首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Identifying the extant sister group to the remaining angiosperms has been a subject of long debate, for which the primary currently competing hypotheses are that Amborella alone is sister or that the clade (Amborella, Nymphaeales) is sister. Both Xi et al. (Syst. Biol., 2014, 63, 919) and Goremykin et al. (Syst. Biol., 2015, 64, 879) identified Amborella as sister in concatenation‐based phylogenetic analyses of their 310 nuclear genes and 78 plastid genes, respectively. But after application of Observed Variability‐based character subsampling, both papers reported the clade (Amborella, Nymphaeales) as sister. Hence alternative character‐sampling strategies may produce highly supported yet mutually exclusive phylogenetic inferences when applied to nuclear and plastid genomic data sets. Edwards et al. (Mol. Phylogenet. Evol., 2016, 94, 447) defended Observed Variability and the (Amborella, Nymphaeales) hypothesis. In this study I respond to Edwards et al.'s (Mol. Phylogenet. Evol., 2016, 94, 447) criticisms of Simmons and Gatesy (Mol. Phylogenet. Evol., 2015, 91, 98) and use Edwards et al.'s (Mol. Phylogenet. Evol., 2016, 94, 447) and Goremykin et al.'s (Syst. Biol., 2015, 64, 879) own data to demonstrate that the best‐supported phylogenetic hypothesis is that Amborella alone is sister and that the competing evidence in favour of the (Amborella, Nymphaeales) hypothesis is caused primarily by methodological artifacts (biased character deletion by Observed Variability, MP‐EST and STAR generally not being robust to the highly divergent and mis‐rooted gene trees that were used).  相似文献   

2.
We recently described a Bayesian framework for stable isotope mixing models and provided a software tool, MixSIR, for conducting such analyses (Ecol. Lett., 2008; 11 :470). Jackson et al. (Ecol. Lett., 2009; 12:E1) criticized the performance of our software based on tests using simulated data. However, their simulation data were flawed, rendering claims of erroneous behaviour inaccurate. A re‐evaluation of the MixSIR source code did, however, uncover two minor coding errors, which we have fixed. When data are correctly simulated according to eqns  (1)–(4) in Jackson et al. (2009) , MixSIR consistently and accurately estimated the proportional contribution of prey to a predator diet, and was surprisingly robust to additional unquantified error. Jackson et al. (2009) also suggested we use a Dirichlet prior on the source proportion parameters, which we agree with. Finally, Jackson et al. (2009) propose adding additional error parameters to our mixing model framework. We caution that such increases in model complexity should be evaluated based on data support.  相似文献   

3.
Fields such as, diagnostic testing, biotherapeutics, drug development, and toxicology among others, center on the premise of searching through many specimens for a rare event. Scientists in the business of “searching for a needle in a haystack” may greatly benefit from the use of group screening design strategies. Group screening, where specimens are composited into pools with each pool being tested for the presence of the event, can be much more cost-efficient than testing each individual specimen. A number of group screening designs have been proposed in the literature. Incomplete block screening designs are described here and compared with other group screening designs. It is shown under certain conditions, that incomplete block screening designs can provide nearly a 90% cost saving compared to other group screening designs such as when prevalence is 0.001 and screening 3876 specimens with an ICB-sequential design vs. a Dorfman design. In other cases, previous group screening designs are shown to be most efficient. Overall, when prevalence is small (≤0.05) group screening designs are shown to be quite cost effective at screening a large number of specimens and in general there is no one design that is best in all situations. © 2018 American Institute of Chemical Engineers Biotechnol Progress, 35: e2770, 2019.  相似文献   

4.
Fast and reliable methods are needed for the detection of pathogenic Bacillus cereus which should provide consistent results. Therefore, we tested a panel of 176 strains, including B. cereus strains, B. cereus group strains and other Bacillus spp. with polymerase chain reaction, immunoassays and cytotoxicity tests and assessed the consistency of the results. A screening multiplex PCR for the detection of hbl, nhe, ces and cytK1 as well as two multiplex PCRs for the differentiation of Hbl genes (hblC, hblD, hblA) and Nhe genes (nheA, nheB, nheC) was applied. All PCRs included an internal amplification control. Component specific antibody based immunoassays were used for the detection of the three components of Hbl and Nhe and the overall cytotoxicity to Vero cells and HEp-2 cells was checked. An overall excellent correlation was obtained for the results of the three, methodically independent assays and no false-negative PCR results were seen for any of the strains tested positive in immunoassays and cytotoxicity tests. The three multiplex PCRs proved to be a facile method for the identification of enterotoxinogenic B. cereus isolates.  相似文献   

