首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new isopropyl chromone ( 1 ) and a new flavanone glucoside ( 2 ) together with eleven known compounds ( 3–13 ) were isolated from the leaves of Syzygium cerasiforme (Blume) Merr. & L.M.Perry. Their structures were elucidated as 5,7-dihydroxy-2-isopropyl-6,8-dimethyl-4H-chromen-4-one ( 1 ), 5,7-dihydroxyflavanone 7-O-β-D-(6′′-O-galloylglucopyranoside) ( 2 ), strobopinin ( 3 ), demethoxymatteucinol ( 4 ), pinocembrin-7-O-β-D-glucopyranoside ( 5 ), (2S)-hydroxynaringenin-7-O-β-D-glucopyranoside ( 6 ), afzelin ( 7 ), quercetin ( 8 ), kaplanin ( 9 ), endoperoxide G3 ( 10 ), grasshopper ( 11 ), vomifoliol ( 12 ), litseagermacrane ( 13 ) by the analysis of HR-ESI-MS, NMR, and CD spectral data. Compounds 1 , 2 , 5 , 6 and 10 inhibited NO production on LPS-activated RAW264.7 cells with IC50 values of 12.28±1.15, 8.52±1.62, 7.68±0.87, 9.67±0.57, and 6.69±0.34 μM, respectively, while the IC50 values of the other compounds ranging from 33.38±0.78 to 86.51±2.98 μM, compared to that of the positive control, NG-monomethyl-L-arginine acetate (L-NMMA) with an IC50 value of 32.50±1.00 μM.  相似文献   

2.
This study investigated a set of new potential antidiabetes agents. Derivatives of usnic acid were designed and synthesized. These analogs and nineteen benzylidene analogs from a previous study were evaluated for enzyme inhibition of α-glucosidase. Analogs synthesized using the Dakin oxidative method displayed stronger activity than the pristine usnic acid (IC50>200 μM). Methyl (2E,3R)-7-acetyl-4,6-dihydroxy-2-(2-methoxy-2-oxoethylidene)-3,5-dimethyl-2,3-dihydro-1-benzofuran-3-carboxylate ( 6b ) and 1,1′-(2,4,6-trihydroxy-5-methyl-1,3-phenylene)di(ethan-1-one) ( 6e ) were more potent than an acarbose positive control (IC50 93.6±0.49 μM), with IC50 values of 42.6±1.30 and 90.8±0.32 μM, respectively. Most of the compounds synthesized from the benzylidene series displayed promising activity. (9bR)-2,6-Bis[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 1c ), (9bR)-3,7,9-trihydroxy-8,9b-dimethyl-2,6-bis[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one ( 1g ), (9bR)-2-acetyl-6-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 2d ), (9bR)-2-acetyl-6-[(2E)-3-(3-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 2e ), (6bR)-8-acetyl-3-(4-chlorophenyl)-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 3e ), (6bR)-8-acetyl-6,9-dihydroxy-5,6b-dimethyl-3-phenyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 3h ), (6bR)-3-(2-chlorophenyl)-8-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 4b ), and (9bR)-6-acetyl-3,7,9-trihydroxy-8,9b-dimethyl-2-[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one ( 5c ) were the most potent α-glucosidase enzyme inhibitors, with IC50 values of 7.0±0.24, 15.5±0.49, 7.5±0.92, 10.9±0.56, 1.5±0.62, 15.3±0.54, 19.0±1.00, and 12.3±0.53 μM, respectively.  相似文献   

3.
Three new compounds, hypoxyloamide ( 1 ), 8‐methoxynaphthalene‐1,7‐diol ( 2 ), and hypoxylonol ( 3 ), together with seven compounds isolated from nature for the first time, investiamide ( 4 ), hypoxypropanamide ( 5 ), hypoxylonol A ( 6 ), investienol ( 7 ), 2‐heptylfuran ( 8 ), (3S)‐5‐methyl‐8‐O‐methylmellein ( 9 ), (4R)‐O‐methylsclerone ( 10 ), along with 19 known compounds, 11 – 29 , were isolated from the culture broth of Hypoxylon investiens BCRC 10F0115, a fungal endophyte residing in the stems of an endemic Formosan plant Litsea akoensis var. chitouchiaoensis. The structures of the new compounds were established by spectroscopic methods, including UV, IR, HR‐ESI‐MS, and extensive 1D‐ and 2D‐NMR techniques. Of these isolates, 2 , 8‐methoxynaphthalen‐1‐ol ( 15 ), and 1,8‐dimethoxynaphthalene ( 16 ) showed nitric oxide (NO) inhibitory activity with IC50 values of 11.8±0.9, 17.8±1.1, and 13.3±0.5 μM , respectively, stronger than the positive control quercetin (IC50 36.8±1.3 μM ). Compounds 2, 15 , and 16 also showed interleukin‐6 (IL‐6) inhibitory activity with IC50 values of 9.2±1.7, 18.0±0.6, and 2.0±0.1 μM , stronger than the positive control quercetin (IC50 31.3±1.6 μM ). To the best of our knowledge, this is the first report on guaiane sesquiterpene metabolites, 3, 6 , and 7 , from the genus Hypoxylon.  相似文献   

