首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activities of -glucosidase, -glucosidase, and -galactosidase were studied during the isolation and purification of lectins from Azospirillum brasilenseSp7 and Azospirillum lipoferum59b cells. These enzymatic activities were revealed in crude extracts of surface proteins, protein fraction precipitated with ammonium sulfate or ethanol–acetone mixture, and protein fraction obtained by gel filtration on Sephadex G-75. The distribution of the enzymes between different protein fractions varied for the azospirilla studied. The cofunction of the A. brasilenseSp7 lectin and -galactosidase on the cell surface is assumed. A strong interaction between the A. lipoferum59b lectin and glucosidases was revealed. The lectin from A. lipoferum59b may possess saccharolytic activity.  相似文献   

2.
α-Glucosidase has been isolated from Bacillus cereus in ultracentrifugally and electrophoretically homogeneous form, and its properties have been investigated. The enzyme has a sedimentation constant of 1.4 S and a molecular weight of 12,000. The highly purified enzyme splits α-d-(1→4)-glucosidic linkages in maltose, maltotriose, and phenyl α-maltoside, but shows little or no activity toward polysaccharides, such as amylose, amylopectin, glycogen and soluble starch. The enzyme has α-glucosyltransferase activity, the main transfer product from maltose being maltotriose. The enzyme can also catalyze the transfer of α-glucosyl residue from maltose to riboflavin. On the basis of inhibition studies with diazonium-1-H-tetrazole, rose bengal and p-chloromercuribenzoate, it is assumed that the enzyme contains both histidine and cysteine residues in the active center.  相似文献   

3.
Three new selaginellin derivatives, selaginpulvilins V-X ( 1–3 ), together with seven known analogs ( 4–10 ) were isolated from whole plants of Selaginella pulvinata. Their structures were determined by extensive spectroscopic methods including 1D and 2D NMR, HR-ESI-MS and chemical derivatization method. Compound 1 represents a rare example of naturally occurring selaginellin with an alkynylphenol-trimmed skeleton. Biological evaluation showed that compounds 2 , 6 and 8 displayed moderate inhibition against α-glucosidase with IC50 values of 3.71, 2.04 and 4.00 μM, respectively.  相似文献   

4.
The fungal strain Mortierella alliacea YN-15 is an arachidonic acid producer that assimilates soluble starch despite having undetectable α-amylase activity. Here, a α-glucosidase responsible for the starch hydrolysis was purified from the culture broth through four-step column chromatography. Maltose and other oligosaccharides were less preferentially hydrolyzed and were used as a glucosyl donor for transglucosylation by the enzyme, demonstrating distinct substrate specificity as a fungal α-glucosidase. The purified enzyme consisted of two heterosubunits of 61 and 31 kDa that were not linked by a covalent bond but stably aggregated to each other even at a high salt concentration (0.5 M), and behaved like a single 92-kDa component in gel-filtration chromatography. The hydrolytic activity on maltose reached a maximum at 55°C and in a pH range of 5.0-6.0, and in the presence of ethanol, the transglucosylation reaction to form ethyl-α-D-glucoside was optimal at pH 5.0 and a temperature range of 45-50°C.  相似文献   

5.
Wall-bound α-glucosidase (EC 3.2.1.20) has been solubilized from suspension-cultured rice cells with Sumyzyme C and Pectolyase Y-23 and isolated by a procedure including fractionation with ammonium sulfate, Sephadex G-100 column chromatography, CM-cellulose column chroma-tography, Sephadex G-200 column chromatography, and preparative disc gel electrophoresis. The molecular weight of the enzyme was 64,000. The enzyme readily hydrolyzed maltose, maltotriose, and amylose, but hydrolyzed isomaltose and soluble starch more slowly. The Michaelis constant for maltose of the enzyme was estimated to be 0.272 mm. The enzyme produced panose as the main α- glucosyltransferred product from maltose.  相似文献   

