首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, twenty new anthranilic acid hydrazones 6 – 9 ( a – e ) were synthesized and their structures were characterized by Fourier-transform Infrared (FT-IR), Nuclear Magnetic Resonance (1H-NMR – 13C-NMR), and High-resolution Mass Spectroscopy (HR-MS). The inhibitory effects of the compounds against COX-II were evaluated. IC50 values of the compounds were found in the range of >200–0.32 μM and compounds 6e , 8d , 8e , 9b , 9c , and 9e were determined to be the most effective inhibitors. Cytotoxic effects of the most potent compounds were investigated against human hepatoblastoma (Hep-G2) and human healthy embryonic kidney (Hek-293) cell lines. Doxorubicin (IC50: 8.68±0.16 μM for Hep-G2, 55.29±0.56 μM for Hek-293) was used as standard. 8e is the most active compound, with low IC50 against Hep-G2 (4.80±0.04 μM), high against Hek-293 (159.30±3.12), and high selectivity (33.15). Finally, molecular docking and dynamics studies were performed to understand ligand-protein interactions between the most potent compounds and COX II, Epidermal Growth Factor Receptor (EGFR), and Transforming Growth Factor beta II (TGF-βII). The docking scores were calculated in the range of −10.609–−6.705 kcal/mol for COX-II, −8.652–−7.743 kcal/mol for EGFR, and −10.708–−8.596 kcal/mol for TGF-βII.  相似文献   

2.
A novel series of chromone-isatin derivatives 6a6p were designed, synthesized and characterized by 1H NMR, 13C NMR and HRMS. These novel synthetic compounds were evaluated for inhibitory activity against yeast α-glucosidase enzyme. The results of biological test have shown that all tested compounds exhibited excellent to potent inhibitory activity in the range of IC50?=?3.18?±?0.12–16.59?±?0.17?μM as compared to the standard drug acarbose (IC50?=?817.38?±?6.27?μM). Compound 6j (IC50?=?3.18?±?0.12?μM) with a hydroxyl group at the 7-position of chromone and a 4-bromobenzyl group at the N1-positions of isatin, was found to be the most active compound among the series. Furthermore, molecular docking study was performed to help understand binding interactions of the most active analogs with α-glucosidase enzyme. These results indicated that this class of compounds had potential for the development of anti-diabetic agents.  相似文献   

3.
Soluble epoxide hydrolase (sEH) inhibitory activity guided fractionation and isolation of two new isocucurbic acid derivatives ( 1 and 2 ) and nine known compounds ( 3 – 11 ) from the flowers of Chrysanthemum indicum L. Their structures were elucidated on the basis of spectroscopic data interpretation and comparison with those reported in previous studies. Luteolin ( 3 ), acacetin-7-O-β-D-glucopyranoside ( 6 ), and methyl 3,4-di-O-caffeoylquinate ( 10 ) displayed sEH inhibitory activities with IC50 values ranging from 13.7±3.6 to 20.8±0.4 μM. Enzyme kinetic analysis revealed that 3 , 6 , and 10 were non-competitive inhibitors with Ki values of 14.8±0.5, 31.2±0.8, and 3.9±0.2 μM, respectively. Additionally, molecular docking studies indicated compound 10 had the ability to form six hydrogen bonds at sEH active site, resulting binding energy as low as −9.58 Kcal/mol.  相似文献   

4.
In this study, new chiral thiourea and 1,3-thiazolidine-4,5-dione derivatives were synthesized, it was aimed to evaluate the various biological activities and molecular docking of these compounds. Firstly, the new thioureas ( 1 – 16 ) were obtained by reacting 1-naphthylisothiocyanate with different chiral amines. Then, the chiral thioureas were cyclized with oxalyl chloride to obtain 1,3-thiazolidine-4,5-dione derivatives ( 17 – 32 ). All compounds were evaluated with several in vitro antioxidant and enzyme inhibition activities. Compound 30 was the most active compound against AChE, with a value of IC50=8.09±0.58 μM. On the other hand, all compounds were tested in silico absorption, distribution, metabolism, and excretion (ADME) assays to better understand their bioavailability. These physicochemical properties, pharmacokinetics, and drug-likeness of all compounds were calculated using SwissADME. Furthermore, according to molecular docking analyses compound 30 exhibited significant binding affinities for all enzymes. Based on our overall observations, compound 30 could be recommended as a potential lead for the therapuetic of Alzheimer's.  相似文献   

