首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A flow injection (FI) methodology using the acidic potassium permanganate (KMnO4)–rhodamine-B (Rh-B) reaction with chemiluminescence (CL) detection was established to determine acetochlor and cartap-HCl pesticides in freshwater samples. Experimental parameters were optimized, and Chelex-100 cationic exchanger mini column and solid-phase extraction (SPE) were used as phase separation techniques. Linear calibration curves were observed for the standard solutions of acetochlor and cartap-HCl over the ranges 0.005–2.0 mg L−1 [y = 1155.8x + 57.551, R2 = 0.9999 (n = 8)] and 0.005–1.0 mg L−1 [y = 979.76x + 14.491, R2 = 0.9998 (n = 8)] with LODs and LOQs of 7.5 × 10−4 and 8.0 × 10−4 mg L−1 (3σ blank) and 2.5 × 10−3 and 2.7 × 10−3 mg L−1 (10σ blank), respectively, with an injection throughput of 140 h−1. These methods were used to estimate acetochlor and cartap-HCl with or without the SPE procedure, respectively, in spiked freshwater samples. Results obtained were not significantly different at a 95% confidence level to those of other reported methods. Recoveries for acetochlor and cartap-HCl were obtained over the ranges 93–112% (RSD = 1.9–3.6%) and 98–109% (RSD = 1.7–3.8%), respectively. The most probable CL reaction mechanism was explored.  相似文献   

2.
A novel flow injection-chemiluminescence (FI–CL) approach is proposed for the assay of pioglitazone hydrochloride (PG-HCl) based on its enhancing influence on the tris(2,2′-bipyridyl)ruthenium(II)–silver(III) complex (Ru(bipy)32+-DPA) CL system in sulfuric acid medium. The possible CL reaction mechanism is discussed with CL and ultraviolet (UV) spectra. The optimum experimental conditions were found as: Ru(bipy)32+, 5.0 × 10−5 M; sulfuric acid, 1.0 × 10−3 M; diperiodatoargentate(III) (DPA), 1.0 × 10−4 M; potassium hydroxide, 1.0 × 10−3 M; flow rate 4.0 ml min−1 for each flow stream and sample loop volume, 180 μl. The CL intensity of PG-HCl was linear in the range of 1.0 × 10−3 to 5.0 mg L−1 (R2 = 0.9998, n = 10) with limit of detection [LOD, signal-to-noise ratio (S/N= 3] of 2.2 × 10−4 mg L−1, limit of quantification (LOQ, S/N = 10) of 6.7 × 10−4 mg L−1, relative standard deviation (RSD) of 1.0 to 3.3% and sampling rate of 106 h−1. The methodology was satisfactorily used to quantify PG-HCl in pharmaceutical tablets with recoveries ranging from 93.17 to 102.77 and RSD from 1.9 to 2.8%.  相似文献   

3.
The microbial retardation of the spin adduct, DMPO-OH, formed in a copper(II)–hydrogen peroxide–DMPO (5,5-dimethyl-1-pyrroline N-oxide) solution was examined in relation to copper biosorption. A hydroxyl radical is formed in the solution through two steps, the reduction of Cu(II) to Cu(I) by H2O2 and the Fenton-type reaction of Cu(I) with H2O2. The resultant radical is trapped by DMPO to form DMPO-OH. Microbial cells retarded the DMPO-OH in the Cu(II)–H2O2–DMPO far more significantly than in the UV-irradiated H2O2–DMPO solution. Egg albumin showed a higher DMPO-OH retardation than microbial cells both in the Cu(II)–H2O2–DMPO and the UV-irradiated H2O2–DMPO solutions. These results indicated that the retardation effect is related to organic matter and not to microbial activity. Microorganisms having higher affinities for copper ion retarded DMPO-OH more significantly. The linear relationship between the amounts of copper biosorption and the inverse of the median inhibitory doses for DMPO-OH indicated that the microbial cells inhibited the reduction of Cu(II) to Cu(I) by H2O2, followed by the decrease of hydroxyl radical formation and the retardation of DMPO-OH. These results also suggest that the coupling between microbial cells and Cu(II) ion can be estimated from their ability to retard DMPO-OH.  相似文献   

