首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time, in situ electromagnetic field exposure of the general public to fields from long term evolution (LTE) cellular base stations is assessed. Exposure contributions due to different radiofrequency (RF) sources are compared with LTE exposure at 30 locations in Stockholm, Sweden. Total exposures (0.2–2.6 V/m) satisfy the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) reference levels (from 28 V/m for frequency modulation (FM), up to 61 V/m for LTE) at all locations. LTE exposure levels up to 0.8 V/m were measured, and the average contribution of the LTE signal to the total RF exposure equals 4%. Bioelectromagnetics 31:576–579, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
The model biological organisms Drosophila melanogaster and Drosophila virilis have been utilized to assess effects on apoptotic cell death of follicles during oogenesis and reproductive capacity (fecundity) decline. A total of 280 different experiments were performed using newly emerged flies exposed for short time daily for 3–7?d to various EMF sources including: GSM 900/1800?MHz mobile phone, 1880–1900?MHz DECT wireless base, DECT wireless handset, mobile phone-DECT handset combination, 2.44?GHz wireless network (Wi-Fi), 2.44?GHz blue tooth, 92.8?MHz FM generator, 27.15?MHz baby monitor, 900?MHz CW RF generator and microwave oven’s 2.44?GHz RF and magnetic field components. Mobile phone was used as a reference exposure system for evaluating factors considered very important in dosimetry extending our published work with D. melanogaster to the insect D. virilis. Distance from the emitting source, the exposure duration and the repeatability were examined. All EMF sources used created statistically significant effects regarding fecundity and cell death-apoptosis induction, even at very low intensity levels (0.3?V/m blue tooth radiation), well below ICNIRP’s guidelines, suggesting that Drosophila oogenesis system is suitable to be used as a biomarker for exploring potential EMF bioactivity. Also, there is no linear cumulative effect when increasing the duration of exposure or using one EMF source after the other (i.e. mobile phone and DECT handset) at the specific conditions used. The role of the average versus the peak E-field values as measured by spectrum analyzers on the final effects is discussed.  相似文献   

3.
The 1998 International Commission for Non-Ionising Radiation (ICNIRP) Guidelines for human exposure to radiofrequency (RF) fields contain a recommendation to assess the potential impact of metallic implants in workers exposed up to the allowable occupational field limits. This study provides an example of how numerical electromagnetic (EM) and thermal modelling can be used to determine whether scattered RF fields around metallic implants in workers exposed to allowable occupational ambient field limits will comply with the recommendations of relevant standards and guidelines. A case study is performed for plane wave exposures of a 50 mm diameter titanium cranioplasty plate, implanted around 5-6 mm under the surface of the forehead. The level of exposures was set to the ambient power flux density limits for occupational exposures specified in the 1998 ICNIRP guidelines and the current 1999 IEEE C95.1 standard over the frequency range 100-3000 MHz. Two distinct peak responses were observed. There was a resonant response for the whole implant at 200-300 MHz where the maximum dimension of the implant is around a third of the wavelength of the RF exposure. This, however, resulted in relatively low peak specific energy absorption rate (SAR) levels around the implant at the exposure limits. Between 2100-2800 MHz, a second SAR concentrating mechanism of constructive interference of the wave reflected back and forth between the air-scalp interface and the scalp-plate interface resulted in higher peak SARs that were within the allowable limits for the ICNIRP exposures, but not for the IEEE C95.1 exposures. Moreover, the IEEE peak SAR limits were also exceeded, to a lesser degree, even when the implant was not present. However, thermal modelling indicated that the peak SAR concentrations around the implant did not result in any peak temperature rise above 1 degrees C for occupational exposures recommended in the ICNIRP guidelines, and hence would not pose any significant health risk.  相似文献   

