首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 932 毫秒
1.
Process intensification of monoclonal antibody production is leading to more concentrated feed media causing issues with precipitation of solids from the media solution. This results in processing problems since components in the precipitate are no longer in solution, changing the media composition and leading to variability in cell culture performance. The goal of this work is to characterize the feed media precipitate, and in particular to identify the precipitated components so that mitigation strategies can be developed. From the conducted analysis, the precipitate was predominately found to be organic and was analyzed with liquid chromatography-mass spectrometry and inductively coupled plasma-optical emission spectroscopy (ICP-OES) to identify the constituent components. Up to ten amino acids were identified with tyrosine (approximately 77 wt.%) and phenylalanine (approximately 4 wt.%) being the most prevalent amino acids. Elemental analysis with ICP-OES revealed that inorganic components were accounted for less than one weight percentage of the solid precipitate with metal sulfates being the predominant inorganic components.  相似文献   

2.
This article presents a novel method for immobilization of active ingredients. The method is based on CO(2) aided active ingredient co-precipitation with glycinin, a biodegradable protein matrix from edible soybean protein. Glycinin precipitates abundantly under isoelectric conditions and serves as the matrix within which the active substance is trapped during the precipitation process. The enzyme lipase from Candida rugosa was successfully co-precipitated into the protein pellet to prove the principle. It was shown that the lipase within the co-precipitate retained lipase and esterase activity under different pH conditions. In some cases the activity was even higher than the activity of crude lipase, possibly due to the protective role of the matrix protein. Due to the retained lipase activity and food-grade quality of the binary precipitate, it has potential of being used in the food or pharmaceutical industry. Additional quality of the binary precipitate is the potentially significantly reduced downstream processing due to the fact that no organic solvents or precipitants were used in the precipitation process.  相似文献   

3.
The precipitation of calcium carbonate by 27 strains ofDeleya halophila using solid and liquid media containing different NaCl concentrations (2.5, 7.5, or 20%, wt/vol) as sole salt, and two incubation temperatures (22° and 32°C) have been studied. All the strains tested were able to precipitate calcium carbonate under the different environmental conditions assayed. Crystals formed were calcite and vaterite; the ratio of calcite to vaterite was dependent on total salts and on the type of medium.  相似文献   

4.
For poorly soluble weak bases, the possibility of drug precipitation upon entry into the small intestine may affect the amount of drug available for uptake through the intestinal mucosa. A few years ago, a transfer model was introduced which has been developed to simulate the transfer of a dissolved drug out of the stomach into the small intestine. However, this setup requires the use of clinically relevant doses of the drug, which are typically not available in the early stages of formulation development. The present series of tests was performed to check whether it is possible to create a miniaturized but physiologically relevant transfer model that can be applied in the early formulation development. Experiments were performed with two miniaturized setups: a 96-well plate model and a mini-paddle transfer system. Itraconazole and tamoxifen were used as model drugs. An appropriate amount of each drug formulation was dissolved in simulated gastric fluid and then transferred into an acceptor phase consisting of fasted/fed state simulated small intestinal fluid. The amount of drug dissolved in the acceptor phase was monitored over a period of 4 h. Results from both setups were very similar. The tamoxifen preformulation did not precipitate, whereas the itraconazole formulation precipitated to the same extent in both setups. Due to the possibility of generating physiologically relevant results but using smaller sample sizes and smaller volumes of media, both miniaturized transfer systems offer various advantages in terms of substance and analytical and material cost savings when evaluating the precipitation potential of poorly soluble weakly basic drug candidates.Key words: 96-well plate, biorelevant media, drug precipitation, gastric emptying, transfer model  相似文献   

5.
Chemically defined media have been widely used in the biopharmaceutical industry to enhance cell culture productivities and ensure process robustness. These media, which are quite complex, often contain a mixture of many components such as vitamins, amino acids, metals and other chemicals. Some of these components are known to be sensitive to various stress factors including photodegradation. Previous work has shown that small changes in impurity concentrations induced by these potential stresses can have a large impact on the cell culture process including growth and product quality attributes. Furthermore, it has been shown to be difficult to detect these modifications analytically due to the complexity of the cell culture media and the trace level of the degradant products. Here, we describe work performed to identify the specific chemical(s) in photodegraded medium that affect cell culture performance. First, we developed a model system capable of detecting changes in cell culture performance. Second, we used these data and applied an LC‐MS analytical technique to characterize the cell culture media and identify degradant products which affect cell culture performance. Riboflavin limitation and N‐formylkynurenine (NFK), a tryptophan oxidation catabolite, were identified as chemicals which results in a reduction in cell culture performance. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:74–82, 2016  相似文献   