4.
A chemiluminescence (CL) method based on rhodamine 6G (R6G)–diperiodatoargentate(III) (silver(III) complex) reaction in acid solution is reported for the determination of lansoprazole (LNP) combined with a flow injection (FI) technique. The most likely mechanism for CL reaction was elucidated considering reported data, spectrophotometric and spectrofluorimetric studies. The weak CL reaction between R6G and silver(III) complex could be magnanimously increased in the presence of LNP with a limit of detection (LOD) of 0.002 mg L−1 (S/N = 3), a linear range of 0.01 to 10 mg L−1 (R2 = 0.9997, n = 7), a relative standard deviation (RSD) of 1.2 to 3.2% (n = 4) and an injection throughput of 140 h−1. No interference activity of commonly found excipients in LNP was detected. After LNP extraction from pharmaceutical samples, the recovery rate ranging from 93 to 110% (RSD, 1.4–3.3%, n = 4) was calculated. The results of the proposed flow CL method were assessed with a spectrophotometric approach applying paired Student's t-test and the calculated value (0.178) was lower than the distributed value (2.20) at a 95% confidence limit.  相似文献   

5.
Organophosphorus flame retardants (OPFRs) are new types of environmental pollutants, therefore the rapid and sensitive detection of OPFRs is a very important objective. A new experimental phenomenon was found in which tris(2-chloroethyl)phosphine (TCEP), a type of OPFR, could effectively enhance the signal of the luminol–H2O2 chemiluminescence (CL) system. Combined with the controllability of flow injection analysis, a rapid, stable, and sensitive CL method was established. The CL intensity responded linearly to the concentration of TCEP in the range 0.5–100 μg/L (R2 = 0.999) with a low detection limit of 33 ng/L. Relative standard deviation (RSD) was 2.2% (n = 7, c = 100 μg/L). Water samples were labelled and recycled with RSDs of 1.1–5.7% and recoveries of 88.7–116.1%. Based on these results, this study established a new CL detection method for the environmental pollutant TCEP.  相似文献   

6.
This study introduces a novel chemiluminescence (CL) approach utilizing FeS2 nanosheets (NSs) catalyzed luminol–O2 CL reaction for the measurement of three pharmaceuticals, namely venlafaxine hydrochloride (VFX), imipramine hydrochloride (IPM), and cefazolin sodium (CEF). The CL method involved the phenomenon of quenching induced by the pharmaceuticals in the CL reaction. To achieve the most quenching efficacy of the pharmaceuticals in the CL reaction, the concentrations of reactants comprising luminol, NaOH, and FeS2 NSs were optimized accordingly. The calibration curves demonstrated exceptional linearity within the concentration range spanning from 4.00 × 10−7 to 1.00 × 10−3 mol L−1, 1.00 × 10−7 to 1.00 × 10−4 mol L−1, and 4.00 × 10−6 to 2.00 × 10−4 mol L−1 with detection limits (3σ) of 3.54 × 10−7, 1.08 × 10−8, and 2.63 × 10−6 mol L−1 for VFX, IPM, and CEF, respectively. This study synthesized FeS2 NSs using a facile hydrothermal approach, and then the synthesized FeS2 NSs were subjected to a comprehensive characterization using a range of spectroscopic methods. The proposed CL method was effective in measuring the aforementioned pharmaceuticals in pharmaceutical formulations as well as different water samples. The mechanism of the CL system has been elucidated.  相似文献   

