首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1,3,4-Oxadiazole derivatives have drawn continuing interest over the years because of their varied biological activities. In order to search for novel anticancer agents, we designed and synthesized a series of new 1,3,4-oxadiazole derivatives containing benzotriazole moiety as potential focal adhesion kinase (FAK) inhibitors. All the synthesized compounds were firstly reported. Among the compounds, compound 4 shows the most potent inhibitory activity against MCF-7 and HT29 cell lines with IC50 values of 5.68 μg/ml and 10.21 μg/ml, respectively. Besides, all the compounds were assayed for FAK inhibitory activity using the TRAP–PCR–ELISA assay. The results showed compound 4 exhibited the most potent FAK inhibitory activity with IC50 values of 1.2 ± 0.3 μM. Docking simulation by positioning compound 4 into the FAK structure active site was performed to explore the possible binding mode. Apoptosis which was analyzed by flow cytometry, demonstrated that compound 4 induced apoptosis against MCF-7 cells. Therefore, compound 4 may be a potential anticancer agent against MCF-7 cancer cell.  相似文献   

2.
A series of 1,3,4-thiadiazol-2-amide derivatives (5a-5y) have been designed and synthesized, and their biological activities were also evaluated as potential antiproliferation and FAK inhibitors. Among all the compounds, 5h showed the most potent activity in vitro, which inhibited the growth of MCF-7 and B16-F10 cell lines with IC(50) values of 0.45 and 0.31 μM, respectively. Compound 5h also exhibited significant FAK inhibitory activity (IC(50)=5.32 μM). Docking simulation was performed to position compound 5h into the FAK structure active site to determine the probable binding model. The results of antiproliferative and Western-blot assay demonstrated that compound 5h possessed good antiproliferative activity. Therefore, compound 5h with potent FAK inhibitory activity may be a potential anticancer agent.  相似文献   

3.
Quinazolinone derivatives have been studied as both in vitro and in vivo inhibitors of aspartate transcarbamylase (ATCase). In vitro treatment of mammalian ATCase with four compounds revealed that they inhibited enzyme activity and that 2-phenyl-1,3-4(H)benzothiazin-4-thione was the most potent one. This compound acts as a noncompetitive inhibitor towards both aspartate and carbamoyl phosphate. The values of the inhibition constant (Ki) indicate that this compound exerts a potent inhibitory effect upon ATCase activity. Moreover, in vivo treatment with different doses of these derivatives showed also an inhibitory effect upon ATCase, the relative activity being decreased by 40%–58% with a 1 mg dose. These data support the inhibition of ATCase by quinazolinone derivatives as a new type of inhibitor for the enzyme.  相似文献   

4.
Fatty acid biosynthesis is essential for bacterial survival. Of these promising targets, β-ketoacyl-acyl carrier protein (ACP) synthase III (FabH) is the most attractive target. A series of novel 1,3,4-oxadiazole-2(3H)-thione derivatives containing 1,4-benzodioxane skeleton targeting FabH were designed and synthesized. These compounds were determined by 1H-NMR, 13C-NMR, MS and further confirmed by crystallographic diffraction study for compound 7m and 7n . Most of the compounds exhibited good inhibitory activity against bacteria by computer-assisted screening, antibacterial activity test and E. coli FabH inhibitory activity test, wherein compounds 7e and 7q exhibited the most significant inhibitory activities. Besides, compound 7q showed the best E. coli FabH inhibitory activity (IC50=2.45 μΜ). Computational docking studies also showed that compound 7q interacts with FabH critical residues in the active site.  相似文献   

5.
In present study, a series of new 2-(1,3,4-oxadiazol-2-ylthio)-1-phenylethanone derivatives (6a-6x) as potential focal adhesion kinase (FAK) inhibitors were synthesized. The bioassay assays demonstrated that compound 6i showed the most potent activity, which inhibited the growth of MCF-7 and A431 cell lines with IC(50) values of 140 ± 10 nM and 10 ± 1 nM, respectively. Compound 6i also exhibited significant FAK inhibitory activity (IC(50)=20 ± 1 nM). Docking simulation was performed to position compound 6i into the active site of FAK to determine the probable binding model.  相似文献   

6.
A series of 2-styryl-5-nitroimidazole derivatives containing 1,4-benzodioxan moiety (3a3r) has been designed, synthesized and their biological activities were also evaluated as potential antiproliferation and focal adhesion kinase (FAK) inhibitors. Among all the compounds, 3p showed the most potent activity in vitro which inhibited the growth of A549 with IC50 value of 3.11 μM and Hela with IC50 value of 2.54 μM respectively. Compound 3p also exhibited significant FAK inhibitory activity (IC50 = 0.45 μM). Docking simulation was performed for compound 3p into the FAK structure active site to determine the probable binding model.  相似文献   