4.
Four undescribed phenolic glycosides including three stilbene derivatives ( 1 and 3 ) and sodium salt of 3 ( 2 ), and a chalcone glycoside ( 4 ), together with thirteen known compounds ( 5 – 17 ) were isolated from the leaves of Syzygium attopeuense (Gagnep.) Merr. & L.M.Perry. Their chemical structures were elucidated to be (Z)-gaylussacin ( 1 ), 6′′-O-galloylgaylussacin sodium salt ( 2 ), 6′′-O-galloylgaylussacin ( 3 ), 4′-O-[β-D-glucopyranosyl-(1→6)-glucopyranosyl]oxy-2′-hydroxy-6′-methoxydihydrochalcone ( 4 ), gaylussacin ( 5 ), pinosilvin 3-O-β-D-glucopyranoside ( 6 ), myricetin-3-O-(2′′-O-galloyl)-α-L-rhamnopyranoside ( 7 ), myricetin-3-O-(3′′-O-galloyl)-α-L-rhamnopyranoside ( 8 ), myricetin-3-O-α-L-rhamnopyranoside ( 9 ), quercitrin ( 10 ), myricetin-3-O-β-D-glucopyranoside ( 11 ), myricetin-3-O-β-D-galactopyranoside ( 12 ), quercetin 3-O-α-L-arabinopyranoside ( 13 ), myricetin-3-O-2′′-O-galloyl)-α-L-arabinopyranoside ( 14 ), (+)-gallocatechin ( 15 ), (−)-epigallocatechin ( 16 ), and 3,3’,4’-trimethoxyellagic acid 4-O-β-D-glucopyranoside ( 17 ) by the analysis of HR-ESI-MS, 1D and 2D NMR spectra in comparison with the previously reported data. Compounds 1–3 , 5 , and 6 significant inhibition of NO production in LPS-activated RAW264.7 cells, with IC50 values ranging from 18.37±1.38 to 35.12±2.53 μM, compared to a positive control (dexamethasone) with an IC50 value of 15.37±1.42 μM.  相似文献   

5.
The phytochemical investigation of Thymelaea tartonraira leaves led to the isolation and characterization of six compounds, including one new flavonoid glycoside identified as hypolaetin 8-O-β-D-galactopyranoside ( 4 ) along with five known compounds, daphnoretin ( 1 ), triumbelletin ( 2 ), genkwanin ( 3 ), tiliroside ( 5 ) and yuankanin ( 6 ). Their structures were established based on spectroscopic methods, such as UV, IR, NMR, and HR-ESI-MS. Triumbelletin ( 2 ) and tiliroside ( 5 ) were isolated for the first time from T. tartonraira leaves. The antioxidant property of all isolated compounds was tested based on DPPH, FRAP and total antioxidant capacity assays. Compound 4 displayed an antioxidant potency more interesting than vitamin C with an IC50=15.00±0.50 μg/ml, followed by compound 5 . Furthermore, the both compounds 4 and 5 were tested for their α-amylase inhibitory activity in-vitro. Compound 4 displayed higher potency to inhibit α-amylase, with an IC50=46.49±2.32 μg/ml, than compound 5 , with an IC50=184.2±9.2 μg/ml, while the reference compound acarbose presented the highest potency to inhibit α-amylase with an IC50=0.44±0.022 μg/ml. Compound 4 displayed a strong inhibitory ability of α-glucosidase activity approximately twice more than the reference compound, acarbose, with IC50 values of 60.00±3.00 and 125.00±6.25 μg/ml, respectively. Thus, compound 4 exhibited a specific inhibitory activity for α-glucosidase. The molecular docking studies have supported our findings and suggested that compound 4 has been involved in various binding interactions within the active site of both enzymes α-amylase and α-glucosidase.  相似文献   

6.
Five new triterpenoid glycosides, named campetelosides A–E ( 1–5 ), together with three known compounds, chikusetsusaponin IVa ( 6 ), umbellatoside B ( 7 ), and silvioside E ( 8 ) were isolated from the leaves of Camellia petelotii (Merr.) Sealy. Their chemical structures were determined by interpretations of HR-ESI-MS and NMR spectra. In addition, compounds 1–8 were evaluated for their α-glucosidase inhibitory effects. Compounds 1–3 significantly showed α-glucosidase inhibitory activity with IC50 values of 166.7±6.0, 45.9±2.6, and 395.3±10.5 μM, respectively, compared to that of the positive control, acarbose, with an IC50 value of 200.4±10.5 μM.  相似文献   