7.
In the first phase of this study, the binding of hydroxychloroquine to the copper(II) cation is examined using liquid chromatography–mass spectrometry (LC–MS), matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS), Fourier transform-ion cyclotron resonance spectrometry (FT-ICR) and nuclear magnetic resonance (1H and 13C NMR) in one and two dimensions. The data suggest the metal–ligand complex is a polarity adaptive molecule. In the second phase of the study, the complexes activity is tested against the National Cancer Institute’s 60 cell line panel. Its anti-cancer activity is compared to quinine, Cu(II)–quinine and hydroxychloroquine. It serves as a base line for future anti-cancer complexes in which hydroxychloroquine is utilized for its ability to impact cell autophagy.  相似文献   

8.
Copper(II) ,-dicarboxylate complexes of general formulae, [Cu(O2C(CH2)nCO2)]·xH2O, [Cu(O2C(CH2)nCO2) (phen)2xH2O and [Cu(O2C(CH2)nCO2)(bipy)yxH2O (n=1–8; y=1, 2; phen = 1,10-phenanthroline; bipy = 2,2-bipyridine) were synthesised. These copper complexes, some related manganese(II) complexes and the metal-free ligands were screened in vitro for their ability to inhibit the growth of Candida albicans. Metal-free 1,10-phenanthroline and all of the copper(II) and manganese(II) phenanthroline complexes were potent growth inhibitors, with only one bipyridine complex, [Cu(O2C(CH2)CO2)(bipy)2]·2H2O, having moderate activity. The remaining substances were effectively inactive. Complexes which were active against C. albicans also proved effective against C. glabrata, C. tropicalis and C. kreusi with the manganese complexes retaining superior activity. For the phenanthroline complexes the active drug species is thought to be the dication [M(phen)2(H2O)n]2+ (M = Cu, Mn). Escherichia coli and Staphylococcus aureus were resistant to all of the metal complexes and also to metal-free 1,10-phenanthroline. Only the copper phenanthroline complexes showed intermediate activity against Pseudomonas aeruginosa.  相似文献   

9.
10.
Reaction of the ligand N-methyl-N-((6-pivaloylamido-2-pyridyl)methyl)-N-(2-pyridylethyl)amine (mpppa) with equimolar amounts of [Cu(H2O)6][ClO4]2 or CuCl2 · 2H2O in MeCN afforded mononuclear copper(II) complexes [Cu(mpppa)][ClO4]2 (1) and [Cu(mpppa)Cl2] (2). Crystal structure analysis reveals CuN3O (two pyridyl, an aliphatic amine, and an amide oxygen) coordination in 1 and CuN3Cl2 (two pyridyl, an aliphatic amine, and two chlorides) coordination in 2. Crystal packing diagram of 1 reveals that one of the perchlorate counteranions provides weak coordination to copper(II) centers and in turn the copper(II) centers assume pseudo-six-coordination, generating 1D chain. Notably, one of the copper(II)-coordinated chloride ions in 2 participates in an intramolecular N–H?Cl interaction. Intermolecular C–H?Cl interactions in the solid state generate helical structure. Spectroscopic (IR, UV–Vis, and EPR) and redox properties of the two complexes have been investigated and compared.  相似文献   

11.
The complexes [Cu(samen)Cu(L)] and [Cu(samen)Ni(L)2] (Lbpy, phen) have been synthesized by the reaction of sodium N,N′-ethylenedisalicylamidatocuprate(II) pentahydrate (Na2- [Cu(samen)]·5H2O), a divalent metal ion, and 2,2′- dipyridyl or 1,10-phenanthroline. Cryomagnetic data for the CuCu complexes did not fit the Bleaney- Bowers equation; but the data did fit a modified Bleaney-Bowers equation
with a large negative J and a significant negative θ, suggesting that a considerable magnetic interaction operates between essentially planar [Cu(samen)Cu(L)] molecules. The magnetisms of the CuNi complexes were well interpreted in terms of the susceptibility equation based on the Heisenberg model. An antiferromagnetic spin-exchange interaction (J= −13∼−14 cm−1) was suggested between the metal ions.  相似文献   

