首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:用壳聚糖(Chitosan,CS)和三聚磷酸钠(tripolyphosphate,TPP)交联制备包载青蒿琥酯纳米粒,并探讨其在体外对肿瘤细胞增殖的抑制作用。方法:以壳聚糖-三磷酸钠(CS/TPP)为基质并优化其比例,采用离子凝胶法制备包载青蒿琥酯(ART)纳米粒,对其进行表征包括粒径大小、Zeta电位、包封率、载药量和体外释放试验,以及红外光谱分析。用MTT法检测包栽青蒿琥酯的壳聚糖·三磷酸钠纳米粒对Hela、Caski、U251、MCF-7和HepG2细胞增殖的抑制作用。结果:成功构建青蒿琥酯一壳聚糖.三磷酸钠纳米颗粒(ARTnanoparticals,ART-NPs),平均粒径为166.8±0.2nnl,电位为10.2±0.79mV,红外光谱分析表明CS厂rPP成功连接并包裹ART,平均载药量和包封率分别为18%和74.82%;体外释放呈典型的双相分布,前24h呈暴发性释放(44.2%),其后缓慢释放,第9天累积释放度达67.4%。对不同肿瘤细胞的杀伤作用呈浓度和时间依赖趋势,且ART-NPs作用优于单-ART;相同浓度的ART-NPs在96h时对细胞增殖的抑制率明显高于ART组(P〈O.05)。结论:用壳聚糖和三磷酸钠交联可成功包载青蒿琥酯制成具有缓释性的纳米制剂,对肿瘤细胞的生长具有明显的抑制作用,有潜在的肿瘤治疗价值。  相似文献   

2.
Veratric acid (VA) is plant-derived phenolic acid known for its therapeutic potential, but its anticancer effect on highly invasive triple-negative breast cancer (TNBC) is yet to be evaluated. Polydopamine nanoparticles (nPDAs) were chosen as the drug carrier to overcome VA's hydrophobic nature and ensure a sustained release of VA. We prepared pH-sensitive nano-formulations of VA-loaded nPDAs and subjected them to physicochemical characterization and in vitro drug release studies, followed by cell viability and apoptotic assays on TNBC cells (MDA-MB-231 cells). The SEM and zeta analysis revealed spherical nPDAs were uniform size distribution and good colloidal stability. In vitro drug release from VA-nPDAs was sustained, prolonged and pH-sensitive, which could benefit tumor cell targeting. MTT and cell viability assays showed that VA-nPDAs (IC50=17.6 μM) are more antiproliferative towards MDA-MB-231 cells than free VA (IC50=437.89 μM). The induction of early and late apoptosis by VA-nPDAs in the cancer cells was identified using annexin V and dead cell assay. Thus, the pH response and sustained release of VA from nPDAs showed the potential to enter the cell, inhibit cell proliferation, and induce apoptosis in human breast cancer cells, indicating the anticancer potential of VA.  相似文献   

3.
The present study aimed to explore the anticancer potentials of the gold nanoparticles (NPs) obtained by green synthesis method using an endophytic strain Fusarium solani ATLOY – 8 has been isolated from the plant Chonemorpha fragrans. The formation of the NPs was analyzed by UV, FTIR, SEM and XRD. The synthesized NPs showed pink-ruby red colors and high peak plasmon band was observed between 510 and 560 nm. It is observed that intensity of absorption steadily increases the wavelength and band stabilizes at 551 nm. The XRD pattern revealed the angles at 19, 38.32, 46.16, 57.50, and 76.81° respectively. Interestingly, the FTIR band absorption noted at 1413 cm−1, 1041 cm−1 and 690 cm−1 ascribed the presence of amine II bands of protein, C-N and C-H stretching vibrations of the nanoparticles. SEM analysis indicated that the average diameter of the synthesized nanoparticles was between 40 and 45 nm. These NPs showed cytotoxicity on cervical cancer cells (He La) and against human breast cancer cells (MCF-7) and the NPs exhibited dose dependent cytotoxic effect. IC50 value was 0.8 ± 0.5 μg/mL on MCF-7 cell line and was found to be 1.3 ± 0.5 μg/mL on MCF-7 cell lines. The synthesized NPs induced apoptosis on these cancer cell lines. The accumulation of apoptotic cells decreased in sub G0 and G1 phase of cell cycle in the MCF-7 cancer cells were found to be 55.13%, 52.11% and 51.10% after 12 h exposure to different concentrations. The results altogether provide an apparent and versatile biomedical application for safer chemotherapeutic agent with little systemic toxicity.  相似文献   