6.
The purpose of this research was to use our previously validated dynamic injection apparatus as a rapid method for screening pH-adjusted formulations of a new vancomycin analog, Van-An, for their potential to precipitate upon dilution. In 1 vial, Van-An was reconstituted according to the manufacturer’s instructions. In a separate vial, the Van-An formulation’s existing phosphate buffer species was supplemented with acetate buffer, which has a pKa in the desired range: between the pH values of the formulation (pH 3.9) and blood (pH 7.4). The formulations were injected using the dynamic injection apparatus into a flowing stream of isotonic Sorensen’s phosphate buffer at rates of 0.25, 0.5, 1, and 2 mL/min. The peaks obtained with the spectrophotometer were reproducible for each injection rate/formulation combination. For the phosphate-buffered formulation, the least amount of precipitation was obtained at the 0.25 mL/min injection rate. Acetate buffer was able to substantially reduce such precipitation, even at the highest injection rate. The opacity peaks for the formulation with the acetate addition were significantly smaller (P<.05) than those obtained for the unaltered formulation at all 4 injection rates. The results suggest that acetate is a better buffer species than phosphate for the pH range defined. Furthermore, we present evidence to support a generally applicable approach to screening new formulations of drug products that may be clinically useful for reducing the incidence of phlebitis in humans. Published: January 13, 2006  相似文献   

7.
Bioremediation methods that precipitate contaminants in situ as solid (mineral) phases can provide cost-effective options for removing dissolved metals in contaminated groundwater. The current field-scale experiments demonstrate that indigenous bacteria can be stimulated to remove metals by injection of electron-donating substrates and nutrients into a contaminated aquifer. Groundwater at the investigation site is aerobic and contains high levels of lead, cadmium, zinc, copper, and sulfuric acid (pH = 3.1) derived from a car-battery recycling plant. During the experiments, lead, cadmium, zinc, and copper were almost completely removed by precipitation of solid sulfide phases, as pH increased from 3 to ∼ 5 and Eh dropped from +400 mV to -150 mV. X-ray and transmission electron microscopy (TEM) analyses of filtered material from the treated groundwater indicated the presence of newly formed nanocrystalline metal sulfides. Genetic sequencing indicated that the principal species of sulfate-reducing bacteria involved in the bioremediation process was Desulfosporosinus orientis. Geochemical modeling shows that oxidation of added substrates and subsequent bacterial sulfate reduction produced desired geochemical conditions (i.e., decreasing Eh and increasing pH) for the precipitation and sorption of metal sulfides. Geophysical survey results suggest that bioremediation lowers electrical conductance of groundwater and possibly increases the magnetic susceptibility of porous media. This study demonstrates that integrated geochemical, geophysical, and microbiological analyses, combined with theoretical modeling, can successfully track and predict the progress of subsurface bioremediation.  相似文献   

8.
Events of viral contaminations occurring during the production of biopharmaceuticals have been publicly reported by the biopharmaceutical industry. Upstream raw materials were often identified as the potential source of contamination. Viral contamination risk can be mitigated by inactivating or eliminating potential viruses of cell culture media and feed solutions. Different methods can be used alone or in combination on raw materials, cell culture media, or feed solutions such as viral inactivation technologies consisting mainly of high temperature short time, ultraviolet irradiation, and gamma radiation technologies or such as viral removal technology for instance nanofiltration. The aim of this review is to present the principle, the advantages, and the challenges of high temperature short time (HTST) technology. Here, we reviewed effectiveness of HTST treatment and its impact on media (filterability of media, degradation of components), on process performance (cell growth, cell metabolism, productivity), and product quality based on knowledge shared in the literature.  相似文献   