5.
A series of 1,3‐bis‐chalcone derivatives ( 3a‐i, 6a‐i and 8 ) were synthesized and evaluated antimicrobial, antibiofilm and carbonic anhydrase inhibition activities. In this evaluation, 6f was found to be the most active compound showing the same effect as the positive control against Bacillus subtilis and Streptococcus pyogenes in terms of antimicrobial activity. Biofilm structures formed by microorganisms were damaged by compounds at the minimum inhibitory concentration value between 0.5% and 97%.1,3‐bis‐chalcones ( 3a‐i, 6a‐i and 8 ) showed good inhibitory action against human (h) carbonic anhydrase (CA) isoforms I and II. hCA I and II were effectively inhibited by these compounds, with K i values in the range of 94.33 ± 13.26 to 787.38 ± 82.64 nM for hCA I, and of 100.37 ± 11.41 to 801.76 ± 91.11 nM for hCA II, respectively. In contrast, acetazolamide clinically used as CA inhibitor showed K i value of 1054.38 ± 207.33 nM against hCA I, and 983.78 ± 251.08 nM against hCA II, respectively.  相似文献   

6.
Artemisia roxburghiana is used in traditional medicine for treating various diseases including diabetes. The present study was designed to evaluate the antidiabetic potential of active constituents by using protein tyrosine phosphatase 1B (PTP1B) as a validated target for management of diabetes. Various compounds were isolated as active principles from the crude methanolic extract of aerial parts of A. roxburghiana. All compounds were screened for PTP1B inhibitory activity. Molecular docking simulations were performed to investigate the mechanism behind PTP1B inhibition of the isolated compound and positive control, ursolic acid. Betulinic acid, betulin and taraxeryl acetate were the active PTP1B principles with IC50 values 3.49?±?0.02, 4.17?±?0.03 and 87.52?±?0.03?µM, respectively. Molecular docking studies showed significant molecular interactions of the triterpene inhibitors with Gly220, Cys215, Gly218 and Asp48 inside the active site of PTP1B. The antidiabetic activity of A. roxburghiana could be attributed due to PTP1B inhibition by its triterpene constituents, betulin, betulinic acid and taraxeryl acetate. Computational insights of this study revealed that the C-3 and C-17 positions of the compounds needs extensive optimization for the development of new lead compounds.  相似文献   

7.
A small library of novel spiropyrrolidine heterocyclic hybrids has been prepared regioselectively in 1-butyl-3-methylimidazoliumbromide ([bmim]Br) with good to excellent yields using a [3+2] cycloaddition reaction. These synthesized compounds were evaluated as potential agents for treating Alzheimer’s disease. Compound 4b showed the most potent activity, with an IC50 of 7.9 ± 0.25 µM against acetylcholinesterase (AChE). The inhibition mechanisms for the most active compounds on AChE and butyrylcholinesterase (BChE) receptors were elucidated using molecular docking simulations.  相似文献   