5.
We are writing in response to the population and phylogenomics meeting review by Andrews & Luikart ( 2014 ) entitled ‘Recent novel approaches for population genomics data analysis’. Restriction‐site‐associated DNA (RAD) sequencing has become a powerful and useful approach in molecular ecology, with several different published methods now available to molecular ecologists, none of which can be considered the best option in all situations. A&L report that the original RAD protocol of Miller et al. ( 2007 ) and Baird et al. ( 2008 ) is superior to all other RAD variants because putative PCR duplicates can be identified (see Baxter et al. 2011 ), thereby reducing the impact of PCR artefacts on allele frequency estimates (Andrews & Luikart 2014 ). In response, we (i) challenge the assertion that the original RAD protocol minimizes the impact of PCR artefacts relative to that of other RAD protocols, (ii) present additional biases in RADseq that are at least as important as PCR artefacts in selecting a RAD protocol and (iii) highlight the strengths and weaknesses of four different approaches to RADseq which are a representative sample of all RAD variants: the original RAD protocol (mbRAD, Miller et al. 2007 ; Baird et al. 2008 ), double digest RAD (ddRAD, Peterson et al. 2012 ), ezRAD (Toonen et al. 2013 ) and 2bRAD (Wang et al. 2012 ). With an understanding of the strengths and weaknesses of different RAD protocols, researchers can make a more informed decision when selecting a RAD protocol.  相似文献   

6.
The intentional use by terrorists of biological toxins as weapons has been of great concern for many years. Among the numerous toxins produced by plants, animals, algae, fungi, and bacteria, ricin is one of the most scrutinized by the media because it has already been used in biocrimes and acts of bioterrorism. Improving the analytical toolbox of national authorities to monitor these potential bioweapons all at once is of the utmost interest. MS/MS allows their absolute quantitation and exhibits advantageous sensitivity, discriminative power, multiplexing possibilities, and speed. In this issue of Proteomics, Gilquin et al. (Proteomics 2017, 17, 1600357) present a robust multiplex assay to quantify a set of eight toxins in the presence of a complex food matrix. This MS/MS reference method is based on scheduled SRM and high‐quality standards consisting of isotopically labeled versions of these toxins. Their results demonstrate robust reliability based on rather loose scheduling of SRM transitions and good sensitivity for the eight toxins, lower than their oral median lethal doses. In the face of an increased threat from terrorism, relevant reference assays based on advanced proteomics and high‐quality companion toxin standards are reliable and firm answers.  相似文献   

7.
Plants and their pathogens are in a coevolutionary arms race. Some pathogens, such as anther smuts, use their host plants’ pollinators for spore dispersal. In the plant Dianthus pavonius, gynodioecy (having female and hermaphroditic plants) has evolved to reduce flowering duration and therefore limit exposure to anther smut pathogens. Bruns et al. (2019) show that this shift in breeding system has evolved as a disease escape mechanism.  相似文献   

8.
Zhang, Q., Miao, M., Strüder‐Kypke, M. C., Al‐Rasheid, K. A. S., Al‐Farraj, S. A. & Song, W. (2011). Molecular evolution of Cinetochilum and Sathrophilus (Protozoa, Ciliophora, Oligohymenophorea), two genera of ciliates with morphological affinities to scuticociliates. —Zoologica Scripta, 40, 317–325. The ciliate order Loxocephalida sensu Li et al. (2006) has been considered to be systematically uncertain within the subclass Scuticociliatia. Loxocephalids display mixed morphological features and morphogenetic patterns that are found in two different oligohymenophorean subclasses: scuticociliates and hymenostomes. To reveal their phylogenetic positions, molecular information on this group is urgently needed but still inadequate. In the present study, we have sequenced the small subunit rRNA gene of two newly described loxocephalids, Cinetochilum ovale Gong & Song 2008; and Sathrophilus planus Fan et al. 2010; which have never been discussed based on molecular analysis. Results show: (i) all phylogenetic trees are nearly identical in placing Cinetochilum closest to the subclass Apostomatia and form a monophyletic group divergent from the typical scuticociliates, (ii) the genus Sathrophilus, together with Anoplophrya, a poorly known Astomatia, forms a peripheral branch separated from the scuticociliatian assemblage and (iii) the affiliation of the loxocephalid genera sensu Li et al. (2006) is not confirmed due to a dispersion in four deeply diverged clades. In addition, the polyphyly of the genus Cyclidium, shown in previous studies, is confirmed by our phylogenetic analyses and supported by the approximately unbiased test based on the new database in this work.  相似文献   

