首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Toddalia asiatica (L.) Lam. is extensively used in traditional medicinal systems by various cultures. Despite its frequent use in traditional medicine, there is still a paucity of scientific information on T. asiatica growing on the tropical island of Mauritius. Therefore, the present study was designed to appraise the pharmacological and phytochemical profile of extracts (methanol, ethyl acetate and water) and essential oil obtained from aerial parts of T. asiatica. Biological investigation involved the evaluation of in vitro antioxidant and enzyme inhibitory potentials. The chemical profile of the EO was determined using gas chromatography coupled to mass spectrometry (GC/MS) analysis, while for the extracts, the total phenolic (TPC) and flavonoid content were quantified as well as their individual phenolic compounds by LC/MS/MS. Quinic acid, fumaric acid, chlorogenic acid, quercitrin and isoquercitrin were the main compounds in the extracts. Highest total phenolic (82.5±0.94 mg gallic acid equivalent (GAE/g)) and flavonoid (43.8±0.31 mg rutin equivalent (RE/g)) content were observed for the methanol extract. The GC/MS analysis has shown the presence of 26 compounds with linalool (30.9 %), linalyl acetate (20.9 %) and β-phellandrene (7.9 %) being most abundant components in the EO. The extracts and EO showed notable antioxidant properties, with the methanol extract proved to be superior source of antioxidant compounds. Noteworthy anti-acetylcholinesterase (AChE) and anti-butyrylcholinesterase (BChE) effects were recorded for the tested samples, while only the methanol and ethyl acetate extracts were active against tyrosinase. With respect to antidiabetic effects, the extracts and EO were potent inhibitors of α-glucosidase, while modest activity was recorded against α-amylase. Docking results showed that linalyl acetate has the highest affinity to interact with the active site of BChE with docking score of −6.25 kcal/mol. The findings amassed herein act as a stimulus for further investigations of this plant as a potential source of bioactive compounds which can be exploited as phyto-therapeutics.  相似文献   

2.
The chemical and pharmacological profiles of essential oils (EOs) hydrodistilled in yields of 0.03–0.77 % (w/w) from three exotic (Cinnamomum camphora, Petroselinum crispum, and Syzygium samarangense) and two endemic (Pittosporum senacia subsp. senacia and Syzygium coriaceum) medicinal plants were studied. GC-MS/GC-FID analysis of the EOs identified the most dominant components to be myristicin (40.3 %), myrcene (62.2 %), 1,8-cineole (54.0 %), β-pinene (21.3 %) and (E)-β-ocimene (24.4 %) in P. crispum, P. senacia and C. camphora, S. samarangense and S. coriaceum EOs, respectively. All EOs were found to possess anti-amylase (0.70–1.50 mM ACAE/g EO) and anti-tyrosinase (109.35–158.23 mg KAE/g) properties, whereas no glucosidase inhibition was displayed. Only Syzygium EOs acted as dual inhibitors of both acetyl- and butyryl-cholinesterases, while P. senacia and C. camphora EOs inhibited acetylcholinesterase selectively and P. crispum EO was inactive (AChE: 4.64–4.96 mg GALAE/g; BChE: 5.96 and 7.10 mg GALAE/g). Molecular docking revealed 1,8-cineole to present the best binding affinities with butyrylcholinesterase, amylase and tyrosinase, while both myristicin and β-pinene with acetylcholinesterase and finally β-pinene with glucosidase. In vitro antioxidant potency was also demonstrated in different assays (DPPH: 13.52–53.91 mg TE/g, ABTS: 5.49–75.62 mg TE/g; CUPRAC: 45.38–243.21 mg TE/g, FRAP: 42.49–110.64 mg TE/g; and phosphomolybdenum assay: 82.61–160.93 mM TE/g). Principal component analysis revealed the EOs to differ greatly in their bioactivities due to their chemodiversity. This study has unveiled some interesting preliminary pharmacological profiles of the EOs that could be explored for their potential applications as phytotherapeutics.  相似文献   