7.
Recently, diverse kinase inhibitors were reported having interaction with BRD4. It provided a strategy for developing a new structural framework for the next-generation BRD4-selective inhibitors. Starting from PLK1 kinase inhibitor BI-2536, we designed 18 compounds by modifying dihydropteridine core. Compound 23 showed potent BRD4 inhibitory activities with IC50 of 79 nM and no inhibitory activities for PLK1. Cell antiproliferation assay was performed and potent inhibitory activity against MV4;11 with IC50 of 1.53 μM. Cell apoptosis and western blotting indicated compound 23 induced apoptosis by down-regulating c-Myc. These novel selective BRD4 inhibitors provided new lead compounds for further drug development.  相似文献   

8.
Robustic acid is reported to be a bioactive compound, isolated from the medicinal plant Dalbergia benthamii Prain . Ten alkyl and benzyl derivatives ( 2a – 2j ) of robustic acid were designed and synthesized based on molecular docking approaches. The biological activities of most of the synthesized compounds (such as 2g , 2h , and 2i ) were closely consistent with the docking results. In particular, 4‐O‐phenylpropyl substituted compound 2g displayed potent topoisomerase I inhibitory activity as well as cytotoxicity against SMMC‐7721, HepG2, and HeLa cell lines. Further biological testing suggests that compound 2g acted mainly by an arrest of the tumor cells in G1 phase of the cell cycle and suppressed cell proliferation by inducing apoptosis. The findings of this study are encouraging with respect to potential utilization of these compounds as new topoisomerase I inhibitors.  相似文献   

9.
Compounds that can effectively inhibit the proteolytic activity of human neutrophil elastase (HNE) represent promising therapeutics for treatment of inflammatory diseases. We present here the synthesis, structure–activity relationship analysis, and biological evaluation of a new series of HNE inhibitors with a cinnoline scaffold. These compounds exhibited HNE inhibitory activity but had lower potency compared to N-benzoylindazoles previously reported by us. On the other hand, they exhibited increased stability in aqueous solution. The most potent compound, 18a, had a good balance between HNE inhibitory activity (IC50 value?=?56?nM) and chemical stability (t1/2?=?114?min). Analysis of reaction kinetics revealed that these cinnoline derivatives were reversible competitive inhibitors of HNE. Furthermore, molecular docking studies of the active products into the HNE binding site revealed two types of HNE inhibitors: molecules with cinnolin-4(1H)-one scaffold, which were attacked by the HNE Ser195 hydroxyl group at the amido moiety, and cinnoline derivatives containing an ester function at C-4, which is the point of attack of Ser195.  相似文献   

10.
A series of novel schiff base derivatives (H1H20) containing pyrazine and triazole moiety have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of β-ketoacyl-acyl carrier protein synthase III (FabH). These compounds were assayed for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis and Bacillus amyloliquefaciens and selected compounds among them were tested for their Escherichia coli FabH inhibitory activity. Based on the biological data, compound H17 showed the most potent antibacterial activity with MIC values of 0.39–1.56 μg/mL against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with IC50 of 5.2 μM, being better than the positive control Kanamycin B with IC50 of 6.3 μM. Furthermore, docking simulation was performed to position compound H17 into the E. coli FabH active site to determine the probable binding conformation. This study indicated that compound H17 has demonstrated significant E. coli FabH inhibitory activity as a potential antibacterial agent and provides valuable information for the design of E. coli FabH inhibitors.  相似文献   

11.
In present study, we described the synthesis and biological evaluation of a new class of EGFR inhibitors containing 2,9-disubstituted 8-phenylthio/phenylsulfinyl-9H-purine scaffold. Thirty-one compounds were synthesized. Among them, compound C9 displayed the IC50 of 29.4?nM against HCC827 cell line and 1.9?nM against EGFRL858R. Compound C12 showed moderate inhibitory activity against EGFRL858R/T790M/C797S (IC50?=?114?nM). Western bolt assay suggested that compound C9 significantly inhibited EGFR phosphorylation. In vivo test, compound C9 remarkably exhibited inhibitory effect on tumor growth at 5.0?mg/kg by oral administration in established nude mouse HCC827 xenograft model. These results indicate that the 2,9-disubstituted 8-phenylsulfinyl/phenylsulfinyl-9H-purine derivatives can act as potent EGFR(L858R) inhibitors and effective anticancer agents. Additionally, optimization of compound C12 may result in discovering the fourth-generation EGFR-TKIs.  相似文献   