8.
In continuance with earlier reported work, an extension has been carried out by the same research group. Mulling over the ongoing condition of resistance to existing antimalarial agents, we had reported synthesis and antimalarial activity of certain pyrazole-1,3,4-oxadiazole hybrid compounds. Bearing previous results in mind, our research group ideated to design and synthesize some more derivatives with varied substitutions of acetophenone and hydrazide. Following this, derivatives 5a–r were synthesized and tested for antimalarial efficacy by schizont maturation inhibition assay. Further, depending on the literature support and results of our previous series, certain potent compounds (5f, 5n and 5r) were subjected to Falcipain-2 inhibitory assay. Results obtained for these particular compounds further strengthened our hypothesis. Here, in this series, compound 5f having unsubstituted acetophenone part and a furan moiety linked to oxadiazole ring emerged as the most potent compound and results were found to be comparable to that of the most potent compound (indole bearing) of previous series. Additionally, depending on the available literature, compounds (5a–r) were tested for their antileishmanial potential. Compounds 5a, 5c and 5r demonstrated dose-dependent killing of the promastigotes. Their IC50 values were found to be 33.3 ± 1.68, 40.1 ± 1.0 and 19.0 ± 1.47 μg/mL respectively. These compounds (5a, 5c and 5r) also had effects on amastigote infectivity with IC50 of 44.2 ± 2.72, 66.8 ± 2.05 and 73.1 ± 1.69 μg/mL respectively. Further target validation was done using molecular docking studies. Acute oral toxicity studies for most active compounds were also performed.  相似文献   

9.
In spite of tremendous efforts exerted in the management of COVID-19, the absence of specific treatments and the prevalence of delayed and long-term complications termed post-COVID syndrome still urged all concerned researchers to develop a potent inhibitor of SARS-Cov-2. The hydromethanolic extracts of different parts of E. mauritanica were in vitro screened for anti-SARS-Cov-2 activity. Then, using an integrated strategy of LC/MS/MS, molecular networking and NMR, the chemical profile of the active extract was determined. To determine the optimum target for these compounds, docking experiments of the active extract's identified compounds were conducted at several viral targets. The leaves extract showed the best inhibitory effect with IC50 8.231±0.04 μg/ml. The jatrophane diterpenes were provisionally annotated as the primary metabolites of the bioactive leaves extract based on multiplex of LC/MS/MS, molecular network, and NMR. In silico studies revealed the potentiality of the compounds in the most active extract to 3CLpro, where compound 20 showed the best binding affinity. Further attention should be paid to the isolation of various jatrophane diterpenes from Euphorbia and evaluating their effects on SARS-Cov-2 and its molecular targets.  相似文献   

10.
The phytochemical investigation of Thymelaea tartonraira leaves led to the isolation and characterization of six compounds, including one new flavonoid glycoside identified as hypolaetin 8-O-β-D-galactopyranoside ( 4 ) along with five known compounds, daphnoretin ( 1 ), triumbelletin ( 2 ), genkwanin ( 3 ), tiliroside ( 5 ) and yuankanin ( 6 ). Their structures were established based on spectroscopic methods, such as UV, IR, NMR, and HR-ESI-MS. Triumbelletin ( 2 ) and tiliroside ( 5 ) were isolated for the first time from T. tartonraira leaves. The antioxidant property of all isolated compounds was tested based on DPPH, FRAP and total antioxidant capacity assays. Compound 4 displayed an antioxidant potency more interesting than vitamin C with an IC50=15.00±0.50 μg/ml, followed by compound 5 . Furthermore, the both compounds 4 and 5 were tested for their α-amylase inhibitory activity in-vitro. Compound 4 displayed higher potency to inhibit α-amylase, with an IC50=46.49±2.32 μg/ml, than compound 5 , with an IC50=184.2±9.2 μg/ml, while the reference compound acarbose presented the highest potency to inhibit α-amylase with an IC50=0.44±0.022 μg/ml. Compound 4 displayed a strong inhibitory ability of α-glucosidase activity approximately twice more than the reference compound, acarbose, with IC50 values of 60.00±3.00 and 125.00±6.25 μg/ml, respectively. Thus, compound 4 exhibited a specific inhibitory activity for α-glucosidase. The molecular docking studies have supported our findings and suggested that compound 4 has been involved in various binding interactions within the active site of both enzymes α-amylase and α-glucosidase.  相似文献   