3.
Rhoifolin (apigenin-7-O-β-neohesperidoside) belongs to the class of flavonoids and was reported to exhibit anti-inflammatory, cytotoxic, antidiabetic, hepatoprotective, and cardioprotective activities. The current study presents the in-vitro evaluation of the antioxidative effects of rhoifolin by many assays, namely DPPH, CUPRAC, ABTS, phosphomolybdenum, and FRAP. Enzyme inhibitory potential was also evaluated for acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, amylase, and glucosidase enzymes. While results revealed weak antioxidant activities for rhoifolin, the compound demonstrated some promising enzyme inhibitory effects against BChE (4.03 mg GALAE/g) and tyrosinase (7.44 mg KAE/g) but was not active on AChE. Regarding anti-diabetic enzymes, the compound was active on amylase but did not show any inhibition effect on glucosidase. In-silico molecular docking study was performed for rhoifolin on the active site of NADPH oxidase, BChE, and amylase enzymes to verify the observed enzyme inhibitory effect. Good binding affinities were observed for rhoifolin on all the docked enzymes, revealing numerous hydrogen bonds, carbon-hydrogen, van der Waals interactions. This is the first study to evaluate the enzyme inhibition potential of rhoifolin. We concluded that the increase in the degree of glycosylation might decrease the antioxidant abilities of flavonoids and that rhoifolin had moderate enzyme inhibition abilities to be investigated in future studies.  相似文献   

4.
We report the synthesis, spectroscopic characterization, molecular docking and biological evaluation of nine pyrazino-imidazolinone derivatives. These derivatives were evaluated for their anticancer activity against three cancer cell lines: 518A2 melanoma, HCT-116, and HCT-116 p53 knockout mutant colon carcinoma. The MTT assay was employed to assess their effectiveness. Among the nine compounds tested, four compounds (5 a, 5 d, 5 g, and 5 h) exhibited promising antiproliferative activity specifically against HCT-116 p53-negative cells (IC50 0.23, 0.20, 2.07 and 58.75 μM, respectively). Interestingly, treatment with the 3,4-dimethoxyphenyl derivative 5a resulted in a significant increase (199 %) in caspase activity in HCT-116 p53-negative cells compared to untreated cells while the bromo-pyrazine derivative 5d demonstrated (190 %) increase. These findings suggest that compounds 5a and 5 d induce p53-independent apoptotic cell death. Additionally, in silico molecular docking studies with EGFR and tyrosinase proteins indicated that compounds 5 d and 5 e have the potential to bind to important anticancer drug targets.  相似文献   

5.
In this study, total phenolic and flavonoid analyses of flower, leaf, and stem aqueous extracts of C. orientalis were performed. Total phenolic contents of C. orientalis extracts ranged from 12.2±0.06 to 19.0±0.07 mg GAE/g extract. Total flavonoid values range between 2.0±0.11 and 6.6±0.19 mg CE/g extract. Urease, collagenase, tyrosinase, and α-glucosidase inhibition activities were determined in vitro and the relationship between them was examined. IC50 results for all enzymes were obtained between 0.18 and 3.53 μg/mL. The aqueous extract of the plant C. orientalis showed potent cytotoxic effects against the human colon cancer cell lines DLD-1. As the extract concentration increases, cell death increases. The main fatty acid composition by GC/MS analysis is erucic acid (36.5 %). The potential binding modes of the fatty acids in the plant extract to the enzymes and possible inhibition mechanisms were determined by molecular docking calculation.  相似文献   

6.
A new xanthone derivative, aspidxanthone A ( 1 ), and three known compounds ((2S)-1-(β-D-galactopyranosyloxy)-3-(hexadecanoyloxy)propan-2-yl (9Z,12Z)-octadeca-9,12-dienoate ( 2 ), (25S)-spirostane-1β,3α,5β-triol ( 3 ), and asparenyldiol ( 4 )) were isolated from the whole of the endemic species Aspidistra letreae in Vietnam. Their structures were elucidated by means of extensive spectroscopic analyses and comparison with published data. In this study, we report the isolation and structure elucidation of a new compound aspidxanthone A, antioxidant activities of the extract and isolates 1 – 4 , and in silico molecular docking of aspidxanthone A. The ethyl acetate extract had good antioxidant activity with an IC50 value of 26.3 μg mL−1. Among the isolates, aspidxanthone A exhibited DPPH reduction activity with an IC50 value of 11.2 μM, which is in the same range as that of the positive control, ascorbic acid. The mechanism of action of aspidxanthone A on the tyrosinase and xanthine oxidase proteins have been clarified by in silico studies.  相似文献   