4.
In this study, 5-methylmellein (5-MM) loaded bovine serum albumin nanoparticles (BSA NPs) were developed using desolvation technique. The developed nanoparticles were characterized for their mean particle size, polydispersity, zeta potential, loading efficiency, X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and release profile. The developed nanoparticles were spherical in shape under transmission electron microscopy (TEM) and atomic force microscopy (AFM). The developed 5-MM loaded BSA NPs demonstrated a mean particle size with a diameter of 154.95?±?4.44?nm. The results from XRD and DSC studies demonstrated that the crystal state of the 5-MM was converted to an amorphous state in polymeric matrix. The encapsulation and loading efficiency was found to be 73.26?±?4.48% and 7.09?±?0.43%. The in vitro cytotoxicity in human prostate cancer cell line (PC-3), human colon cancer cells (HCT-116) and human breast adenocarcinoma cell line (MCF-7) cells demonstrated enhanced cytotoxicity of 5-MM BSA NPs as compared to native 5-MM after 72-h treatment. The enhancement in cytotoxicity of 5-MM BSA NPs was also supported by increase in cellular apoptosis, mitochondrial membrane potential loss and generation of high reactive oxygen species (ROS). In conclusion, these findings collectively indicated that BSA nanoparticles may serve as promising drug delivery system for improving the efficacy of 5-methylmellein.  相似文献   

5.
Bombyx mori silk sericin is a globular-like protein that is used as an antioxidant, antibacterial, and antitumor agent. In this current research, we isolated sericin by degumming process and formation of sericin-AgNO3 NPs confirmed by UV–vis spectra, SEM, EDX, FTIR, and XRD patterns. The sericin and sericin-AgNO3 NPs mediated changes in human breast cancer cells were determined. The antiproliferative activity of sericin-AgNO3 NPs was analyzed by MTT dye reduction assay. Alterations at molecular levels were investigated by qRT-PCR, while apoptotic effects were studied by nuclear DNA staining. After 72 h treatment, sericin and sericin-AgNO3 NPs showed significant antiproliferative effects in MDA-MB-231 (26 %) and MCF-7 (41 %) cells. Expression modification showed prominent stimulation of cell cycle arrest and stress related genes such as cyclin-dependent kinase inhibitors (CDKN1A, CDKN1B), and GADD family genes. RT-PCR results of the GADD family include GADD45A, B, G, 34, 153 and cyclin-dependent kinase inhibitors (CDKN1A, 1B) showed pronounced induction of 3.1 to 19.8-folds in MCF-7 cell line while induction in MDA-MB-231 cell line was 2.5 to 34.3-folds. Nuclear DAPI staining showed significant induction of apoptosis and nuclear fragmentation in MDA-MB-231 cells at a concentration of 1 mg/mL for both sericin and sericin-AgNO3 NPs. Meanwhile, in case of MCF-7 cells, after treatment with sericin and sericin-AgNO3 NPs (1 mg/mL), the cells changed into a round shape and lost their original spindle outlook in dose-dependent manners. We concluded that sericin-AgNO3 NPs have significant antiproliferative, apoptosis, and genetic profiling effects in both breast cancer cell lines at the highest concentration.  相似文献   