12.
Multi-target EGFR, VEGFR-2 and PDGFR inhibitors are highly useful anticancer agents with improved therapeutic efficacies. In this work, we used two virtual screening methods, support vector machines (SVM) and molecular docking, to identify a novel series of benzimidazole derivatives, 2-aryl benzimidazole compounds, as multi-target EGFR, VEGFR-2 and PDGFR inhibitors. 2-Aryl benzimidazole compounds were synthesized and their biological activities against a tumor cell line HepG-2 and specific kinases were evaluated. Among these compounds, compounds 5a and 5e exhibited high cytotoxicity against HepG-2 cells with IC?? values at ~2 μM. Further kinase assay study showed that compound 5a have good EGFR inhibitory activity and moderate VEGFR-2 and PDGFR inhibitory activities, while 5e have moderate EGFR inhibitory activity and slightly weaker VEGFR-2 and PDGFR inhibitory activities. Molecular docking analysis suggested that compound 5a more tightly interacts with EGFR and PDGFR than compound 5e. Our study discovered a novel series of benzimidazole derivatives as multi-target EGFR, VEGFR-2 and PDGFR kinases inhibitors.  相似文献   

13.
The influence of substituents on the activities of a series of N2-α-substituted benzyl-N4-alkyl-2,4-diamino-6-chloro-s-triazines as inhibitors of photosystem II (PSII) was examined, and the phytotoxic differences between them and atrazine, as to the photosynthesis in leaf disks, mesophyll cells, intact chloroplasts and broken chloroplasts of spinach, and as to seedling-growth, were discussed. The inhibitory activity of the N2-α,α-dimethylbenzyl-N4-ethyl derivative (6), which was comparable on that of atrazine, was lower than those of the N2-α-alkylbenzyl analogues (1 ~5). The N4-?-alkyl-N2-α- methylbenzyl derivatives, in spite of the carbon length of the alkyl group, exhibited more potent activity than atrazine, but an a α β substitution of the N4-n-alkyl group caused a decrease in the activity with a few exceptions. These data may imply that the space of the binding site on PSII surrounding both the N2 and N4 amino groups is relatively large. The binding between the receptor site and the N4 amino group, however, is easily influenced by a slight structural change in an inhibitor. The herbicidal compounds, N2-α-methylbenzyl-A^4-ethyl (1), A^2-α,α-dimethylbenzyl-N4-1-methylpropyl (30) and N2-α-methylbenzyl-N4,N4-diethyl (42) derivatives, exhibited potent inhibitory activity in the seedling growth test under dark/light conditions, whereas atrazine was very poor. The inhibitory activity of compound (1) toward photosynthesis was poor with leaf disks, compared to atrazine, whereas, the order of their activities was the reverse for plant preparations such as abaxial epidermis peeled leaf disks, mesophyll cells, intact chloroplasts and broken chloroplasts. It was indicated that a change in the phytotoxic symptom in the whole plant assay would be correlated to the permeability of the compound through the plant membrane(s).  相似文献   

14.
A series of salicylamide derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer’s disease. In vitro assays demonstrated that most of the derivatives were selective AChE inhibitors. They showed good inhibitory activities of self- and Cu2+-induced Aβ1–42 aggregation, and significant antioxidant activities. Among them, compound 15b exhibited good inhibitory activity toward RatAChE and EeAChE with IC50 value of 10.4 μM and 15.2 μM, respectively. Moreover, 15b displayed high antioxidant activity (2.46 Trolox equivalents), good self- and Cu2+-induced Aβ1–42 aggregation inhibitory potency (42.5% and 31.4% at 25.0 μM, respectively) and moderate disaggregation ability to self- and Cu2+-induced Aβ1–42 aggregation fibrils (23.4% and 27.0% at 25 μM, respectively). Furthermore, 15b also showed biometal chelating abilities, anti-neuroinflammatory ability and BBB permeability. These multifunctional properties indicated compound 15b was worthy of being chosen for further pharmacokinetics, toxicity and behavioral researches to test its potential for AD treatment.  相似文献   