7.
An efficient 1,4-dihydropyridine synthesis under mild conditions has been developed. Numerous substrates were tested, with yields of 1,4-dihydropridines ranging from good to excellent and a wide range of functional group tolerance. A549, HT-29, and HepG2 cancer cells were used to investigate the anticancer efficacy of each of the produced compounds. Additionally, in-silico docking studies were conducted to understand the structure-based features of the anticancer mechanism with the cancer medication target of Adenosine A2A receptor as well as the molecular level interactions of the compounds.  相似文献   

8.
Spermacoce verticillata (L.) G. Mey. is commonly used in the folk medicine by various cultures to manage common diseases. Herein, the chemical and biological profiles of S. verticillata were studied in order to provide a comprehensive characterization of bioactive compounds and also to highlight the therapeutic properties. The in vitro antioxidant activity using free-radical scavenging, phosphomolybdenum, ferrous-ion chelating and reducing power assays, and the inhibitory activity against key enzymes such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), tyrosinase, α-amylase and α-glucosidase of S. verticillata extracts (dichloromethane, ethyl acetate, methanol and water) were investigated. The highest total phenolic and flavonoid content were observed in the methanolic and aqueous extracts. Exhaustive 2DNMR investigation has revealed the presence of rutin, ursolic and oleanoic acids. The methanolic extract, followed by aqueous extract have showed remarkable free radical quenching and reducing ability, while the dichloromethane extract was the best source of metal chelators. The tested extracts showed notable inhibitory activity against cholinesterases (AChE: 1.63–4.99 mg GALAE/g extract and BChE: 12.40–15.48 mg GALAE/g extract) and tyrosinase (60.85–159.64 mg KAE/g extract). No inhibitory activity was displayed by ethyl acetate and aqueous extracts against BChE and tyrosinase, respectively. All the tested extracts showed modest α-amylase inhibitory activity, while only the ethyl acetate and aqueous extracts were potent against α-glycosidase. This study further validates the use of S. verticillata in the traditional medicine, while advocating for further investigation for phytomedicine development.  相似文献   

9.
Inhibition of α-amylase is an important strategy to control post-prandial hyperglycemia. The present study on Ruellia tuberosa, known as traditional anti-diabetic agent, is being provided in silico study to identify compounds inhibiting α-amylase in rat and human. Compounds were explored from PubChem database. Molecular docking was studied using the autodock4. The interactions were further visualized and analyzed using the Accelrys Discovery Studio version 3.5. Binding energy of compounds to α-amylase was varying between -1.92 to -6.66 kcal/mol in rat pancreatic alpha amylase and -3.06 to -8.42kcal/mol in human pancreatic alpha amylase, and inhibition konstanta (ki) was varying between 13.12- 39460µM in rat and 0.67-5600µM in human. The docking results verify that betulin is the most potential inhibitor of all towards rat model alpha amylase and human alpha amylase. Further analysis reveals that betulin could be a potential inhibitor with non-competitive pattern like betulinic acid. In comparison, betulin has smaller Ki (0.67µM) than acarbose (2.6 µM), which suggesting that betulin is more potential as inhibitor than acarbose, but this assumption must be verified in vitro.  相似文献   

10.
Cestrum diurnum L. (Solanaceae) is a fragrant ornamental tree cultivated in different parts around the world. In this study, the essential oil (EO) of the aerial parts was extracted by hydrodistillation (HD), steam distillation (SD) and microwave-assisted hydro-distillation (MAHD). GC/MS analysis of the three EOs revealed that phytol represents the major component in SD-EO and MAHD-EO (40.84 and 40.04 %, respectively); while in HD-EO it only represented 15.36 %. The SD-EO showed a strong antiviral activity against HCoV-229E with IC50 of 10.93 μg/mL, whereas, MAHD-EO and HD-EO showed a moderate activity with IC50 values of 119.9 and 148.2 μg/mL, respectively. The molecular docking of EO major components: phytol, octadecyl acetate and tricosane showed a strong binding to coronavirus 3-CL (pro). Moreover, the three EOs (50 μg/mL) decreased the levels of NO, IL-6 and TNF-α and suppressed IL-6 and TNF-α gene expression in LPS-induced inflammation model in RAW264.7 macrophage cell lines.  相似文献   