4.
In situ radiofrequency (RF) exposure of the different RF sources is characterized in Reading, United Kingdom, and an extrapolation method to estimate worst-case long-term evolution (LTE) exposure is proposed. All electric field levels satisfy the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels with a maximal total electric field value of 4.5 V/m. The total values are dominated by frequency modulation (FM). Exposure levels for LTE of 0.2 V/m on average and 0.5 V/m maximally are obtained. Contributions of LTE to the total exposure are limited to 0.4% on average. Exposure ratios from 0.8% (LTE) to 12.5% (FM) are obtained. An extrapolation method is proposed and validated to assess the worst-case LTE exposure. For this method, the reference signal (RS) and secondary synchronization signal (S-SYNC) are measured and extrapolated to the worst-case value using an extrapolation factor. The influence of the traffic load and output power of the base station on in situ RS and S-SYNC signals are lower than 1 dB for all power and traffic load settings, showing that these signals can be used for the extrapolation method. The maximal extrapolated field value for LTE exposure equals 1.9 V/m, which is 32 times below the ICNIRP reference levels for electric fields.  相似文献   

5.
This article presents the measurement results of human exposure to CDMA800 and CDMA1800 signals at locations in Korea where the general public has expressed concern. Measurements were performed at 50 locations across the country to compare the electromagnetic field levels with the general public exposure compliance limits. At each site, the distances between the nearest single or co‐located base station and measurement positions were within a range of approximately 32–422 m. The measured exposure levels were very low compared with the international standard and the Korean human protection notice. The highest field level was 1.5 V/m, which corresponds to 0.15% of the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) guidelines for human exposure. Bioelectromagnetics 31:495–498, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Human exposure by mobile phones in enclosed areas such as train carriages, elevators, and cars is considered. Equivalent power density and whole body specific absorption rate (SAR) are estimated by applying multimode resonant cavity theory and a straight forward worst case approach. The results show that exceeding the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines due to simultaneous use of several mobile phones in enclosed areas is highly improbable.  相似文献   

7.
The use of mobile phone telecommunication has increased in recent years. In parallel, there is growing concern about possible adverse health effects of cellular phone networks. We used personal dosimetry to investigate the association between exposure to mobile phone frequencies and well-being in adults. A random population-based sample of 329 adults living in four different Bavarian towns was assembled for the study. Using a dosimeter (ESM-140 Maschek Electronics), we obtained an exposure profile over 24 h for three mobile phone frequency ranges (measurement interval 1 s, limit of determination 0.05 V/m). Exposure levels over waking hours were totalled and expressed as mean percentage of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference level. Each participant reported acute symptoms in a day-long diary. Data on five groups of chronic symptoms and potential confounders were assessed during an interview. The overall exposure to high-frequency electromagnetic fields was markedly below the ICNIRP reference level. We did not find any statistically significant association between the exposure and chronic symptoms or between the exposure and acute symptoms. Larger studies using mobile phone dosimetry are warranted to confirm these findings.  相似文献   

8.
Epidemiological studies related to radiofrequency (RF) electromagnetic fields (EMF) have mainly used crude proxies for exposure, such as job titles, distance to, or use of different equipment emitting RF EMF. The Royal Norwegian Navy (RNoN) has measured RF field emitted from high‐frequency antennas and radars on several spots where the crew would most likely be located aboard fast patrol boats (FPB). These boats are small, with short distance between the crew and the equipment emitting RF field. We have described the measured RF exposure aboard FPB and suggested different methods for calculations of total exposure and annual dose. Linear and spatial average in addition to percentage of ICNIRP and squared deviation of ICNIRP has been used. The methods will form the basis of a job exposure matrix where relative differences in exposure between groups of crew members can be used in further epidemiological studies of reproductive health. Bioelectromagnetics 31:350–360, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Ninety-three adult males working at AM broadcasting stations (0.738–1.503 MHz) or radio line stations volunteered for cardiological examinations. The examinations included routine electrocardiogram (ECG) at rest, analysis of heart rate variability (HRV), Holter 24-h ECG, and 24-h ambulatory blood pressure (ABP). Results of cardiological examinations were correlated with individual exposure to EM fields (maximum exposure levels during working shift, daily exposure dose, and cumulative lifetime exposure). Of the 93 subjects qualified for the study, 71 (76.3%) experienced occupational RF exposure, while the remaining 22 (23.7%) had no history of regular EM exposure. ECG abnormalities or pathological changes were recorded quite frequently (50–70%) in both exposed and control populations. There was no correlation with exposure levels. We found measurable effects in the HRV and ABP parameters in the EM-exposed population, but none could be assigned clinical significance. The results suggest that exposure of workers to EM fields can cause slight disturbances in autonomic cardiac regulation and slight dysregulation of circadian rhythms in workers exposed to EM fields exceeding 100–150 V/m.  相似文献   