6.
Multiple forms of neutral α-glucosidase (pH optima, 6.0~6.5) were purified from pig duodenal mucosa by a procedure including Triton X-100 treatment, fractionation with ammonium sulfate, fractionation with ethyl alcohol, DEAE-cellulose column chromatography and preparative polyacrylamide disc gel electrophoresis. All of the α-glucosidases, Ia, IIa, Ib and IIb, were found to be homogeneous on polyacrylamide disc gel electrophoresis. The molecular weights, isoelectric points and optimum temperatures of α-glueosidases Ia and IIa were 145,000~150,000, pH 3.5~3.7 and 55°C, respectively, and both enzymes were stable up to 55°C on treatment at pH 6.0 for 15 min; whereas those of the other two α-glucosidases, Ib and IIb, were 80,000, pH 4.0~4.1 and 65°C, respectively, and both enzymes were stable up to 70°C on the same treatment. The Km values of enzyme IIa for maltose, maltotriose and amylose were 1.72mm, 0.37 mm and 1.67mg/ml, while those of enzyme IIb were 3.33 mm, 2.61 mm and 11.8 mg/ml, respectively. All enzyme hydrolyzed α-1,4-, α-1,3- and α-1,2-glucosidic linkages in substrates, but showed no activity on sucrose or isomaltose. Enzymes IIa and IIb hydrolyzed phenyl α-maltoside to glucose and phenyl α-glucoside, and maltotriose was formed as the main α-glucosyltransfer product from maltose. It was revealed that two types of neutral α-glucosidases having no activity toward sucrose or isomaltose existed in pig duodenal mucosa, and that one type comprised α-glucosidase having both maltose- and amylaceous α-glucan-hydrolyzing activities and the other type heat-stable maltooligosaccharidases which hydrolyzed amylaceous α-glucan weakly.  相似文献   

7.
A water-soluble and neutral polysaccharide was extracted from the current pseudobulbs of Oncidium “Gower Ramsey” during the early inflorescence stage (flower stalk less than 4 cm) by hot water, precipitated with ethanol, and purified with an anion exchanger. From the data of monosaccharide composition and linkage and anomeric configuration analyses, the polysaccharide was identified as a linear β-1→4 linked mannan.  相似文献   

8.
The substrate and inhibitor specificities, and α-glucosyltransfer products of the purified α-glucosidase from the mycelia of Mucor racemosus were investigated. The enzyme hydrolyzed maltose, maltotriose, phenyl α-maltoside, isomaltose, soluble starch, and amylose liberating glucose, but did not act on sucrose. The enzyme hydrolyzed phenyl a-maltoside into glucose and phenyl α-glucoside. Maltotriose was the main a-glucosyltransfer product formed from maltose, and isomaltose was that from soluble starch. Tris and turanose inhibited the enzyme activity, but PCMB and EDTA did not. The enzyme hydrolyzed amylose liberating a-glucose. The enzyme was a glycoprotein containing 4.1% of neutral sugar. The neutral sugar was identified as mannose in the acid hydrolyzate of the enzyme.  相似文献   

9.
Substrate and inhibitor specificities, and transglucosylation action of crystalline α-glucosidase from the mycelia of Mucor javanicus have been investigated. The enzyme hydrolyzed maltose, methyl-α-maltoside, and soluble starch liberating glucose, but little or not phenyl-α-glucoside, methyl-α-glucoside, sucrose, isomaltose, panose and dextran. The enzyme hydrolyzed phenyl-α-maltoside to glucose and phenyl-α-glucoside. The enzyme acted also as a glucosyltransferase when it was incubated with glucosyl donor such as maltose. Maltotriose was the principal transglucosylation product formed from maltose. The enzyme also catalyzed transglucosylation from maltose to riboflavin, pyridoxine, esculin and rutin. Tris and turanose inhibited the enzyme activity, but PCMB and EDTA did not. It is suggested that the enzyme activity is closely related to the histidine residue in the active center, from the inhibition experiments using diazonium-1-H-tetrazole and rose bengal.  相似文献   

10.
In order to investigate polymeric flavonoids, the polycondensate of catechin with glyoxylic acid (PCG) was prepared and its chemically antioxidant, cellular antioxidant (CAA) and α-glucosidase inhibitory activities were evaluated. The DPPH and ABTS radical scavenging activities and antiproliferative effect of PCG were lower than those of catechin, while PCG had higher CAA activity than catechin. In addition, PCG had very high α-glucosidase inhibitory activities (IC50 value, 2.59 μg/mL) in comparison to catechin (IC50 value, 239.27 μg/mL). Inhibition kinetics suggested that both PCG and catechin demonstrated a mixture of noncompetitive and anticompetitive inhibition. The enhanced CAA and α-glucosidase inhibitor activities of PCG could be due to catechin polymerization enhancing the binding capacity to the cellular membrane and enzymes.  相似文献   

11.
A neutral α-glucosidase was purified from pig serum by precipitation with ammonium sulfate, chromatographies on DEAE-cellulose and -Sephadex A–50, and gel filtration on Bio-Gel P–300 and Sephadex G–200. The purified enzyme was homogeneous in ultracentrifugal and disc electrophoretic analysis. The sedimentation coefficient (s20,w) was calculated to be 10.7 S, and the isoelectric point, 4.0. The molecular weight was estimated to be approximately 2.7 × 105 by thin-layer gel filtration and SDS-disc electrophoresis.