11.
Melanin is the major factor that determines skin color and protects from ultraviolet radiation. In present study we evaluated the anti‐melanogenesis effect of acetazolamide (ACZ) using four different approaches: enzyme kinetic, in vitro, in vivo and in silico. ACZ demonstrated significant inhibitory activity (IC50 7.895 ± 0.24 μm ) against tyrosinase as compared to the standard drug kojic acid (IC50 16.84 ± 0.64 μm ) and kinetic analyses showed that ACZ is a non‐competitive inhibitor without cytotoxic effect. In in vitro experiments, A375 human melanoma cells were treated with 20 or 40 μm of ACZ with or without 50 μm of l ‐DOPA. Western blot results showed that ACZ significantly (< 0.05) decreased the expression level of tyrosinase at 40 μm . Zebrafish embryos were treated with 10, 20 or 40 μm of ACZ and of positive control kojic acid. At 72 h of treatment with ACZ and kojic acid, ACZ significantly (< 0.001) decreased the embryos pigmentation to 40.8% of untreated embryos at the dose of 40 μm of ACZ while kojic acid decreased only 25.0% of pigmentation at the same dose of kojic acid. In silico docking were performed against tyrosinase using PyRx tool. Docking studies suggested that His244, Asn260 and His85 are the major interacting residues in the binding site of the protein. In conclusion, our results suggest that ACZ is a good candidate for the inhibition of melanin and it could be used as a lead for developing the drugs for hyperpigmentary disorders and skin whitening.  相似文献   

12.
Sonchus oleraceus (L.) L. (Asteraceae) is an edible wild plant, known for its uses in traditional medicine. The aim of this study is to explore the phytochemical composition of the aerial parts (AP) and roots (R) of aqueous extracts of Sonchus oleraceus L. growing in Tunisia, using liquid chromatography-tandem mass spectrometry(LC/MS/MS), and determine the content of polyphenols and antioxidant activities. Results showed that aqueous extracts of AP and R contained, respectively, 195.25±33 μg/g and 118.66±14 μg/g gallic acid equivalent (GAE), and 52.58±7 μg/g and 3.2±0.3μg/g quercetin equivalent. AP and R extracts also contained tannins, 581.78±33 μg/g and 948.44±19 μg/g GAE. The AP extract in the 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging activities, hydroxyl radical scavenging (OH−) and in cupric reducing antioxidant activity (CUPRAC) assays were respectively 0.325±0.036 mg/mL, 0.053±0.018 mg/mL, 0.696±0.031 mg/mL and 60.94±0.004 μMTE/g, while the R extract using the same assays showed, 0.209±0.052 mg/mL, 0.034±0.002 mg/mL, 0.444±0.014 mg/mL and 50.63±0.006 μM Trolox equivalent/g, respectively. A total of 68 compounds were tentatively identified by LC/MS/MS in both extracts in which quinic acid, pyrogallol, osthrutin, piperine, gentisic acid, fisetin, luteolin, caffeic acid, gingerol, were the most abundant in the LC/MS/MS spectrum. Many of these metabolites were found for the first time in Tunisian Sonchus oleraceus L. which may take account for the antioxidant activities exhibited by the plant.  相似文献   

13.
In this study, new chiral thiourea and 1,3-thiazolidine-4,5-dione derivatives were synthesized, it was aimed to evaluate the various biological activities and molecular docking of these compounds. Firstly, the new thioureas ( 1 – 16 ) were obtained by reacting 1-naphthylisothiocyanate with different chiral amines. Then, the chiral thioureas were cyclized with oxalyl chloride to obtain 1,3-thiazolidine-4,5-dione derivatives ( 17 – 32 ). All compounds were evaluated with several in vitro antioxidant and enzyme inhibition activities. Compound 30 was the most active compound against AChE, with a value of IC50=8.09±0.58 μM. On the other hand, all compounds were tested in silico absorption, distribution, metabolism, and excretion (ADME) assays to better understand their bioavailability. These physicochemical properties, pharmacokinetics, and drug-likeness of all compounds were calculated using SwissADME. Furthermore, according to molecular docking analyses compound 30 exhibited significant binding affinities for all enzymes. Based on our overall observations, compound 30 could be recommended as a potential lead for the therapuetic of Alzheimer's.  相似文献   