10.
Nine small radiation shields made to adhere to the case of mobile phones were tested at 914 and 1880 MHz. Five popular products were tested because advertisements typically claim they are up to 99% effective in blocking radio frequency (RF) radiation emitted from mobile phones. Also, four other conceptually unusual products were tested because advertisements typically claim they emit oscillations that counteract the RF radiation from mobile phones. Each shield was tested on the same mobile phone, and measurements were made to compare the absorption of RF energy in the head with and without each shield attached to the phone. The phone was positioned against a head model, and an automated measurement process was used to determine specific absorption rate (SAR) in the same way it is used at Motorola to test the compliance of mobile phones with respect to human exposure limits. The location of the peak SAR was not observed to change with any of the shields attached to the phone, and the 1 g, peak spatial average SAR did not change by any statistically significant amount. These results indicate the small shields are ineffective in reducing the exposure of the head to RF energy emitted by a mobile phone.  相似文献   

11.
Organisms are exposed to electromagnetic fields from the introduction of wireless networks that send information all over the world. In this study we examined the impact of exposure to the fields from mobile phone base stations (GSM 900?MHz) on the reproductive capacity of small, virgin, invertebrates. A field experiment was performed exposing four different invertebrate species at different distances from a radiofrequency electromagnetic fields (RF EMF) transmitter for a 48-h period. The control groups were isolated from EMF exposure by use of Faraday cages. The response variables as measured in the laboratory were fecundity and number of offspring. Results showed that distance was not an adequate proxy to explain dose-response regressions. No significant impact of the exposure matrices, measures of central tendency and temporal variability of EMF, on reproductive endpoints was found. Finding no impact on reproductive capacity does not fully exclude the existence of EMF impact, since mechanistically models hypothesizing non-thermal-induced biological effects from RF exposure are still to be developed. The exposure to RF EMF is ubiquitous and is still increasing rapidly over large areas. We plea for more attention toward the possible impacts of EMF on biodiversity.  相似文献   

12.
There is widespread public concern about the potential adverse health effects of mobile phones in general and their associated base stations in particular. This study was designed to investigate the acute effects of radio frequency (RF) electromagnetic fields (EMF) emitted by the Universal Mobile Telecommunication System (UMTS) mobile phone base stations on human cognitive function and symptoms. Forty adolescents (15-16 years) and 40 adults (25-40 years) were exposed to four conditions: (1) sham, (2) a Continuous Wave (CW) at 2140 MHz, (3) a signal at 2140 MHz modulated as UMTS and (4) UMTS at 2140 MHz including all control features in a randomized, double blinded cross-over design. Each exposure lasted 45 min. During exposure the participants performed different cognitive tasks with the Trail Making B (TMB) test as the main outcome and completed a questionnaire measuring self reported subjective symptoms. No statistically significant differences between the UMTS and sham conditions were found for performance on TMB. For the adults, the estimated difference between UMTS and sham was -3.2% (-9.2%; 2.9%) and for the adolescents 5.5% (-1.1%; 12.2%). No significant changes were found in any of the cognitive tasks. An increase in 'headache rating' was observed when data from the adolescents and adults were combined (P = 0.027), an effect that may be due to differences at baseline. In conclusion, the primary hypothesis that UMTS radiation reduces general performance in the TMB test was not confirmed. However, we suggest that the hypothesis of subjective symptoms and EMF exposure needs further research.  相似文献   