12.
Ligand field molecular mechanics (LFMM) parameters have been benchmarked for copper (II) bound to the amyloid-β1–16 peptide fragment. Several density functional theory (DFT) optimised small test models, representative of different possible copper coordination modes, have been used to test the accuracy of the LFMM copper bond lengths and angles, resulting in errors typically less than 0.1 Å and 5°. Ligand field molecular dynamics (LFMD) simulations have been carried out on the copper bound amyloid-β1–16 peptide and snapshots extracted from the subsequent trajectory. Snapshots have been optimised using DFT and the semi-empirical PM7 method resulting in good agreement against the LFMM calculated geometry. Analysis of substructures within snapshots shows that the larger contribution of geometrical difference, as measured by RMSD, lies within the peptide backbone, arising from differences in DFT and AMBER, and the copper coordination sphere is reproduced well by LFMM. PM7 performs excellently against LFMM with an average RMSD of 0.2 Å over 21 tested snapshots. Further analysis of the LFMD trajectory shows that copper bond lengths and angles have only small deviations from average values, with the exception of a carbonyl moiety from the N-terminus, which can act as a weakly bound fifth ligand.  相似文献   

13.
We report here a novel detection scheme for simultaneous detection of NADH and H(2)O(2) based on a bifunctional poly(thionine)-modified electrode. Electropolymerization of thionine on a "preanodized" screen-printed carbon electrode effectively lowers the oxidation potential of NADH to 0.15 V (vs. Ag/AgCl). Since poly(thionine) is also a well known electrochemical mediator for H(2)O(2) reduction, we further developed a poly(thionine)-modified ring disk electrode for simultaneous measurement of nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H(2)O(2)) by flow injection analysis. By applying the optimized detection potentials of 0.2V and -0.2V at disk and ring electrodes, respectively, this system allows the simultaneous measurement of both analytes with good sensitivity (0.13 μA/mM for H(2)O(2) and 0.34 μA/mM for NADH) and limit of detection (1.74 μM and 26.0 μM for NADH and H(2)O(2)). This opens the possibility of a whole series of biosensor applications.  相似文献   

14.
《Process Biochemistry》2007,42(1):34-39
An examination of the sustainability of the long-term cultivation of C. beijerinckii BA101 in degermed corn/saccharified degermed corn based P2 medium has been described in this work. It was found that long-term continuous cultivation of C. beijerinckii BA101 in a degermed corn based medium was not possible due to the instability of the gelatinized degermed corn starch during storage often called “retrogradation”. Using this substrate, continuous ABE fermentation was run for 228 h, before the fermentation turned acidogenic. However continuous fermentations of saccharified degermed corn with normal and half P2 medium nutrients were successful. In saccharified degermed corn continuous fermentation, ABE concentration up to 14.28 g/L was achieved at a dilution rate of 0.03 h−1. This work demonstrated that byproduct (germ/oil, corn fiber) credit can be obtained by fermenting saccharified degermed corn in continuous flow bioreactors. Additionally significant savings can be achieved by supplementing with half of normal P2 medium nutrients.  相似文献   

15.
The synthesis of β-casomorphin-5 (Tyr-Pro-Phe-Pro-Gly, H2L) and a number of its peptide fragments is described. Complexes formed between these peptides and Cu(II) have been investigated spectrophotometrically, using CD and EPR spectroscopy, and potentiometrically. Results show that, with tyrosine as the N-terminal residue, the major complex formed at physiological pH is the dimeric species, [Cu2L2], bonded through the phenolic O? of the Tyr residue of one ligand and the N-terminal amine nitrogen of the second ligand molecule. There is no evidence for coordination through the peptide nitrogens unless the terminal Tyr group is removed.  相似文献   

16.
17.
Atropine (AT) is an anticholinergic drug. AT is abundantly in Datura plant seeds. Fe3O4@Zn/Mg MOF (Fe3O4@MOF) composite was synthesized. The compound had a high peroxidase-like activity in a chemiluminescence (CL) reaction. Addition of AT quenched CL. The linear range and limit of detection were 5–600 μg L−1 and 2 × 10−2 μg L−1. This method is fast, reversible, and selective, without biodegradability effects, high accuracy, and precision for measuring AT in the Datura plant.  相似文献   