14.
In spite of tremendous efforts exerted in the management of COVID-19, the absence of specific treatments and the prevalence of delayed and long-term complications termed post-COVID syndrome still urged all concerned researchers to develop a potent inhibitor of SARS-Cov-2. The hydromethanolic extracts of different parts of E. mauritanica were in vitro screened for anti-SARS-Cov-2 activity. Then, using an integrated strategy of LC/MS/MS, molecular networking and NMR, the chemical profile of the active extract was determined. To determine the optimum target for these compounds, docking experiments of the active extract's identified compounds were conducted at several viral targets. The leaves extract showed the best inhibitory effect with IC50 8.231±0.04 μg/ml. The jatrophane diterpenes were provisionally annotated as the primary metabolites of the bioactive leaves extract based on multiplex of LC/MS/MS, molecular network, and NMR. In silico studies revealed the potentiality of the compounds in the most active extract to 3CLpro, where compound 20 showed the best binding affinity. Further attention should be paid to the isolation of various jatrophane diterpenes from Euphorbia and evaluating their effects on SARS-Cov-2 and its molecular targets.  相似文献   

15.
A series of novel alkyl substituted purines were synthesized. 6‐[4‐(4‐Propoxyphenyl)piperazin‐1‐yl]‐9H‐purine was used as the key starting material, which was synthesized via a multistep protocol and finally subjected for N‐alkylation with various alkyl halides with an aim to get prospective antimicrobial agents. The structures of the novel compounds were established by substantiating them through spectral techniques like 1H‐NMR, 13C‐NMR, FT‐IR and EI‐MS. They were explored for antitubercular activity against Mycobacterium tuberculosis H37RV. Furthermore, they were checked for their antimicrobial activity concerning bacterial and fungal strains. The title compounds exhibited considerable antimicrobial activity without any significant toxicity. In silico studies depicted their good binding profile against Mycobacterium tuberculosis enoyl reductase (InhA; PDB ID: 4TZK) and Candida albicans dihydrofolate reductase (PDB ID: 1AI9). The title compounds obeyed Lipinski's parameters and have exhibited good drug‐like properties.  相似文献   

16.
A thiol compound, glutathione, is essential for healthy cell defence against xenobiotics and oxidative stress. Glutathione reductase (GR) and glutathione S-transferase (GST) are two glutathione-related enzymes that function in the antioxidant and the detoxification systems. In this study, potential inhibitory effects of methyl 4-aminobenzoate derivatives on GR and GST were examined in vitro. GR and GST were isolated from human erythrocytes with 7.63 EU/mg protein and 5.66 EU/mg protein specific activity, respectively. It was found that compound 1 (methyl 4-amino-3-bromo-5-fluorobenzoate with Ki value of 0.325±0.012 μM) and compound 5 (methyl 4-amino-2-nitrobenzoate with Ki value of 92.41±22.26 μM) inhibited GR and GST stronger than other derivatives. Furthermore, a computer-aided method was used to predict the binding affinities of derivatives, ADME characteristics, and toxicities. Derivatives 4 (methyl 4-amino-2-bromobenzoate) and 6 (methyl 4-amino-2-chlorobenzoate) were estimated to have the lowest binding energies into GR and GST receptors, respectively according to results of in silico studies.  相似文献   

17.
The aim of this study was to evaluate the antioxidant and anti-acetylcholinesterase properties and phytochemical constituents of the latex from Euphorbia dendroides L. (Euphorbiaceae) growing wild in Sicily. Phytochemical analysis revealed that into E. dendroides latex the triterpenoids were the most abundant among the identified compounds. Furthermore, a high content of polyphenols mainly as phenolic acids, was found. The antioxidant and free-radical scavenging properties, by several in vitro assays such as DPPH, TEAC and FRAP, have been evaluated. The results showed that E. dendroides latex has significant antioxidant activity, as measured by DPPH assay (2927.01?±?98.03 µmols of Trolox equivalent (TE)/100g FW). Reactivity towards ABTS radical cation and ferric-reducing antioxidant power (FRAP) values were 7580.95?±?97.65 µmols of TE/100g FW and 4383.13?±?95.30?μmol of TE/100g FW, respectively. The latex exhibited also significant inhibition of acetylcholinesterase activity with an IC50 value of 4.46 µg/mL (C.L.?=?2.002–9.947). Furthermore, Brine shrimp (Artemia salina) cytotoxicity bioassay showed that the larvae viability was significantly affected at higher concentrations than those capable to induce significant antioxidant and anti-acetylcholinesterase effects (LD50 25 µg/mL). The results suggest that polyphenols and terpenoids can contribute significantly to antioxidant and anti-acetylcholinesterase activities of E. dendroides latex.  相似文献   