11.
Deregulation of many kinases is directly linked to cancer development and the tyrosine kinase family is one of the most important targets in current cancer therapy regimens. In this study, we have designed and synthesized a series of thieno[2,3-d]pyrimidine derivatives as an EGFR and HER2 tyrosine kinase inhibitors. All the synthesized compounds were evaluated in vitro for their inhibitory activities against EGFRWT; and the most active compounds that showed promising IC50 values against EGFRWT were tested in vitro for their inhibitory activities against mutant EGFRT790M and HER2 kinases. Moreover, the antitumor activities of these compounds were tested against four cancer cell lines (HepG2, HCT-116, MCF-7 and A431). Compounds 13g, 13h and 13k exhibited the highest activities against the examined cell lines with IC50 values ranging from 7.592 ± 0.32 to 16.006 ± 0.58 µM comparable to that of erlotinib (IC50 ranging from 4.99 ± 0.09 to 13.914 ± 0.36 µM). Furthermore, the most potent antitumor agent (13k) was selected for further studies to determine its effect on the cell cycle progression and apoptosis in MCF-7 cell line. The results indicated that this compound arrests G2/M phase of the cell cycle and it is a good apoptotic agent. Finally, molecular docking studies showed a good binding pattern of the synthesized compounds with the prospective target, EGFRWT and EGFRT790M.  相似文献   

12.
A group of tetrazole bearing compounds were synthesized and evaluated for their in vitro cyclooxygenase (COX) isozymes (COX-1/COX-2) inhibitory activity, in vitro anti-inflammatory activity through measuring levels of expression of IL-6 and TNF-α and antimicrobial activity. Cyclization of pyridine derivative 5b was confirmed using 2D NMR such as NOESY and HMBC experiments. Within the synthesized compounds, compound 7c was identified as effective and selective COX-2 inhibitors (COX-2 IC50 = 0.23 uM; COX-2 selectivity index = 16.91). Moreover 7c was the most effective derivative on TNF-α (37.6 pg/ml). While, the most active compound on IL-6 was isoxazole derivative 6 (42.8 pg/ml). Dual inhibitory activity on both IL-6 and TNF-α was exhibited by compounds 2 and 3 (IL-6 = 47.5 and 82.7 pg/ml, respectively) and (TNF-α = 31.7 and 33.8 pg/ml, sequentially).Additionally, compound 7a, showed broad spectrum antimicrobial activity against Gram positive cocci, Gram positive rods and yeast fungus (inhibition zone = 20 and 19 mm). None of the test compounds exhibited activity against Gram negative rods. Compounds 3 and 7c exhibited good antifungal activity at MIC equal to 64.5 µg/ml. While compound 6 showed antibacterial activities against Micrococcus lysodicticus and Bacillus subtilis at MIC = 32.25 and 64.5 µg/ml, respectively.Computational analysis was used to predict molecular properties and bioactivity of the target compounds. To confirm the mode of action of the synthesized compounds as anti-inflammatory agents, molecular docking was done. Appreciable binding interactions were observed for compound 7c containing COX-2 pharmacophore (SO2NH2), with binding energy −10.6652 Kcal/mol, forming two hydrogen bonding interactions with His90 and Tyr355 amino acids. It was fully fitted within COX-2 active site having the highest COX-2 selectivity index between all the test compounds (S.I. = 16.91).  相似文献   

13.
A series of 4-phthalimidobenzenesulfonamide derivatives were designed, synthesized and evaluated for the inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Structures of the title compounds were confirmed by spectral and elemental analyses. The cholinesterase (ChE) inhibitory activity studies were carried out using Ellman’s colorimetric method. The biological activity results revealed that all of the title compounds (except for compound 8) displayed high selectivity against AChE. Among the tested compounds, compound 7 was found to be the most potent against AChE (IC50=?1.35?±?0.08?μM), while compound 3 exhibited the highest inhibition against BuChE (IC50=?13.41?±?0.62?μM). Molecular docking studies of the most active compound 7 in AChE showed that this compound can interact with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE.  相似文献   