6.
5-Fluorouracil (5-FU) is a widely used chemotherapy agent for breast cancer, although drug resistance is a critical issue regarding the use of this agent in the disease. Calcium signaling is a well-known main cause of proliferation and apoptosis in breast cancer cells. Although previous studies have implicated TRPV1 inhibitor, anticancer, and apoptotic roles of Hypericum perforatum (HPer) in several cells, the synergistic inhibition effects of HPer and 5-FU in cancer and the stimulation of ongoing apoptosis have not yet been clarified in MCF-7 cells. Therefore, we investigated the apoptotic and antioxidant properties of 5-FU with/without HPer through activation of TRPV1 in MCF-7 cells. The MCF-7 cells were divided into four groups: the control group, the HPer-treated group (0.3 mM), the 5-FU-treated group (25 μM), and the 5-FU+HPer-treated group. The intracellular free calcium ion concentration ([Ca2+]i) increased with 5-FU treatments, but they decreased with the HPer and HPer+5-FU treatments. The [Ca2+]i is further decreased in the four groups by TRPV1 channel antagonist (capsazepine and 0.01 mM) treatments. However, mitochondrial membrane depolarization and apoptosis levels, and the PARP1, caspase 3, and caspase 9 expression levels were increased by 5-FU treatment, although the values were decreased by the HPer and 5-FU+HPer treatments. Cell viability level was also decreased by 5-FU treatment. In conclusion, antitumor and apoptosis effects of 5-FU are up-regulated by activation of TRPV1 channels, but its action was down-regulated by HPer treatment. It seems that HPer cannot be used for increasing the antitumor effect of 5-FU through modulation of the TRPV1.  相似文献   

7.

Background

Hybrid materials are synthesized using hydrophilic polymer and lipids which ensure their long term systemic circulation through intravenous administration and enhance loading of hydrophobic drugs. The purpose of this study is to prepare, characterize and evaluate the in vitro efficacy of curcumin loaded poly-hydroxyethyl methacrylate/stearic acid nanoparticles in MCF-7.

Methods

C-PSA-NPs, prepared using the emulsification–solvent evaporation method were characterized by dynamic laser scattering, SEM, AFM, FT-IR, X-ray diffraction, and TGA. The in vitro release behavior was observed in PBS pH 7.4, the anticancer potential was analyzed by MTT assay, cell cycle and apoptosis studies were performed through flow cytometry. C-PSA-NPs drug localization and cancer cell morphological changes were analyzed in MCF-7 cell line.

Results

C-PSA-NPs exhibited the mean particle size in the range of 184 nm with no aggregation. The surface charge of the material was around − 29.3 mV. Thermal studies (TGA) and surface chemistry studies (FT-IR, XRD) showed the existence of drug curcumin in C-PSA-NPs. The MTT assay indicated higher anticancer properties and flow cytometry studies revealed that there were better apoptotic activity and maximum localization of C-PSA-NPs than curcumin.

Conclusions

Polymer lipid based drug delivery appeared as one of the advancements in drug delivery systems. Through the present study, a novel polymer lipid based nanocarrier delivery system loaded with curcumin was demonstrated as an effective and potential alternative method for tumor treatment in MCF-7 cell line.

General significance

C-PSA-NPs exhibited potent anticancer activity in MCF-7 cell line and it indicates that C-PSA-NPs are a suitable carrier for curcumin.  相似文献   

8.
Nanoparticles (NPs) may help treat multidrug-resistant Staphylococcus aureus (MDR). This study prepared and evaluated chitosan/alginate-encapsulated Echinacea angustifolia extract against MDR strains. Evaluating synthesized NPs with SEM, DLS, and FT-IR. Congo red agar and colorimetric plate techniques examined isolate biofilm formation. NP antibacterial power was assessed using well diffusion. Real-time PCR assessed biofilm-forming genes. MTT assessed the synthesized NPs′ toxicity. According to DLS measurements, spherical E. angustifolia NPs had a diameter of 335.3±1.43 nm. The PDI was 0.681, and the entrapment effectiveness (EE%) of the E. angustifolia extract reached 83.45 %. Synthesized NPs were most antimicrobial. S. aureus resistant to several treatments was 80 percent of 100 clinical samples. Biofilm production was linked to MDR in all strains. The ALG/CS-encapsulated extract had a 4 to 32-fold lower MIC than the free extract, which had no bactericidal action. They also significantly decreased the expression of genes involved in biofilm formation. E. angustifolia-encapsulated ALG/CS decreased IcaD, IcaA, and IcaC gene expression in all MDR strains (***p<0.001). Free extract, free NPs, and E. angustifolia-NPs had 57.5 %, 85.5 %, and 90.0 % cell viability at 256 μg/ml. These discoveries could assist generate stable plant extracts by releasing natural-derived substances under controlled conditions.  相似文献   