The enzyme exhibited also glucoamylase activity. The optimal pH was found to be in the pH range of 6.0 to 7.0 for maltose and soluble starch. The ratio of velocity of hydrolysis for maltose (Km, 0.72 mg/ml), soluble starch (Km, 9.8 mg/ml) and shellfish glycogen (Km, 55.6 mg/ml) was calculated to be 100: 110: 5.15 in this order.  相似文献   

12.
Dry MeOH extracts of the twig barks of Pyrus communis subsp. pyraster, P. spinosa and their hybrid P.×jordanovii nothosubsp. velenovskyi, collected in wild in Serbia, were analyzed. By LC/MS, the contents of arbutin (99.9–131.0 mg/g), chlorogenic acid (2.2–6.3 mg/g), catechin (1.0–5.3 mg/g) and total dimeric and trimeric procyanidins (42.2–61.3 mg/g), including procyanidin B2 (8.9–17.2 mg/g), were determined. Colorimetrically, high contents of total phenolics (436.2–533.4 mg GAE/g) and tannins (339.4–425.7 mg GAE/g), as well as strong total antioxidant activities (FRAP values 4.5–5.9 mmol Fe2+/g), and DPPH (SC50=6.6–7.1 μg/ml) and hydroxyl radical (SC50=447.1–727.7 μg/ml) scavenging abilities were revealed. In vitro, all extracts exhibited notable inhibition of α-amylase (IC50=310.8–617.7 μg/ml) and particularly strong inhibition of α-glucosidase (IC50=2.1–3.7 μg/ml). Molecular docking predicted that among identified compounds procyanidin B2 is the best inhibitor of these carbohydrate-digesting enzymes. Obtained results showed that the barks of investigated Pyrus hybrid and its parent taxa have similar composition and bioactivity.  相似文献   

13.
Hydroxychromones and B-ring-substituted 5,6,7-trihydroxyflavones were prepared to evaluate the contribution of the B ring of baicalein (5,6,7-trihydroxyflavone, 1) to its potent α-glucosidase inhibitory activity. Hydroxychromones, which lack 6-hydroxyl substitution, did not show any inhibitory activity, while 5,6,7-trihydroxy-2-methylchromone (5) showed high activity. Among the tested B-ring-substituted 5,6,7-trihydroxyflavones, the 4′-hydroxy-, 3′,4′-dihydroxy-, and 3′,4′,5′-trihydroxy-substituted derivatives were found to give more activity than that of 1. The methoxy-substituted derivatives, however, showed less activity than 1. The results suggest that the B ring of 1 was not essential, although advantageous to the activity; hydroxyl substitution on the B ring of 5,6,7-trihydroxyflavones was favorable to the activity, whereas methoxyl substitution was unfavorable; at least 4′-hydroxyl substitution of 5,6,7-trihydroxyflavones was required for enhanced activity, in which the number of hydroxyl groups did not take part.  相似文献   

14.
Three forms of α-glucosidase (EC 3.2.1.20), designated as I, II, and III, have been isolated from suspension-cultured rice cells by a procedure including fractionation with ammonium sulfate, CM-cellulose column chromatography, and preparative disc gel electrophoresis. The three enzymes were homogeneous by Polyacrylamide disc gel electrophoresis. α-Glucosidase I was secreted in the culture medium during growth, α-glucosidase II was readily extracted from rice cells with the buffer alone, and α-glucosidase III required NaCl to be solubilized. The molecular weights of the three enzymes were 96,000 (I), 84,000 (II), and 58,000 (III). The three enzymes readily hydrolyzed maltose, maltotriose, maltotetraose, amylose, and soluble starch. α-Glucosidase I possessed strong isomaltose-hydrolyzing activity and hydrolyzed isomaltose about three times as rapidly as α-glucosidase III. The three enzymes produced panose as the main α-glucosyltransfer product from maltose. Half the maltose-hydrolyzing activities of the three enzymes were inhibited by 11.25 ng of castanospermine. The inhibition was competitive.  相似文献   