13.
Personal radio frequency electromagnetic field (RF-EMF) exposure, or exposimetry, is gaining importance in the bioelectromagnetics community but only limited data on personal exposure is available in indoor areas, namely schools, crèches, homes, and offices. Most studies are focused on adult exposure, whereas indoor microenvironments, where children are exposed, are usually not considered. A method to assess spatial and temporal indoor exposure of children and adults is proposed without involving the subjects themselves. Moreover, maximal possible daily exposure is estimated by combining instantaneous spatial and temporal exposure. In Belgium and Greece, the exposure is measured at 153 positions spread over 55 indoor microenvironments with spectral equipment. In addition, personal exposimeters (measuring EMFs of people during their daily activities) captured the temporal exposure variations during several days up to one week at 98 positions. The data were analyzed using the robust regression on order statistics (ROS) method to account for data below the detection limit. All instantaneous and maximal exposures satisfied international exposure limits and were of the same order of magnitude in Greece and Belgium. Mobile telecommunications and radio broadcasting (FM) were most present. In Belgium, digital cordless phone (DECT) exposure was present for at least 75% in the indoor microenvironments except for schools. Temporal variations of the exposure were mainly due to variations of mobile telecommunication signals. The exposure was higher during daytime than at night due to the increased voice and data traffic on the networks. Total exposure varied the most in Belgian crèches (39.3%) and Greek homes (58.2%).  相似文献   

14.
The evolution of mobile phone technology is toward an increase of the carrier frequency up to 2.45 GHz. Absorption of radiofrequency (RF) radiation becomes more superficial as the frequency increases. This increasingly superficial absorption of RF radiation by the skin, which is the first organ exposed to RF radiation, may lead to stress responses in skin cells. We thus investigated the expression of three heat-shock proteins (HSP70, HSC70, HSP27) using immunohistochemistry and induction of apoptosis by flow cytometry on human primary keratinocytes and fibroblasts. A well-characterized exposure system, SXC 1800, built by the IT'IS foundation was used at 1800 MHz, with a 217 Hz modulation. We tested a 48-h exposure at an SAR of 2 W/kg (ICNIRP local exposure limit). Skin cells were also irradiated with a 600 mJ/cm2 single dose of UVB radiation and subjected to heat shock (45 degrees C, 20 min) as positive controls for apoptosis and HSP expression, respectively. The results showed no effect of a 48-h GSM-1800 exposure at 2 W/kg on either keratinocytes or fibroblasts, in contrast to UVB-radiation or heat-shock treatments, which injured cells. We thus conclude that the GSM-1800 signal does not act as a stress factor on human primary skin cells in vitro.  相似文献   

15.
Abstract

Antennas from various wireless communications systems [e.g. mobile phones base transceiver stations (BTS) and handsets used by passengers, public Internet access, staff radiophone transmitters used between engine-drivers and traffic operators] emitting radiofrequency electromagnetic radiation (RF-EMR) are used inside underground metro public transportation. Frequency-selective exposimetric investigations of RF-EMR exposure inside the metro infrastructure in Warsaw (inside metro cars passing between stations and on platforms) were performed. The statistical parameters of exposure to the E-field were analyzed for each frequency range and for a total value (representing the wide-band result of measurements of complex exposure). The recorded exposimetric profiles showed the dominant RF-EMR sources: handsets and BTS of mobile communication systems (GSM 900 and UMTS 2100) and local wireless Internet access (WiFi 2G). Investigations showed that the GSM 900 system is the dominant source of exposure – BTS (incessantly active) on platforms, and handsets – used by passengers present nearby during the tube drive. The recorded E-field varies between sources (for BTS were: medians – 0.22?V/m and 75th percentile – 0.37?V/m; and for handsets: medians – 0.28?V/m and 75th percentile – 0.47?V/m). Maximum levels (peaks) of exposure recorded from mobile handsets exceeded 10?V/m (upper limit of used exposimeters). Broadband measurements of E-field, including the dominant signal emitted by staff radiophones (151?MHz), showed that the level of this exposure of engine-drivers does not exceed 2.5?V/m.  相似文献   