9.
In the current study, gefitinib loaded PLGA nanoparticles (GFT-PLGA-NPs) and chitosan coated PLGA nanoparticles (GFT-CS-PLGA-NPs) were synthesized to investigate the role of surface charge of NPs for developing drug delivery system for non-small-cell lung cancer (NSCLC). The developed NPs were evaluated for their size, PDI, zeta potential (ZP), drug entrapment, drug loading, DSC, FTIR, XRD, in vitro release profile, and morphology. The anti-cancer activity of GFT loaded PLGA NPs and GFT loaded CS-PLGA-NPs were examined in human A549 lung cancer cell lines. In vitro release studies of GFT-CS-PLGA-NPs showed more sustained release in comparison to GFT-PLGA-NPs due surface charge attraction of chitosan. In addition, viability of A549 cells decreases significantly with the increasing concentration of GFT-PLGA NPs and GFT-CS-PLGA-NPs when compared to that of pure GFT and blank PLGA NPs. In addition, the microscopic analysis and counting of viable cells also validate the cytotoxicity of the developed NPs. This investigation proved that the developed NPs would be efficient carriers to deliver GFT with improved efficacy against NSCLC.  相似文献   

10.
In recent decades, magnetic nanoparticles modified with biocompatible polymers have been recognized as a suitable tool for treating breast cancer. The aim of this research was to evaluate the function of chitosan/agarose-functionalized Fe2O3 nanoparticles on the MCF-7 breast cancer cell line and the expression of BCL2 and BAX genes. Free Fe2O3 nanoparticles were prepared by hydrothermal method. FTIR, XRD, SEM, DLS, VSM, and zeta potential analyses determined the size and morphological characteristics of the synthesized nanoparticles. The effect of Fe2O3 free nanoparticles and formulated Fe2O3 nanoparticles on induction of apoptosis was studied by double-dye Annexin V-FITC and PI. Also, the gene expression results using the PCR method displayed that Fe2O3 formulated nanoparticles induced BAX apoptosis by increasing the anti-apoptotic gene expression and decreasing the expression of pro-apoptotic gene BCL2, so the cell progresses to planned cell death. In addition, the results showed that the BAX/BCL2 ratio decreased significantly after treatment of MCF-7 cells with free Fe2O3 nanoparticles, and the BAX/BCL2 ratio for Fe2O3 formulated nanoparticles increased significantly. Also, to evaluate cell migration, the scratch test was performed, which showed a decrease in motility of MCF-7 cancer cells treated with Fe2O3 nanoparticles formulated with chitosan/agarose at concentrations of 10, 50, 100, and 200 μg/ml.  相似文献   

11.
Twenty novel longifolene-derived tetraline fused thiazole-amide compounds were synthesized from longifolene, a renewable natural resource. Their structures were characterized by FT-IR, NMR, ESI-MS, and elemental analysis. The in vitro antiproliferative activity of these compounds against SK-OV-3 ovarian cancer cell lines, MCF-7 human breast cancer cell lines, HepG2 human liver cancer cell lines, A549 human lung adenocarcinoma cell lines, and T-24 human bladder cancer cell lines was tested by MTT assay. Compounds 6a – 6c displayed significant and broad-spectrum antiproliferative activity against almost the tested cancer cell lines with IC50 in the range of 7.84 to 55.88 μM, of which compound 6c exhibited excellent antiproliferative activities with 7.84 μM IC50 against SKOV-3, 13.68 μM IC50 against HepG2, 15.69 μM IC50 against A549, 19.13 μM IC50 against MCF-7, and 22.05 μM IC50 against T-24, showing better and broad-spectrum antiproliferative effect than that of the positive control 5-FU. Furthermore, the action model was analyzed by the molecular docking study. Some intriguing structure-activity relationships were found and discussed herein by DFT theoretical calculation.  相似文献   