14.
Microbial resistance to the available drugs poses a serious threat in modern medicine. We report the design, synthesis and in vitro antimicrobial evaluation of new functionalized 2,3-dihydrothiazoles and 4-thiazolidinones tagged with sulfisoxazole moiety. Compound 8d was most active against Bacillis subtilis (MIC, 0.007?µg/mL). Moreover, compounds 7cd and 8c displayed significant activities against B. subtilis and Streptococcus pneumoniae (MIC, 0.03–0.06?µg/mL and 0.06–0.12?µg/mL versus ampicillin 0.24?µg/mL and 0.12?µg/mL; respectively). Compounds 7a and 7cd were highly potent against Escherichia coli (MIC, 0.49–0.98?µg/mL versus gentamycin 1.95?µg/mL). On the other hand, compounds 7e and 9c were fourfolds more active than amphotericin B against Syncephalastrum racemosum. Molecular docking studies showed that the synthesized compounds could act as inhibitors for the dihydropteroate synthase enzyme (DHPS). This study is a platform for the future design of more potent antimicrobial agents.  相似文献   

15.
The in vitro cytotoxic activity in Vero cells and the antiviral activity of Erythrina speciosa methanol extract, fractions, and isolated vitexin were studied. The results revealed that E. speciosa leaves ethyl acetate soluble fraction of the methanol extract (ESLE) was the most active against herpes simplex virus type 1 (HSV‐1). Bioactivity‐guided fractionation was performed on ESLE to isolate the bioactive compounds responsible for this activity. One sub‐fraction from ESLE (ESLE IV) showed the highest activity against HSV‐1 and Hepatitis A HAV‐H10 viruses. Vitexin isolated from ESLE VI exhibited a significant antiviral activity (EC50=35±2.7 and 18±3.3 μg/mL against HAV‐H10 and HSV‐1 virus, respectively), which was notably greater than the activity of the extract and the fractions. Molecular docking studies were carried out to explore the molecular interactions of vitexin with different macromolecular targets. Analysis of the in silico data together with the in vitro studies validated the antiviral activity associated with vitexin. These outcomes indicated that vitexin is a potential candidate to be utilized commendably in lead optimization for the development of antiviral agents.  相似文献   

16.
A series of hybrid aldimine‐type Schiff base derivatives including trimethoxyphenyl ring and 1,2,4‐triazole‐3‐thiol/thione were designed as tubulin inhibitors. The molecular docking simulations on tubulin complex (PDB: 1SA0) revealed that derivatives with nitro and/or chloro or dimethylamino substitutes (4‐nitro, 2‐nitro, 3‐nitro, 4‐Cl‐3‐nitro, and 4‐Me2N) on the aldehyde ring were the best compounds with remarkable binding energies (?9.09, ?9.07, ?8.63, ?8.11, and ?8.07 kcal mol?1, respectively) compared to colchicine (?8.12 kcal mol?1). These compounds were also showed remarkable binding energies from ?10.66 to ?9.79 and ?10.12 to ?8.95 kcal mol?1 on human (PDB: 1PD8) and Candida albicans (PDB: 3QLS) DHFR, respectively. The obtained results of cytotoxic activities against HT1080, HepG2, HT29, MCF‐7, and A549 cancer cell lines indicated that 4‐nitro and 2‐nitro substituted compounds were the most effective agents by mean IC50 values of 11.84 ± 1.01 and 19.92 ± 1.36 μm , respectively. 4‐Nitro substituted compound (5 μm ) and 2‐nitro substituted compound (30 μm ) were able to strongly inhibit the tubulin polymerization compared to colchicine (5 μm ) and 4‐nitro substituted compound displayed IC50 values of 0.16 ± 0.01 μm compared to that of colchicine (0.19 ± 0.01 μm ). This compound also showed the lowest MIC values on all tested microbial strains including three Gram‐positive, four Gram‐negative, and three yeast pathogens.  相似文献   

17.
Mannich bases consisting of 1,3,4-oxadiazole-2-thione ( 3 a – 3 l ) bearing various substituents were synthesized and found potent jack bean urease inhibitors. The prepared compounds showed significantly good inhibitory activities with IC50 values from 9.45±0.05 to 267.42±0.23 μM. The compound 3 k containing 4-chlorophenyl (−R) and 4-hydroxyphenyl (−R′) was most active with IC50 9.45±0.05 μM followed by 3 e (IC50 22.52±0.15 μM) in which −R was phenyl and −R′ was isopropyl group. However, when both −R and −R′ were either 4-chlorophenyl groups ( 3 l ) or only −R′ was 4-nitrophenyl ( 3 i ), both compounds were found inactive. The detailed binding affinities of the produced compounds with protein were explored through molecular docking and data-supported in-vitro enzyme inhibition profiles. Drug likeness was confirmed by in silico ADME investigations and molecular orbital analysis (HOMO-LUMO) and electrostatic potential maps were got from DFT calculations. ESP maps exposed that there are two potential binding sites with the most positive and most negative parts.  相似文献   