15.
HDAC inhibitors enable histones to maintain a high degree of acetylation. The resulting looser state of chromatin DNA may increase the accessibility of DNA drug targets and consequently improve the efficiency of anticancer drugs targeting DNA, such as Topo II inhibitors. A novel class of nucleoside-SAHA derivatives has been designed and synthesized based on the synergistic antitumor effects of topoisomerase II and histone deacetylase inhibitors. Their inhibitory activities toward histone deacetylases and Topo II, and their cytotoxicities in cancer cell lines, were evaluated. Among the synthesized hybrid compounds, compound 16b showed the potent HDAC inhibitory activity at a low nanomolar level and exhibited antiproliferative activity toward cancer cell lines including MCF-7 (breast), HCT-116 (colon), and DU-145 (prostate) cancer cells at a low micromolar level. Moreover, compound 16a showed HDAC6-selectivity 20-fold over HDAC1.  相似文献   

16.
In this study, a set of novel benzoxazole derivatives were designed, synthesised, and biologically evaluated as potential VEGFR-2 inhibitors. Five compounds (12d, 12f, 12i, 12l, and 13a) displayed high growth inhibitory activities against HepG2 and MCF-7 cell lines and were further investigated for their VEGFR-2 inhibitory activities. The most potent anti-proliferative member 12 l (IC50 = 10.50 μM and 15.21 μM against HepG2 and MCF-7, respectively) had the most promising VEGFR-2 inhibitory activity (IC50 = 97.38 nM). A further biological evaluation revealed that compound 12l could arrest the HepG2 cell growth mainly at the Pre-G1 and G1 phases. Furthermore, compound 12l could induce apoptosis in HepG2 cells by 35.13%. likely, compound 12l exhibited a significant elevation in caspase-3 level (2.98-fold) and BAX (3.40-fold), and a significant reduction in Bcl-2 level (2.12-fold). Finally, docking studies indicated that 12l exhibited interactions with the key amino acids in a similar way to sorafenib.  相似文献   

17.
Novel sulfanilamide derivatives were synthesized and evaluated for carbonic anhydrase inhibitory activity as a target for the treatment of glaucoma, and antibacterial properties for use in chemotherapy. Synthesized compounds were characterized by FT-IR, 1H NMR, 13C NMR and photoluminescence. In vitro inhibitory activities were measured by UV-Vis and some of the compounds were found have greater inhibitory effects than the lead compound sulfanilamide. The correlation between inhibitory activity, biological properties and the physicochemical properties of water solubility and partition coefficients was also investigated. Sulfanilamide derivatives gave intense emissions upon irradiation by UV light and a dimethyl substituted compound and a cyclic analog have photoluminescence quantum yields 42% and 31% and long excited-state lifetimes of 3.92 and 2.91 ns, respectively.  相似文献   

18.
A series of new trimethoxyphenyl-4H-chromen derivatives as telomerase inhibitors through regulation dyskerin were designed and synthesised. The anticancer activity assay in vitro showed that compound 5i 3-(4-(4-isonicotinoylpiperazin-1-yl)butoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one exhibited high activity against Hela, SMMC-7721, SGC-7901, U87 and HepG2 cell lines. Compound 5i also showed potent inhibitory activity against telomerase. The further results confirmed this title compound could significantly improve pathological changes induced rat hepatic tumor in vivo. Preliminary mechanisms showed that compound 5i inhibited telomerase activity through decrease expression of dyskerin.  相似文献   

19.
A series of 4′-OH flurbiprofen Mannich base derivatives were designed, synthesized and evaluated as potential multifunctional agents for the treatment of Alzheimer’s disease. The biological screening results indicated that most of these derivatives exhibited good multifunctional activities. Among them, compound 8n demonstrated the best inhibitory effects on self-induced Aβ1-42 aggregation (65.03% at 25.0?μM). Moreover, this representative compound also exhibited good antioxidant activity, biometal chelating ability and anti-neuroinflammatory activity in vitro. Furthermore, compound 8n displayed appropriate blood-brain barrier permeability. These multifunctional properties highlight compound 8n as promising candidate for further development of multi-functional drugs against AD.  相似文献   

20.
Panaxatriol, a triterpene bearing a steroid-like structure similar to cardiac glycosides, was presumed to share the same bioactivity with cardiac glycosides, and may be a potential Na+, K+-ATPase inhibitor. In this paper, a series of panaxatriol derivatives were synthesized and evaluated for Na+, K+-ATPase inhibitory activities. The results of biological tests showed that more than half of the synthesized derivatives presented increased inhibitory activities compared with panaxatriol. Of these compounds, 13a with a 3, 4-seco skeleton showed the most potent inhibitory activity, which was equal to that of the standard drug digoxin. To understand the binding mode of the most active compound, molecular docking study of 13a with Na+, K+-ATPase was conducted. Therefore, 13a may serve as a new lead compound for the development of novel Na+, K+-ATPase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号