15.
Transglucosylation activities of spinach α-glucosidase I and IV, which have different substrate specificity for hydrolyzing activity, were investigated. In a maltose mixture, α-glucosidase I, which has high activity toward not only maltooligosaccharides but also soluble starch and can hydrolyze isomaltose, produced maltotriose, isomaltose, and panose, and α-glucosidase IV, which has high activity toward maltooligosaccharides but faint activity toward soluble starch and isomaltose, produced maltotriose, kojibiose, and 2,4-di-α-D-glucosyl-glucose. Transglucosylation to sucrose by α-glucosidase I and IV resulted in the production of theanderose and erlose, respectively, showing that spinach α-glucosidase I and IV are useful to synthesize the α-1,6-glucosylated and α-1,2- and 1,4-glucosylated products, respectively.  相似文献   

16.
The crystalline α-glucosidase from Mucor javanicus has a sedimentation constant () of 6.1 S, a diffusion constant (D20, w) of 4.8 × 10?7 cm2 · sec?1, and an average molecular weight, as determined by two different methods, of 124,600. The α-glucosidase is a glycoprotein containing the following constituents; tryptophan23, lysine81, histidine39, arginine34, aspartic acid102, threonine69, serine46, glutamic acid78, proline55, glycine78, alanine55, half cystine8, valine53, methionine17, isoleucine58, leucine81, tyrosine51, phenylalanine41, glucosamine12, and mannose38.

The low content of half cystine, the high contents of aspartic acid, lysine, and histidine, and the presence of mannose as the sole constituent of neutral sugar are the characteristics of this enzyme.  相似文献   

17.
Mulberry leaves have been used as the sole food for silkworms in sericulture, and also as a traditional medicine for diabetes prevention. Mulberry leaf components, for example 1-deoxynojirimycin (1-DNJ), inhibit the activity of α-glucosidase and prevent increased blood glucose levels, and they are highly toxic to caterpillars other than silkworms. The α-glucosidase inhibitory activity of mulberry leaves changes with the season, but it is unknown which environmental conditions influence the α-glucosidase inhibitory activity. We investigated in this study the relationship between the α-glucosidase inhibitory activity and environmental conditions of temperature and photoperiod. The results demonstrate that low temperatures induced decreasing α-glucosidase inhibitory activity, while the induction of newly grown shoots by the scission of branches induced increasing α-glucosidase inhibitory activity. These results suggest that the α-glucosidase inhibitory activity was related to the defense mechanism of mulberry plants against insect herbivores.  相似文献   

18.
Diabetes mellitus is a multifactorial metabolic disease characterized by post-prandial hyperglycemia (PPHG). α-amylase and α-glucosidase inhibitors aim to explore novel therapeutic agents. Herein we report the promises of Dioscorea bulbifera and its bioactive principle, diosgenin as novel α-amylase and α-glucosidase inhibitor. Among petroleum ether, ethyl acetate, methanol and 70% ethanol (v/v) extracts of bulbs of D. bulbifera, ethyl acetate extract showed highest inhibition upto 72.06 ± 0.51% and 82.64 ± 2.32% against α-amylase and α-glucosidase respectively. GC-TOF-MS analysis of ethyl acetate extract indicated presence of high diosgenin content. Diosgenin was isolated and identified by FTIR, 1H NMR and 13C NMR and confirmed by HPLC which showed an α-amylase and α-glucosidase inhibition upto 70.94 ± 1.24% and 81.71 ± 3.39%, respectively. Kinetic studies confirmed the uncompetitive mode of binding of diosgenin to α-amylase indicated by lowering of both Km and Vm. Interaction studies revealed the quenching of intrinsic fluorescence of α-amylase in presence of diosgenin. Similarly, circular dichroism spectrometry showed diminished negative humped peaks at 208 nm and 222 nm. Molecular docking indicated hydrogen bonding between carboxyl group of Asp300, while hydrophobic interactions between Tyr62, Trp58, Trp59, Val163, His305 and Gln63 residues of α-amylase. Diosgenin interacted with two catalytic residues (Asp352 and Glu411) from α-glucosidase. This is the first report of its kind that provides an intense scientific rationale for use of diosgenin as novel drug candidate for type II diabetes mellitus.  相似文献   

19.
20.
A new deep-sea species of chaetognaths, Eukrohnia geptneri, from the Northwestern Pacific is described; the young were registered in the epipelagic zone, while the adult specimens were found in deep depths of the Japanese Depression. Morphologically, this species is close to E. bathyantarctic; however, it differs from the latter in a series of characteristics. The diagnosis of the new species, drawings, and identification keys for the world fauna of the genus Eukrohniaare presented. A hypothesis is proposed on the origin of bathypelagic species inhabiting Antarctic waters, the chaetognath Eukrohnia bathyantarcticaDavid, 1958, from the species E. geptnerisp. nov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号