12.
We have developed a colorimetric assay-using aptamer modified 13-nm gold nanoparticles (Apt-Au NPs) and fibrinogen adsorbed Au NPs (Fib-Au NPs, 56nm)-for the highly selective and sensitive detection of platelet-derived growth factors (PDGF). Apt-Au NPs and Fib-Au NPs act as recognition and reporting units, respectively. PDGF-binding-aptamer (Apt(PDGF)) and 29-base-long thrombin-binding-aptamer (Apt(thr29)) are conjugated with Au NPs to prepare functional Apt-Au NPs (Apt(PDGF)/Apt(thr29)-Au NPs) for specific interaction with PDGF and thrombin, respectively. Thrombin interacts with Fib-Au NPs in solutions to catalyze the formation of insoluble fibrillar fibrin-Au NPs agglutinates through the polymerization of the unconjugated and conjugated fibrinogen. The activity of thrombin is suppressed once it interacts with the Apt(PDGF)/Apt(thr29)-Au NPs. The suppression decreases due to steric effects through the specific interaction of PDGF with Apt(PDGF), occurring on the surfaces of Apt(PDGF)/Apt(thr29)-Au NPs. Under optimal conditions [Apt(PDGF)/Apt(thr29)-Au NPs (25pM), thrombin (400pM) and Fib-Au NPs (30pM)], the Apt(PDGF)/Apt(thr29)-Au NPs/Fib-Au NPs probe responds linearly to PDGF over the concentration range of 0.5-20nM with a correlation coefficient of 0.96. The limit of detection (LOD, signal-to-noise ratio=3) for each of the three PDGF isoforms is 0.3nM in the presence of bovine serum albumin at 100μM. When using the Apt(PDGF)/Apt(thr29)-Au NPs as selectors for the enrichment of PDGF and for the removal of interferences from cell media, the LOD for PDGF provided by this probe is 35pM. The present probe reveals that the concentration of PDGF in the three cell media is 230 (±20)pM, showing its advantages of simplicity, sensitivity, and specificity.  相似文献   

13.
In this study, 5-flurouracil loaded fibrinogen nanoparticles (5-FU-FNPs) were prepared by two step coacervation method using calcium chloride as cross-linker. The prepared nanoparticles were characterized using DLS, SEM, AFM, FT-IR, TG/DTA and XRD studies. Particle size of 5-FU-FNPs was found to be 150-200 nm. The loading efficiency (LE) and in vitro drug release was studied using UV spectrophotometer. The LE of FNPs was found to be ~90%. The cytotoxicity studies showed 5-FU-FNPs were toxic to MCF7, PC3 and KB cells while they are comparatively non toxic to L929 cells. Cellular uptake of Rhodamine 123 conjugated 5-FU-FNPs was also studied. Cell uptake studies demonstrated that the nanoparticles are inside the cells. These results indicated that FNPs could be useful for cancer drug delivery.  相似文献   

14.
Neuroblastoma is one of the most widely seen under the age of 15 tumors that occur in the adrenal medulla and sympathetic ganglia. Cisplatin, an antineoplastic drug, is a Platinum-based compound and is known to inhibit the proliferation of neuroblastoma cells. Effective applications of nanoparticles in biomedical areas such as biomolecular, antimicrobial detection and diagnosis, tissue engineering, theranostics, biomarking, drug delivery, and anti-cancer have been investigated in many studies. This study aims to prepare the bioconjugates of CoS (cobalt sulfide) nanoparticles (NPs) with cisplatin combination groups and to evaluate their effects on the neuroblastoma cell line. Nanoparticle synthesis was done using the green synthesis technique using Punica granatum plant extract. The size and shape of CoS NPs were characterized by SEM, FT-IR, and XRD. Zeta potential was confirmed by the DLS study. For this purpose, the SH-SY5Y neuroblastoma cell line was cultured in a suitable cell culture medium. Cisplatin 5 µg and different concentrations (Cisplatin + CoS NPs bioconjugates (5, 10, 25, 50, 75 μg) doses were applied to SH-SY5Y neuroblastoma cell lines for 24 h. TAC, TOS and MTT tests were performed 24 h after the application. According to the MTT test results, cisplatin and CoS NP combinations reduced the proliferation of neuroblastoma cells by 78 to 57% compared to the cisplatin control. From the findings obtained; the most effective Bio-conjugate group was Cisplatin 5 μg/mL + CoS 75 μg/mL.  相似文献   