18.
Oxalate is quantitated in both urine and plasma samples using reversed-phase ion-pair high-performance liquid chromatography (HPLC) with tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+]-electrogenerated chemiluminescent (ECL) detection. Underivatized oxalate was separated on a reversed-phase column (Zorbax ODS) using a mobile phase of 10% methanol in 100 mM phsophate buffer at pH 7.0. The eluted compounds were combined with a stream of 2 mM Ru(bpy)32+ at a mixing tee before the ECL flow-cell. In the flow-cell, Ru(bpy)32+ is oxidized to Ru(bpy)32+ at a platinum electrode, and reacts with oxalate to produce chemiluminescence (CL). Urine samples were filtered and diluted prior to injection. Plasma samples were deproteinized before injection. A 25-μl aliquot of sample was injected for analysis. Possible interferants, including amino acids and indole-based compounds, present in biological samples were investigated. Without the separation, amino acids interfere by increasing the total observed CL intensity; this is expected because they give rise to CL emission on their own in reaction with Ru(bpy)33+. Indole compounds exhibit a unique interference by decreasing the CL signal when present with oxalate. Indoles inhibit their own CL emission at high concentration. By use of the indicated HPLC separation, oxalate was adequately separated from both types of interferants, which thus had no effect on the oxalate signal. Urine samples were assayed by both HPLC and enzymatic tests, the two techniques giving similar results, differing only by 1%. Detection limits were determined to be below 1 μM (1 nmol/ml) or 25 pmol injected. The working curve for oxalate was linear throughout the entire clinical range in both urine and plasma.  相似文献   

19.
Abstract

Chemical speciation of Mg(II) and Ca(II) complexes of L-histidine in the presence of water–surfactant mixtures in the concentration range 0.0–2.5% w/v CTAB and SDS, 0.0–5.0% v/v TX-100 maintaining an ionic strength of 0.16 mol dm?3 at 303 K has been studied pH metrically. The active forms of the ligand are LH32+, LH2+, LH and L?. The models containing different numbers of species were refined by using the computer program, MINIQUAD75. The predominant species detected were ML2H44+, ML2H33+, ML2H22+, and ML2. The best fit chemical models were arrived at based on statistical parameters. The trend in variation of complex stability constants with change in the composition of the medium is explained on the basis of electrostatic and non-electrostatic forces. The effect of errors in the stability constants was also studied. Chemical speciation was also discussed based on the distribution diagrams.  相似文献   

20.
《Inorganica chimica acta》2004,357(11):3230-3236
The derivatives of Cu(OAc)2 · H2O with 2-methylaminopyridine and 3-aminomethylpyridine, [Cu2(μ-OAc)4(MeNHpy)2] (1) and [Cu(OAc)2(μ-NH2CH2py)(H2O)]n (2), respectively, have been synthesized and characterized. Compound 1 shows the dimer structure of [Cu2(μ-OAc)4(H2O)2], with four syn-syn bridging acetate groups and the MeNHpy ligand coordinated in the axial positions. It is antiferromagnetic (2J=−285 cm−1). Signals of the triplet state are observed in its EPR spectrum and the zero-field splitting parameter has been calculated (D=0.36 cm−1; g=2.35; g=2.07). Otherwise, the ligand 3-aminomethylpyridine acts as bridging bidentate ligand in compound 2, forming infinite zig-zag chains. Each copper atom lies in a square-planar pyramidal coordination, determined by two nitrogen atoms of two bridge ligands, two oxygen atoms of two monodentate terminal acetate groups and a water molecule. The parallel chains form a sheet because of the hydrogen bonds between them. The shortest Cu-Cu distances are: 5.1270, 6.0952 and 6.2163 Å (inter-chains) and 7.875 Å (intra-chain). Compound 2 shows a slight antiferromagnetic effect below 30 K. The EPR spectra show an orthorhombic signal (g1=2.26; g2=2.08; g3=2.06).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号