9.
The capture of recombinant antibodies from cell culture broth is the first critical step of downstream processing. We were able to develop a precipitation‐based method for the capture and purification of monoclonal antibodies based on divalent cations, namely ZnCl2. Traditional precipitation processes have to deal with high dilution factors especially for resolubilization and higher viscosity due to the use of PEG as precipitation or co‐precipitation agent. By the use of the crosslinking nature of divalent cations without the use of PEG, we kept viscosity from the supernatant and resolubilization dilution factors very low. This is especially beneficial for the solid–liquid separation for the harvest and wash of the precipitate in continuous mode. For this harvest and wash, we used tangential flow filtration that benefits a lot from low viscosity solutions, which minimizes the membrane fouling. With this precipitation based on ZnCl2, we were able to implement a very lean and efficient process. We demonstrated precipitation studies with three different antibodies, Adalimumab, Trastuzumab, and Denosumab, and a continuous capture case study using tangential flow filtration for precipitate recovery. In this study, we achieved yields of 70%.  相似文献   

10.
Reversible precipitation can be used as an efficient purification tool for proteins. In addition, identifying conditions under which precipitation or aggregation occurs is of key importance in the bioprocessing and pharmaceutical industry, as this can aid in better formulations and hinder aggregation in chromatography. We have evaluated the precipitation of proteins as determined by light scattering in microplates as a tool for the high‐throughput determination of thermodynamic parameters for protein precipitation, with the potential for screening of formulation additives and relevant bioprocess conditions such as pH. This provides a useful complementary technique to existing microplate‐based protein thermostability measurements. Using hen egg‐white lysozyme and alcohol dehydrogenase as model proteins we have determined the extent of reversible precipitation as a function of ammonium sulfate and sodium chloride concentrations, and also demonstrated global fitting of the data to generate a model where the fraction precipitated can be predicted for any given condition. The global fit provided thermodynamic parameters, including the free energy for protein precipitation, and also allowed an approximate determination of the average size of the structural nucleus that contributes to the free energy of precipitation for each protein. The rapid collection of thermodynamic parameters for protein precipitation, in parallel with protein thermostability measurements, will provide a powerful platform for protein formulation, and also lead to datasets useful for testing theoretical predictions of reversible precipitation based on the molecular modeling of specific protein structure interactions. Biotechnol. Bioeng. 2011;108: 322–332. © 2010 Wiley Periodicals, Inc.  相似文献   

11.
The use of Raman spectroscopy coupled with chemometrics for the rapid identification, characterization, and quality assessment of complex cell culture media components used for industrial mammalian cell culture was investigated. Raman spectroscopy offers significant advantages for the analysis of complex, aqueous‐based materials used in biotechnology because there is no need for sample preparation and water is a weak Raman scatterer. We demonstrate the efficacy of the method for the routine analysis of dilute aqueous solution of five different chemically defined (CD) commercial media components used in a Chinese Hamster Ovary (CHO) cell manufacturing process for recombinant proteins.The chemometric processing of the Raman spectral data is the key factor in developing robust methods. Here, we discuss the optimum methods for eliminating baseline drift, background fluctuations, and other instrumentation artifacts to generate reproducible spectral data. Principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA) were then employed in the development of a robust routine for both identification and quality evaluation of the five different media components. These methods have the potential to be extremely useful in an industrial context for “in‐house” sample handling, tracking, and quality control. Biotechnol. Bioeng. 2010;107: 290–301. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
Advantages of using internally developed chemically‐defined (CD) media for cell culture‐based therapeutic protein production over commercial media include better raw material control and medium vendor options, and most importantly, flexibility for process development and subsequent optimization needed for therapeutic protein production. Through several rounds of design of experiment (DOE) screening, and medium component supplementation and optimization studies, we successfully developed a CD basal medium (CDM) for CHO cell culture. The internally prepared liquid CDM demonstrated comparable cell culture performance to that from a commercially available control medium. However, when the same CDM formulation was transferred to two major commercial medium suppliers for manufacturing, cell culture performance utilizing these newly prepared media was significantly reduced compared with the in‐house prepared counterpart. An investigation was launched to assess whether key medium components were sensitive to large‐scale preparation of the final bulk media by the vendors. Further work necessitated the reformulation of the original CDM formulation into a core medium that was suitable for large‐scale media manufacturing. The modified preparation of the core medium with two separate supplements to generate the final CDM was able to recover the expected cell culture performance and monoclonal antibody (mAb) productivity. Confirmation of cell culture robustness in cell growth and production was corroborated in two additional mAb‐expressing cell lines. This work demonstrates that a robust CD medium is not only one that performs during the development stage, but also one that must be reproducible by commercial media vendors. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1163–1171, 2015  相似文献   