9.
Brycon species are present in various basins in Brazil and were or still are part of commercial fisheries and aquaculture activities ( Ferreira et al. 1996 , Mendonça 1994 ). Despite the importance of this group of fish, natural populations of some Brycon species are endangered ( Lins et al. 1997 ). Here, we describe the characterization of seven microsatellite loci that will be useful for the genetic studies in natural and captive populations for these and other species of Brycon.  相似文献   

10.
Tihon et al. have just published in Mol. Ecol. a fine genomic study on Trypanosoma congolense, agent of Animal African Trypanosomiasis. They present very convincing evidence that T. congolense underwent several hybridization events between distinct genetic lines in Zambia. They claim that their data challenge our predominant clonal evolution model (PCE) of micropathogens. We point out the main tenets of our model and show that Tihon et al.'s claim is based on a misinterpretation of the PCE model. Actually, their data strongly support PCE in T. congolense at a microevolutionary level.  相似文献   

11.
Cnidarians are phylogenetically located near the base of the ‘tree of animals’, and their early evolution had a profound impact on the rise of bilaterians. However, the early diversity and phylogeny of this ‘lowly’ metazoan clade has hitherto been enigmatic. Fortunately, cnidarian fossils from the early Cambrian could provide key insights into their evolutionary history. Here, based on a scrutiny of the purported hyolith Burithes yunnanensis Hou et al. from the early Cambrian Chengjiang biota in South China, we reveal that this species shows characters distinct from those typical of hyoliths, not least a funnel-shaped gastrovascular system with a single opening, a whorl of tentacles surrounding the mouth, and the lack of an operculum. These characters suggest a great deviation from the original definition of the genus Burithes, and a closer affinity with cnidarians. We therefore reassign the material to a new genus: Palaeoconotuba. Bayesian inference of phylogeny based on new anatomical traits identifies a new clade, including Palaeoconotuba and Cambrorhytium, as a stem group of sessile medusozoan cnidarians that are united by the synapomorphies of developing an organic conical theca and a funnel-like gastrovascular system. This study unveils a stem lineage of medusozoans that evolved a lifelong conical theca in the early Cambrian.  相似文献   

12.
The white‐nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, is threatening the cave‐dwelling bat fauna of North America by killing individuals by the thousands in hibernacula each winter since its appearance in New York State less than ten years ago. Epidemiological models predict that WNS will reach the western coast of the USA by 2035, potentially eliminating most populations of susceptible bat species in its path (Frick et al. 2015; O'Regan et al. 2015). These models were built and validated using distributional data from the early years of the epidemic, which spread throughout eastern North America following a route driven by cave density and winter severity (Maher et al. 2012). In this issue of Molecular Ecology, Wilder et al. (2015) refine these findings by showing that connectivity among host populations, as assessed by population genetic markers, is crucial in determining the spread of the pathogen. Because host connectivity is much reduced in the hitherto disease free western half of North America, Wilder et al. make the reassuring prediction that the disease will spread more slowly west of the Great Plains.  相似文献   