18.
Inhibition of Pancreatic lipase (PL) is considered to be a promising target for the management of obesity, owing to its crucial role in the digestion of dietary triglycerides. A series of 31 indolyl ketohydrazide-hydrazone analogs ( 5 aa – cm ) were designed, synthesized and evaluated for their PL inhibitory potential. The analogs were designed using molecular modelling studies. The designed analogs were then synthesized by condensation of indolyl oxoacetohydrazide with various substituted benzaldehydes. All the synthesized analogs showed PL inhibitory activity in the range of 4.13–48.35 μM, as compared with orlistat (0.86±0.09 μM). The most potent analog 5 bi (IC50=4.13±0.95 μM) was found to show a competitive type of inhibition with Ki value of 0.725 μM. Additionally, the molecular docking study proved the binding of analog 5 bi at the active site of PL (PDB ID: 1LPB) with MolDock score of −141.279 kcal/mol. It also exhibited various interactions with the key amino acids namely Phe77, Phe215, Tyr114, Ser152, Arg256, His263, etc. Furthermore, the protein-ligand complex of analog 5 bi was found to be stable in molecular dynamics simulation for 100 ns with RMSD of less than 3.2 and 4 Å for the protein and ligand, respectively. The current work hereby provides a basis for the potential role of indolyl ketohydrazide-hydrazone analogs in PL inhibition and further optimization could result in the generation of new leads as anti-obesity agents.  相似文献   

19.
Herein, a straightforward synthetic strategy mediated by Ugi reaction was developed to synthesize novel series of compounds as tyrosinase inhibitors. The structures of all compounds were confirmed by FT-IR, 1H-NMR, 13C-NMR, and CHNOS techniques. The tyrosinase inhibitory activities of all synthesized derivatives 5a – m were determined against mushroom tyrosinase and it was found that derivative 5c possesses the best inhibition with an IC50 value of 69.53±0.042 μM compared to the rest of the synthesized derivatives. Structure–activity relationships (SARs) showed that the presence of 4-MeO or 4-NO2 at the R2 position plays a key role in tyrosinase inhibitory activities. The enzyme kinetics studies showed that compound 5c is an noncompetitive inhibitor. For in silico study, the allosteric site detection was first applied to find the appropriate binding site and then molecular docking and molecular dynamic studies were performed to reveal the position and interactions of 5c as the most potent inhibitor within the tyrosinase active site. The results showed that 5c bind well with the proposed binding site and formed a stable complex with the target protein.  相似文献   

20.
Some new derivatives of substituted-4(3H)-quinazolinones were synthesized and evaluated for their in vitro antitumor and antimicrobial activities. The results of this study demonstrated that compound 5 yielded selective activities toward NSC Lung Cancer EKVX cell line, Colon Cancer HCT-15 cell line and Breast Cancer MDA-MB-231/ATCC cell line, while NSC Lung Cancer EKVX cell line and CNS Cancer SF-295 cell line were sensitive to compound 8. Additionally, compounds 12 and 13 showed moderate effectiveness toward numerous cell lines belonging to different tumor subpanels. On the other hand, the results of antimicrobial screening revealed that compounds 1, 9 and 14 are the most active against Staphylococcus aureus ATCC 29213 with minimum inhibitory concentration (MIC) of 16, 32 and 32?μg/mL respectively, while compound 14 possessed antimicrobial activities against all tested strains with the lowest MIC compared with other tested compounds. In silico study, ADME-Tox prediction and molecular docking methodology were used to study the antitumor activity and to identify the structural features required for antitumor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号