13.
The effect of precipitation of complexes of streptavidin with biotinylated proteins under conditions of simple (according to Mancini) and double (according to Ouchterlony) radial diffusion in agar gel was studied. The position and form of precipitation lines depended primarily on the initial concentration of components and the degree of protein biotinylation. Free biotin, 1% SDS, and 6 M urea contained in the gel, as well as thermal denaturation of streptavidin inhibited the precipitate formation. Mannose, glucose, fucose, galactose, sucrose, and NaCl at high concentrations had no effect on biospecific precipitation. A model of interaction of streptavidin with biotinylated macromolecules is suggested, which accounts for the observed effect, and the prospects of practical application of the precipitation effect are discussed.  相似文献   

14.
The yield of monoclonal antibody (Mab) production processes depends on media formulation, inocula quality, and process conditions. As in industrial processes tight cultivation conditions are used, and inocula quality and viable cell densities are controlled to reasonable levels, media formulation and raw materials lot-to-lot variability in quality will have, in those circumstances, the highest impact on process performance. In the particular Mab process studied, two different raw materials were used: a complex carbon and nitrogen source made of specific peptones and defined chemical media containing multiple components. Using different spectroscopy techniques for each of the raw material types, it was concluded that for the complex peptone-based ingredient, near-infrared (NIR) spectroscopy was more capable of capturing lot-to-lot variability. For the chemically defined media containing fluorophores, two-dimensional (2D)-fluorescence spectroscopy was more capable of capturing lot-to-lot variability. Because in Mab cultivation processes both types of raw materials are used, combining the NIR and 2D-fluorescence spectra for each of the media components enabled predictive models for yield to be developed that out-performed any other model involving either one raw material alone, or only one type of spectroscopic tool for both raw materials. For each particular raw material, the capability of each spectroscopy to detect lot-to-lot differences was demonstrated after spectra preprocessing and specific wavelength regions selection. The work described and the findings reported here open up several possibilities that could be used to feed-forward control the process. These include, for example, enabling specific actions to be taken regarding media formulation with particular lots, and all types of predictive control actions aimed at increasing batch-to-batch yield and product quality consistency at harvest.  相似文献   

15.
Using precipitation reactions in agarose gels (Bidimensional double diffusion: Ouchterlony. Counterimmunoelectrophoresis: CEP), we showed that: a) sera from normal human subjects contain components able to bind and precipitate with MDA-crosslinked lysozyme (ML) and not with native lysozyme, which indicates that the chemical structures involved in such bindings arise from reaction of MDA with lysozyme and probably include 1-amino-3-iminopropene (AIP) bridges. b) some if not all of these seric components are immunoglobulins. c) the F(ab')2 regions of these immunoglobulins are involved in their binding and precipitating properties. These results lead us to assume that sera from normal human subjects contain immunoglobulins with antibody-like specificity for MDA-crosslinked proteins. Nevertheless, this assumption remains to be assessed by further studies, especially about the "epitopes" involved in such reactions.  相似文献   

16.
In manufacturing monoclonal antibodies (mAbs), it is crucial to be able to predict how process conditions and supplements affect productivity and quality attributes, especially glycosylation. Supplemental inputs, such as amino acids and trace metals in the media, are reported to affect cell metabolism and glycosylation; quantifying their effects is essential for effective process development. We aim to present and validate, through a commercially relevant cell culture process, a technique for modeling such effects efficiently. While existing models can predict mAb production or glycosylation dynamics under specific process configurations, adapting them to new processes remains challenging, because it involves modifying the model structure and often requires some mechanistic understanding. Here, a modular modeling technique for adapting an existing model for a fed-batch Chinese hamster ovary (CHO) cell culture process without structural modifications or mechanistic insight is presented. Instead, data is used, obtained from designed experimental perturbations in media supplementation, to train and validate a supplemental input effect model, which is used to “patch” the existing model. The combined model can be used for model-based process development to improve productivity and to meet product quality targets more efficiently. The methodology and analysis are generally applicable to other CHO cell lines and cell types.  相似文献   

17.