13.
In embryonic stem cells (ESCs), silent genes with major developmental functions display a unique epigenetic state in which strong and broad binding by Polycomb repressive complexes (PRCs) is accompanied by the presence of poised RNA polymerase II (RNAPII) and activating histone marks (e.g. H3K4me3) (Azuara et al, 2006 ; Bernstein et al, 2006 ; Stock et al, 2007 ; Brookes et al, 2012 ). It has been suggested that the plasticity and broad differentiation potential of pluripotent cells might rely, at least partly, on this unique epigenetic state (Bernstein et al, 2006 ; Stock et al, 2007 ). In their recent study, Pombo and colleagues (Ferrai et al, 2017 ) show that a similar epigenetic state can be found at a subset of major developmental genes throughout the differentiation of ESCs into neurons, providing novel and exciting insights into the molecular basis of cellular plasticity in differentiated cells.  相似文献   

14.
Aims: To develop a rapid multiplex PCR method for simultaneous detection of five major foodborne pathogens (Staphylococcus aureus, Listeria monocytogenes, Escherichia coli O157:H7, Salmonella Enteritidis and Shigella flexneri, respectively). Methods and Results: Amplification by PCR was optimized to obtain high efficiency. Sensitivity and specificity assays were investigated by testing different strains. With a multipathogen enrichment, multiplex PCR assay was able to simultaneously detect all of the five organisms in artificially contaminated pork samples. The developed method was further applied to retail meat samples, of which 80% were found to be positive for one or more of these five organisms. All the samples were confirmed by traditional culture methods for each individual species. Conclusions: This study reported a rapid multiplex PCR assay using five primers sets for detection of multiple pathogens. Higher consistency was obtained between the results of multiplex PCR and traditional culture methods. Significance and Impact of the Study: This work has developed a reliable, useful and cost‐effective multiplex PCR method. The assay performed equally as well as the traditional cultural method and facilitated the sensitive detection both in artificially contaminated and naturally contaminated samples.  相似文献   

15.
In this issue of Molecular Ecology, Gueguen et al. (2010) describe their novel approach to resolving cryptic genetic diversity in the Bemisia tabaci complex (Hemiptera: Aleyrodidae.) Complexes of cryptic species present a challenge to both morphological and molecular taxonomy – the former presumed, as shared morphology normally defines species as cryptic, but the latter also problematic when host DNA sequence data is either inconclusive or unaccompanied by independent evidence. Endosymbiont associations with insect hosts have, historically, complicated efforts to develop a robust molecular taxonomy, but the approach of Gueguen et al. takes advantage of endosymbiont community composition to help rather than hinder the task of resolving taxonomic distinctions within the B. tabaci complex.  相似文献   

16.
The widespread utilization of molecular markers has revealed that a broad spectrum of taxa contain sets of morphologically cryptic, but genetically distinct lineages ( Bickford et al. 2007 ). The identification of cryptic taxa is important as an accurate appreciation of diversity is crucial for a proper understanding of evolutionary and ecological processes. An example is the study of host specificity in parasitic taxa, where an apparent generalist may be found to contain a complex of several more specific species ( Smith et al. 2006 ). Host specificity is a key life history trait that varies greatly among parasites ( Poulin & Keeney 2007 ). While some can exploit a wide range of hosts, others are confined to just a single species. Access to additional hosts increases the resources available to a parasite. However, physiological or ecological constraints can restrict the extension of host range. Furthermore, there may be a trade‐off between relaxed specificity and performance: generalism can decrease a parasites ability to adapt to each individual host species, and increase exposure to competition from other parasites ( Poulin 1998 ). Despite the central role that host specificity plays in parasite life history, relatively little is known about how host range is determined in natural systems, and data from field studies are required to evaluate among competing ideas. In this issue, an exciting paper by Locke et al. (2010) makes a valuable contribution toward the understanding of host specificity in an important group of trematode flatworms. Using molecular methods, Locke et al. reveal an almost four‐fold increase in the appreciated diversity of their focal group. In combination with a large and elegant sampling design this allows them to accurately assess host specificity for each taxon, and thus draw key insights into the factors that control host range in a dominant parasite group.  相似文献   