18.
Vigna unguiculata (L. Walp) or Cowpea pod methanolic extracts phytochemical analysis, total phenolic content (TPC), and secondary metabolite profiling were determined using gas chromatography-mass spectrometry (GC/MS) and liquid chromatography-mass spectrometry (LC/MS) analysis. GC/MS analysis revealed twenty compounds in the extract, while LC/MS analysis identified twenty-four compounds. GC/MS chromatogram analysis suggested the presence of opioid α-N-Normethadol a major constituent found in methanolic extract and fatty acid esters carotenoid is found second major constituent. LC/MS chromatogram and the mass spectral analysis demonstrated the presence of flavonoids, carotenoids, and alkaloids as major phytochemicals. We investigated the antibacterial, anti-fungal, and anti-oxidant activity of pod methanolic extract. The extract was found equally effective against E. coli, S. pyogenes, and P. aeruginosa with MIC 100 μg/mL similar to the standard Ampicillin (MIC 100 μg/mL). C. albicans were found to be most susceptible to Vign unguiculata pods methanolic extract with a MIC of 250 μg/mL. The pod extract showed significant DPPH scavenging activity (IC50=78.38±0.15) which suggests its antioxidant potential.  相似文献   

19.
In aquaculture, diseases caused by the Aeromonads with high antibiotic resistance are among the most common and troublesome diseases. Application of herbs is emerging as a tool in controlling these diseases. Plant extracts besides disease control, favor various physiological activities in fish. In this study, essential oil of Cymbopogon flexuosus (Poaceae family) was studied in vitro for its antibacterial efficacy against two oxytetracycline (OTC) resistant and one sensitive strains of Aeromonas hydrophila. The oil was found rich (86.93 %) in oxygenated terpenoids containing 74.15 % of citral. The oil exhibited dose dependent growth inhibition of the bacteria. Mean MIC value of the oil against the sensitive strain was recorded as 2.0 mg mL−1 whereas MBC value was recorded as 4.0 mg mL−1. The oil was found effective against the OTC resistant isolates with the MIC and MBC values ranging from 2.67–3.33 and 4.0–6.67 mg mL−1, respectively. In silico molecular docking of the essential oil components against DNA gyrase-B, a vital macromolecule in bacterial cell, was carried out to computationally asses the efficacy of the oil against the bacteria. Some of the components of the essential oil strongly bonded with the enzyme to inhibit its efficacy. Binding energy of some components of the oil was comparable to that of the conventional antibiotic, OTC. The identified phytochemicals exhibited favorable physicochemical and pharmacokinetic properties and satisfied the rule of five (Ro5).  相似文献   

20.
Alzheimer's disease (AD) is a major health problem. Cholinergic transmission is greatly affected in AD. Phytochemical investigation of the alkaloid rich fraction (AF) of Erythrina corallodendron L leaves resulted in isolation of five known alkaloids: erysodine, erythrinine, 8-oxoerythrinine, erysovine N-oxide and erythrinine N-oxide. In this study, eysovine N-oxide was reported for the second time in nature. AF was assayed for cholinesterase inhibition at the concentration of 100 μg mL−1. AF showed a higher percent inhibition for butyrylcholinesterase enzyme (BuChE) (83.28 %) compared to acetylcholinesterase enzyme (AChE) (64.64 %). The isolated alkaloids were also assayed for their anti-BuChE effect. In-silico docking study was done for the isolated compounds at the binding sites of AChE and BuChE to determine their binding pattern and interactions, also molecular dynamics were estimated for the compound displaying the best fit for AChE and BuChE. In addition, ADME parameters and toxicity were predicted for the isolated alkaloids compared to donepezil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号