16.
Human exposure to background radiofrequency electromagnetic fields (RF‐EMF) has been increasing with the introduction of new technologies. There is a definite need for the quantification of RF‐EMF exposure but a robust exposure assessment is not yet possible, mainly due to the lack of a fast and efficient measurement procedure. In this article, a new procedure is proposed for accurately mapping the exposure to base station radiation in an outdoor environment based on surrogate modeling and sequential design, an entirely new approach in the domain of dosimetry for human RF exposure. We tested our procedure in an urban area of about 0.04 km2 for Global System for Mobile Communications (GSM) technology at 900 MHz (GSM900) using a personal exposimeter. Fifty measurement locations were sufficient to obtain a coarse street exposure map, locating regions of high and low exposure; 70 measurement locations were sufficient to characterize the electric field distribution in the area and build an accurate predictive interpolation model. Hence, accurate GSM900 downlink outdoor exposure maps (for use in, e.g., governmental risk communication and epidemiological studies) are developed by combining the proven efficiency of sequential design with the speed of exposimeter measurements and their ease of handling. Bioelectromagnetics 34:300–311, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Dielectric heaters and sealers present the most common source of occupational exposure to excessive radio frequency (RF) fields. These systems are used industrially to heat or melt dielectric materials. Nowadays, the effects of high frequency electromagnetic (EM) fields on the health have been discussed frequently but there are few health studies done for workers around dielectric heaters and sealers. In this study, the leakage fields around dielectric heaters and sealers (27.12?MHz) were measured in MKE – Mechanical and Chemical Industry Corporation, Gazi Rocket Factory and evaluated in terms of standards. It has been observed that operators exposed to same RF fields with occupational exposure limits. Many workers have health complaints, such as elevated body temperatures in the factory. Safe distances or areas for workers should be recommended in these systems. Protective measures could be implemented to minimize these exposures. Further measurements and occupational exposure studies of RF exposed women and men are needed to demonstrate the levels of exposed Radio Frequency Radiation (RFR). Precautions should therefore be taken either to reduce the leakage fields or minimise the exposed fields.  相似文献   

18.
This paper reports the results of an exposure level survey of radiofrequency electromagnetic energy originating from mobile telephone base station antennas. Measurements of CDMA800, GSM900, GSM1800, and 3G(UMTS) signals were performed at distances ranging over 50 to 500 m from 60 base stations in five Australian cities. The exposure levels from these mobile telecommunications base stations were found to be well below the general public exposure limits of the ICNIRP guidelines and the Australian radiofrequency standard (ARPANSA RPS3). The highest recorded level from a single base station was 7.8 x 10(-3) W/m(2), which translates to 0.2% of the general public exposure limit.  相似文献   

19.
Power density and duty factor values were measured around smart utility meters operating at 868 MHz under laboratory-controlled conditions. The maximum 6-min averaged exposure recorded was 0.1 mWm−2, which is less than 0.0024% of the corresponding 1998 ICNIRP general public reference level. Duty factors measured were less than 2.8%. This study found that the exposure contribution from Zigbee smart meter devices operating at 868 MHz is generally lower than, if not similar to, those operating at 2.4 GHz. © 2023 Crown copyright. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.  相似文献   

20.
The development and analysis of three waveguides for the exposure of small biological in vitro samples to mobile communication signals at 900 MHz (GSM, Global System for Mobile Communications), 1.8 GHz (GSM), and 2 GHz (UMTS, Universal Mobile Telecommunications System) is presented. The waveguides were based on a fin‐line concept and the chamber containing the samples bathed in extracellular solution was placed onto two fins with a slot in between, where the exposure field concentrates. Measures were taken to allow for patch clamp recordings during radiofrequency (RF) exposure. The necessary power for the achievement of the maximum desired specific absorption rate (SAR) of 20 W/kg (average over the mass of the solution) was approximately Pin = 50 mW, Pin = 19 mW, and Pin = 18 mW for the 900 MHz, 1800 MHz, and 2 GHz devices, respectively. At 20 W/kg, a slight RF‐induced temperature elevation in the solution of no more than 0.3 °C was detected, while no thermal offsets due to the electromagnetic exposure could be detected at the lower SAR settings (2, 0.2, and 0.02 W/kg). A deviation of 10% from the intended solution volume yielded a calculated SAR deviation of 8% from the desired value. A maximum ±10% variation in the local SAR could occur when the position of the patch clamp electrode was altered within the area where the cells to be investigated were located. Bioelectromagnetics 32:102–112, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号