17.
Population connectivity, the extent to which geographically separated subpopulations exchange individuals and are demographically linked, is important to the scientific management of marine living resources. In theory, the design of a marine protected area, for example, depends on an explicit understanding of how dispersal of planktonic larvae affects metapopulation structure and dynamics ( Botsford et al. 2001 ). In practice, for most marine metazoans with planktonic larvae, the mean and variance of the distances that larvae disperse are unobservable quantities, owing to the small sizes of larvae and the very large volumes through which they are distributed. Simulation of dispersal kernels with models that incorporate oceanography and limited aspects of larval biology and behaviour, coupled with field studies of larval distribution, abundance, and settlement, have provided the best available approaches to date for understanding connectivity of marine populations ( Cowen et al. 2006 ). On the other hand, marine population connectivity has often been judged by spatial variation in the frequencies of alleles and genotypes, although the inherent limitations of this indirect approach to measuring larval dispersal have often been overlooked ( Hedgecock et al. 2007 ). More recently, researchers have turned to genetic methods and highly polymorphic markers that can provide direct evidence of population connectivity in the form of parentage or relatedness of recruits (e.g. Jones et al. 2005 ). In this issue, Christie et al. (2010) provide a particularly elegant example, in which both indirect and novel direct genetic methods are used to determine the major ecological processes shaping dispersal patterns of larval bicolour damselfish Stegastes partitus, a common and widespread reef fish species in the Caribbean Basin ( Fig. 1 ).
Figure 1 Open in figure viewer PowerPoint The bicolour damselfish Stegastes partitus shows substantial self‐recruitment of juveniles to their natal coral reef habitat. Below, a male guarding an artificial nest made from PVC pipe; differential reproductive success of parents or differential survival of egg clutches or the larvae that hatch from them may account for signals of sweepstakes reproductive success in this species (photo credits: top, Bill Harward; bottom, Darren Johnson).  相似文献   

18.
Wild pollinators have been shown to enhance the pollination of Brassica napus (oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter‐Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig.  1 ). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policy‐makers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.
Figure 1 Open in figure viewer PowerPoint Left, a Nomada sp male; right, an Andrena sp male. Caption Left, a Nomada sp male; right, an Andrena sp male.