The ability of Chromohalobacter marismortui to precipitate carbonate and phosphate minerals has been demonstrated for the first time. Mineral precipitation in both solid and liquid media at different salts concentrations and different magnesium/calcium ratios occurred whereas crystal formation was not observed in the control. The precipitated minerals were studied by X-ray diffraction, scanning electron microscopy and EDX, and were different in liquid and solid media. In liquid media aragonite, struvite, vaterite and monohydrocalcite were precipitated forming crystals and bioliths. Bioliths accreted preferentially close to organic pellicles, whereas struvite preferentially grows in microenvironments free of such pellicles. Magnesian calcite, calcian-magnesian kutnahorite, “proto-dolomite” and huntite were formed in solid media. The Mg content of the magnesian calcite and of Ca-Mg kutnahorite also varied depending on the salt concentration of the culture media. This is the first report on bacterial precipitation of Ca-Mg kutnahorite and huntite in laboratory cultures. The results of this research show the active role played by C. marismortui in mineral precipitation, and allow us to compare them with those obtained previously using other taxonomic groups of moderately halophilic bacteria.  相似文献   

18.
Sympathetic principal neurons were dissociated from the superior cervical ganglia of newborn rats and grown in several culture conditions shown previously to affect the transmitter status of the neurons. In three of these conditions the neurons are known to develop adrenergic functions over a 3- to 4-week period; in a fourth condition, they develop predominantly cholinergic functions. In this ultrastructural study, the transmitter status of the neurons during development in the several different media was examined after permanganate fixation which causes a granular precipitate in synaptic vesicles containing norepinephrine (small granular vesicles or SGV). It was found that as early as 4 days after plating, synapses and varicosities were present. In all four conditions, all of the terminals contained numerous SGV, indicating that the neurons both synthesize and store norepinephrine. Under “adrenergic” growth conditions, the terminals remained adrenergic in appearance during further development. Under “cholinergic” conditions, terminals of cholinergic appearance were present as early as 7 days and their incidence increased with time. Although the cholinergic terminals contained little or no endogenous norepinephrine, many were initially able to take up and store exogenous catecholamine. These results indicate that the dissociated sympathetic neurons of newborn rats which survive in culture acquired adrenergic transmitter functions early. Under “cholinergic” culture conditions, the neurons lose the ability to synthesize detectable quantities of norepinephrine; the ability to take up and store detectable quantities of exogenous catecholamines disappears more slowly.  相似文献   

19.
This paper presents the results of research on heavy metals removal from water by filtration using low cost coarse media which could be used as an alternative approach to remove heavy metals from water or selected wastewater. A series of batch studies were conducted using different particle media (particle size 2.36-4.75 mm) shaken with different heavy metal solutions at various pH values to see the removal behaviour for each metal. Each solution of cadmium (Cd), lead (Pb), zinc (Zn), nickel (Ni), copper (Cu) and chromium (Cr(III)) with a concentration of 2 mg/L was shaken with the media. At a final pH of 8.5, limestone has significantly removed more than 90% of most metals followed by 80% and 65% removals using crushed bricks and gravel, respectively. The removal by aeration and settlement methods without solid media was less than 30%. Results indicated that the removal of heavy metals was influenced by the media and not directly by the pH. Investigations on the removal behaviour of these metals indicated that rough solid media with the presence of carbonate were beneficial for the removal process. Adsorption and precipitation as metals oxide and probably as metals carbonate were among the two mechanisms that contributed to the removal of metals from solution.  相似文献   

20.
Chemically defined iron compounds were investigated for the development of animal protein-free cell culture media to support growth of CHO cells and production of monoclonal antibodies (mAb). Using a multivessel approach of 96-well plates, shake flasks, and bioreactors, we identified iron and its chemical partner citrate as critical components for maintenance of continuous cell growth and mAb production. The optimized iron concentration range was determined to be 0.1-0.5 mM and that for citrate 0.125-1 mM. This complete formulation is able to maintain cell growth to similar levels as those supplemented with iron compounds alone; however, mAb productivity was enhanced by 30-40% when citrate was present. The addition of sodium citrate (SC) did not affect product quality as determined by size exclusion chromatography, ion exchange chromatography, reversed phase and normal phase-HPLC. No significant changes in glucose and lactate profiles, amino acid utilization, or mAb heavy and light chain expression ratios were observed. Cellular ATP level was ~30% higher when SC was included suggesting that SC may have a role in enhancing cellular energy content. When cell lysates were analyzed by LC-MS to assess the overall cellular protein profile, we identified that in the SC-containing sample, proteins involved in ribosome formation and protein folding were upregulated, and those functions in protein degradation were downregulated. Taken together, this data demonstrated that iron and citrate combination significantly enhanced mAb production without altering product quality and suggested these compounds had a role in upregulating the protein synthetic machinery to promote protein production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号