15.
Gambogic acid (GA) has been proven to be a potent chemotherapeutic agent for the treatment of lung cancer in clinical trials. However, GA is limited in its therapeutic value by properties such as poor water solubility and low chemical stability. In clinical trials, cationic arginine (Arg) was added to solubilize GA, and this may also cause other side effects. Here, we have designed and developed a more efficient human serum albumin (HSA)-based delivery system for GA with low toxicity which helps improve its solubility, chemical stability and increases its antitumor efficacy. The GA-HSA nanoparticles (NPs) were prepared by albumin-bound (nabTM) technology, with a particle size of 135.2?±?35.03 nm, a zeta potential of ?21.81?±?1.24 mV, and a high entrapment efficiency. Compared with GA-Arg solution, the physical and chemical stability of the NPs were improved when stored at pH 7.4 in PBS or freeze-dried. The in vitro drug release showed that GA-HSA NPs had a more sustained release than GA-Arg solution. Furthermore, HSA NPs improved the therapeutic efficacy of GA and were less toxic compared with GA-Arg solution in A549-bearing mice. Therefore, this delivery system is a promising polymeric carrier for GA when used for tumor therapy.  相似文献   

16.
Gold nanoparticles with tiny sizes and biostability are particularly essential and are employed in a variety of biomedical applications. Using a reducing agent and a stabilising agent to make gold nanoparticles has been reported in a number of studies. Gold nanoparticles with a particle size of 25.31 nm were synthesized in this study utilising Hylocereus polyrhizus (Red Pitaya) extract, which functions as a reducing and stabilising agent. The extract of Red Pitaya is said to be a powerful antioxidant and anti-cancer agent. Because of its substantial blood biocompatibility and physiological stability, green production of gold nanoparticles with H. polyrhizus fruit extract is an alternative to chemical synthesis and useful for biological and medical applications. The formation and size distribution of gold nanoparticles were confirmed by HPLC, UV-Vis spectrophotometer, X-ray diffraction (XRD), Dynamic light scattering (DLS), Zeta potential, Transmission electron microscopy (TEM), Fourier transformed infrared spectroscopy (FTIR), Energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). The well-analysed NPs were used in various biological assays, including anti-diabetic, anti-inflammatory, anti-Alzheimer, and antioxidant (DPPH), and cytotoxic investigations. The NPs also showed a dose-dependent cytotoxic activity against HCT-116, HepG2 and MCF-7 cell lines, with IC50 of 100 µg/mL for HCT-116 cells, 155 µg/mL for HepG2, and for MCF-7 cells the value was 165 µg/mL respectively. Finally, the outstanding biocompatibility of Au-NPs has led to the conclusion that they are a promising choice for various biological applications.  相似文献   

17.
In the recent past, various groups have proposed diverse biocompatible methods for the synthesis of metal nanoparticles (NPs). Besides culture biomass, culture supernatants (CS) are increasingly being explored for the synthesis of NPs; however, with the ever-increasing exploration of various CS in the biofabrication of NPs, it is equally important to explore the potential of various culture media (CMs) in the synthesis of metal NPs. Considering these aspects, in the present investigation, we explore the possible applicability of various CMs in the biofabrication of metal NPs. The synthesis of NPs was primarily followed by UV/VIS spectroscopy, and, thereafter, the NPs were characterized by various physiochemical techniques, including EM, EDX, FT_IR, X-ray diffraction, and DLS measurements, and finally, their anticancer potentialities were investigated against breast cancer. In addition, the NPs were examined in conjunction with artemisinin for therapeutic benefits against aggressive and highly metastatic MDA-MB-231 breast cancer cells. Cumulatively, the results of the present study collated the potentials of various bacterial CMs in the biofabrication of metal NPs and ascertained the efficacy of the as-synthesized silver nanoparticles, especially the combinatorial entity as intriguing breast cancer therapeutics. The data of the present study plausibly assist in advancing the therapeutic applicability of the combinatorial amalgam against aggressive and highly metastatic MDA-MB-231 breast cancer cells.  相似文献   