Introduction

Pollinators play an important functional role in most terrestrial ecosystems and provide a key ecosystem service (Ashman et al. 2004 ). Insects, particularly bees, are the primary pollinators for the majority of the world's angiosperms (Ollerton et al. 2012 ). Without this service, many interconnected species and processes functioning within both wild and agricultural ecosystems could collapse (Kearns et al. 1998 ). Brassica napus (oilseed rape, OSR) represents the most widespread entomophilous crop in France with almost 1.5 Mha in 2010 (FAOSTAT August 10th, 2012). Results differ between varieties, but even though it seems that OSR produces 70% of its fruits through self‐pollination (Downey et al. 1970 in Mesquida and Renard 1981 ), native bees are also known to contribute to its pollination (Morandin and Winston 2005 ; Jauker et al. 2012 ). Bee pollination leads to improved yields (Steffan‐Dewenter 2003b ; Sabbahi et al. 2005 ) and to a shorter blooming period (Sabbahi et al. 2006 ), thus increasing the crop's market value (Bommarco et al. 2012 ). The most widely used species in crop pollination is the honeybee (Apis mellifera L) which is sometimes assumed to be sufficient for worldwide crop pollination (Aebi and Neumann 2011 ). However, this assertion has been questioned by different authors (Ollerton et al. 2012 ), and several studies show that many wild bees are also efficient pollinators of crops (Klein et al. 2007 ; Winfree et al. 2008 ; Breeze et al. 2011 ). Recently, Garibaldi et al. ( 2013 ) found positive associations of fruit set with wild‐insect visits to flowers in 41 crop systems worldwide. They demonstrate that honeybees do not maximize pollination, nor can they fully replace the contributions of diverse, wild‐insect assemblages to fruit set for a broad range of crops and agricultural practices on all continents with farmland. Unfortunately, not only are honey bees declining due to a variety of different causes (vanEngelsdorp et al. 2009 ), wild bee populations are also dwindling (Potts et al. 2010 ). Their decline has been documented in two Western European countries (Britain and the Netherlands) by comparing data obtained before and after 1980 (Biesmeijer et al. 2006 ). These losses have mostly been attributed to the use of agrochemicals, the increase in monocultures, the loss of seminatural habitat and deforestation (Steffan‐Dewenter et al. 2002 ; Steffan‐Dewenter and Westphal 2008 ; Brittain and Potts 2011 ). Several studies have shown the importance of natural or seminatural habitats in sustaining pollinator populations or pollination services close to fruit crops (Steffan‐Dewenter 2003a ; Kremen et al. 2004 ; Greenleaf and Kremen 2006a ; Carvalheiro et al. 2010 ). Morandin and Winston ( 2006 ) presented a cost–benefit model that estimates profit in OSR agroecosystems with different proportions of uncultivated land. They calculated that yield and profit could be maximized with 30% of the land left uncultivated within 750 m of field edges. Other studies have demonstrated a negative impact of the distance from forests on pollination services or bee abundance and richness both in tropical ecosystems (De Marco and Coelho 2004 ; Blanche et al. 2006 ; Chacoff and Aizen 2006 ) and in temperate ecosystems (Hawkins 1965 ; Taki et al. 2007 ; Arthur et al. 2010 ; Watson et al. 2011 ). These studies all suggest that natural or seminatural habitats are important sources of pollinators, probably because they provide “partial habitats” (Westrich 1996 ) such as complementary mating, foraging, nesting, and nesting materials sites that bees need to complete their life cycle. In this study, we focused on the effect of distance to forest edge on bee assemblages in OSR ecosystems. Forest edges could provide one or more important partial habitats for different bee species in agricultural landscapes, in particular when associated with a mass‐flowering crop such as OSR (Le Feon et al. 2011 ). For example, the availability of untilled soil and dead branches might provide ground‐nesting and cavity‐nesting bee species with numerous nesting sites. Moreover, during spring at least, the understory and the forest edge can provide cover containing flowering plants and wild trees such as Prunus spp, Castanea sativa, or Salix spp and thereby allow bees to find alternative floral resources. During spring 2010 and 2011, in two areas in France, we examined wild bee abundance and taxa richness both along forest edges and inside OSR fields at different distances from the forest. Like other taxa, bees respond to environmental variables according to their biologic traits that determine access and requirements for nesting, mating, and forage resources, species mobility or physiological tolerance. Specifically, we hypothesized that (1) bee abundance, species richness, and composition of bee communities within the crop field are dependent on the distance from the forest edge (where complementary floral resources, nesting sites, shelters, etc. can be found) and on the orientation of the forest edge; (2) the identity of bees in the crop is related to their foraging range which we measured with the ITD (Inter‐Tegular distance); (3) the forest edge may be the nesting or mating sites for cavity‐nesting or ground‐nesting bees such as Osmia spp or Andrena spp which are important groups of potential early spring pollinators for OSR.  相似文献   

19.
Abstract: Four new species of Permosynidae are described: Platycrossus caroli Ponomarenko in Meller et al. sp. nov., Hydrobiites handlirschi Ponomarenko in Meller et al. sp. nov., Ademosyne polyzetete Ponomarenko in Meller et al. sp. nov. and Diarcuipenna bennettitophila Ponomarenko in Meller et al. sp. nov. Together with one polyphagous abdomen, they represent the first beetle remains from the Lunz formation, known for its richness in bennettite and cycad leaf remains and also for the bennettite reproductive organs. Furthermore, the first insect mine trace on a Nilssonia leaf segment is described, which is one of the most ancient linear mine traces. The rareness of insect remains in the plant‐bearing layers of the Lunz formation is still an enigma from the taphonomical–chemical point of view. The palaeoentomological and palaeobotanical considerations tentatively indicate a relationship between the rare occurrence of coniferous plants and the evolution or radiation of phytophagous insects during this time.  相似文献   

20.
Puritz et al. provide a review of several RADseq methodological approaches in response to our ‘Population Genomic Data Analysis’ workshop (Sept 2013) review (Andrews & Luikart 2014). We agree with Puritz et al. on the importance for researchers to thoroughly understand RADseq library preparation and data analysis when choosing an approach for answering their research questions. Some of us are currently using multiple RADseq protocols, and we agree that the different methods may offer advantages in different cases. Our workshop review did not intend to provide a thorough review of RADseq because the workshop covered a broad range of topics within the field of population genomics. Similarly, neither the response of Puritz et al. nor our comments here provide sufficient space to thoroughly review RADseq. Nonetheless, here we address some key points that we find unclear or potentially misleading in their evaluation of techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号