both T helper type (Th1) and Th2 cytokine responses. The PTX-induced enhancement of Th1 and Th2 immunity is mediated via the activation of antigen presenting cells (APCs), but the underlying mechanism is not known. Here we asked whether the adjuvant activity of PTX on T cell immunity was mediated by cytokines and/or costimulatory signals. The results show that in vivo blockade of CD28-CD80/86 costimulation essentially abrogated PTX-mediated enhancement of antigen-specific Th1 and Th2 responses. Blockade of CD40L-CD40 interactions was less efficient in inhibiting PTX-mediated enhancement of Th1 and Th2 responses. In contrast, the adjuvant activity of PTX was not mediated via cytokines, because neither Th1 nor Th2 responses were substantially impaired in mice deficient for IL-12, IFN-gamma, IL-4, IL-5, or IL-6. Collectively, the data suggest that PTX mediates its adjuvant effects on T cell cytokine differentiation and clonal expansion via the modulation of costimulatory molecules on APCs. Understanding the costimulatory pathways targeted by PTX could lead to the design of novel adjuvants that selectively induce Th1 or Th2 immunity.  相似文献   

20.
Green fluorescent protein (GFP) antisense oligodeoxynucleotide (ODN) was covalently conjugated to hyaluronic acid (HA) via a reducible disulfide linkage, and the HA-ODN conjugate was complexed with protamine to increase the extent of cellular uptake and enhance the gene inhibition efficiency of GFP expression. The HA-ODN conjugate formed more stable polyelectrolyte complexes with protamine as compared to naked ODN, probably because of its increased charge density. The higher cellular uptake of protamine/HA-ODN complexes than that of protamine/naked ODN complexes was attributed to the formation of more compact nanosized complexes (approximately 200 nm in diameter) in aqueous solution. Protamine/HA-ODN complexes also showed a comparable level of GFP gene inhibition to that of cytotoxic polyethylenimine (PEI)/ODN complexes. Since both HA and protamine are naturally occurring biocompatible materials, the current formulation based on a cleavable conjugation strategy of ODN to HA could be potentially applied as safe and effective nonviral carriers for ODN and siRNA nucleic acid therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号