18.
In this study, a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver particles (CS/nHAp/nAg) was developed by freeze drying technique, followed by introduction of silver ions in controlled amount through reduction phenomenon by functional groups of chitosan. The scaffolds were characterized using SEM, FT-IR, XRD, swelling, and biodegradation studies. The testing of the prepared scaffolds with Gram-positive and Gram-negative bacterial strains showed antibacterial activity. The scaffold materials were also found to be non-toxic to rat osteoprogenitor cells and human osteosarcoma cell line. Thus, these results suggested that CS/nHAp/nAg bio-composite scaffolds have the potential in controlling implant associated bacterial infection during reconstructive surgery of bone.  相似文献   

19.
Circulating cell-free DNA (ccfDNA) is a biological entity of great interest due to its potential as liquid biopsy biomaterial carrying clinically valuable information. To better understand its nature, we studied ccfDNA in vitro in two human cancer cell lines MCF-7 and HeLa. Normalized indexes of ccfDNA per cell population decreased over time of culture but were significantly elevated after exposure to IC50 doses of the demethylating/apoptotic agent 5-azacytidine (5-AZA-CR). Fragment-size profiling was indicative of active release, whereas exposure to 5-AZA-CR induced the release of additional shorter fragments, indicative of apoptosis. Finally, the methylation profile of a panel of cancer-specific genes as assessed by quantitative methylation analysis in ccfDNA was identical to the corresponding genomic DNA and followed accurately changes caused by 5-AZA-CR. Overall, our in vitro findings support that ccfDNA can be a reliable biosource of clinically relevant information that can be further studied in these cell culture models.  相似文献   

20.
Frequent instillation of terbinafine hydrochloride (T HCl) eye drops (0.25%, w/v) is necessary to maintain effective aqueous humor concentrations for treatment of fungal keratitis. The current approach aimed at developing potential positively charged controlled-release polymeric nanoparticles (NPs) of T HCl. The estimation of the drug pharmacokinetics in the aqueous humor following ocular instillation of the best-achieved NPs in rabbits was another goal. Eighteen drug-loaded (0.50%, w/v) formulae were fabricated by the nanopreciptation method using Eudragit® RS100 and chitosan (0.25%, 0.5%, and 1%, w/v). Soybean lecithin (1%, w/v) and Pluronic® F68 (0.5%, 1%, and 1.5%, w/v) were incorporated in the alcoholic and aqueous phases, respectively. The NPs were evaluated for particle size, zeta potential, entrapment efficiency percentage (EE%), morphological examination, drug release in simulated tear fluid (pH 7.4), Fourier-transform IR (FT-IR), X-ray diffraction (XRD), physical stability (2 months, 4°C and 25°C), and drug pharmacokinetics in the rabbit aqueous humor relative to an oily drug solution. Spherical, discrete NPs were successfully developed with mean particle size and zeta potential ranging from 73.29 to 320.15 nm and +20.51 to +40.32 mV, respectively. Higher EE% were achieved with Eudragit® RS100-based NPs. The duration of drug release was extended to more than 8 h. FT-IR and XRD revealed compatibility between inactive formulation ingredients and T HCl and permanence of the latter’s crystallinity, respectively. The NPs were physically stable, for at least 2 months, when refrigerated. F5-NP suspension significantly (P < 0.05) increased drug mean residence time and improved its ocular bioavailability; 1.657-fold.Key words: aqueous humor, chitosan, Eudragit® RS100, nanoparticles, terbinafine hydrochloride  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号