7.
A novel series of tacrine based cyclopentapyranopyridine- and tetrahydropyranoquinoline-kojic acid derivatives were designed, synthesized, and evaluated as anti-cholinesterase agents. The chemical structures of all target compounds were characterized by 1H-NMR, 13C-NMR, and elemental analyses. The synthesized compounds mostly inhibited acetylcholinesterase enzyme (AChE) with IC50 values of 4.18–48.71 μM rather than butyrylcholinesterase enzyme (BChE) with IC50 values of >100 μM. Among them, cyclopentapyranopyridine-kojic acid derivatives showed slightly better AChE inhibitory activity compared to tetrahydropyranoquinoline-kojic acid. The compound 10-amino-2-(hydroxymethyl)-11-(4-isopropylphenyl)-7,8,9,11-tetrahydro-4H-cyclopenta[b]pyrano[2′,3′ : 5,6]pyrano[3,2-e]pyridin-4-one ( 6f ) bearing 4-isopropylphenyl moiety and cyclopentane ring exhibited the highest anti-AChE activity with IC50 value of 4.18 μM. The kinetic study indicated that the compound 6f acts as a mixed inhibitor and the molecular docking studies also illustrated that the compound 6f binds to both the catalytic site (CS) and peripheral anionic site (PAS) of AChE. The compound 6f showed moderate neuroprotective properties against H2O2-induced cytotoxicity in PC12 cells. The theoretical ADME study also predicted good drug-likeness for the compound 6f . Based on these results, the compound 6f seems to be a very promising AChE inhibitor for the treatment of Alzheimer's disease.  相似文献   

8.
One new cyclohexenone derivative ( 1 ), and two undescribed drimane sesquiterpenes ( 2 and 3 ), together with another seven known drimane sesquiterpenes were isolated from a seagrass-derived fungus Aspergillus insuetus SYSU6925. Structures of these metabolites were elucidated by comprehensive spectroscopic analysis, including NMR analysis, mass spectrometry, and ECD calculations. Compounds 1 – 3 , 5 and 7 displayed weak to moderate antifungal activities towards four phytopathogenic fungi, with Minimum inhibition concentration (MIC) values range from 50 to 200 μg/mL. Compound 1 , a rare cyclohexenone derivative with n-propyl group exhibited more potent inhibitory activities (MIC, 50 μg/mL) against F. oxysporum than positive control (Triadimefon). Compounds 2 and 3 also exhibit potent anti-inflammatory activities by inhibiting the production of nitric oxide (NO) in RAW264.7 cells with IC50 values of 21.5±1.1 and 32.6±1.16 μM, respectively.  相似文献   

9.
Four new biphenyl derivatives ( 1 – 4 ), along with six known biphenyl derivatives ( 5 – 10 ) were isolated and elucidated by their detailed analyses of spectroscopic data and references from the aerial parts of Oenanthe javanica for the first time. Compounds ( 1 – 10 ) were assayed for their activities about the inhibition of COX‐2 enzyme in vitro for the first time. Compounds 1 , 2 , 4 , and 6 showed inhibitory activities against COX‐2 with IC50 values ranging from 22.18±0.29 to 108.54±0.42 μm .  相似文献   

10.
The first natural S‐containing benzophenone dimer, named guignasulfide ( 3 ), was isolated from the culture of Guignardia sp. IFB‐E028, an endophytic fungus residing in healthy leaves of Hopea hainanensis. Its structure was determined through correlative analyses of its MS, 1D‐ and 2D‐NMR spectroscopic data. Two other known benzophenone derivatives, monomethylsulochrin and rhizoctonic acid ( 1 and 2 , resp.) were also isolated. Guignasulfide ( 3 ) was more active against the human liver cancer cell line HepG2 (IC50 value: 5.2±0.4 μM ) than metabolites 1 and 2 (IC50 values: 63.5±0.6 and 60.2±0.5 μM ); compounds 1 – 3 showed also moderately inhibitory effects on the human bacterial pathogen Helicobacter pylori with MIC values of 28.9±0.1, 60.2±0.4, and 42.9±0.5 μM , respectively.  相似文献   

11.
Beside other pharmaceutical benefits, flavonoids are known for their potent α-glucosidase inhibition. In the present study, we investigated α-glucosidase inhibitory effects of structurally related 11 flavonols, among which quercetin-3-O-(3″-O-galloyl)-β-galactopyranoside (8) and quercetin 3-O-(6″-O-galloyl)-β-glucopyranoside (9) showed significant inhibition compared to the positive control, acarbose, with IC50 values of 0.97 ± 0.02 and 1.35 ± 0.06 µM, respectively. It was found that while sugar substitution to C3-OH of C ring reduced the α-glucosidase inhibitory effect, galloyl substitution to these sugar units increased it. An enzyme kinetics analysis revealed that 7 was competitive, whereas 1, 2, 8, and 9 were uncompetitive inhibitors. In the light of these findings, we performed molecular docking studies to predict their inhibition mechanisms at atomic level.  相似文献   

12.
Abelmoschus esculentus (Okra) is used in the traditional treatment of cancer, hyperlipidaemia and hyperglycaemia. We, therefore, investigated its composition and potential cytotoxic or antioxidant properties that might underlie its phytotherapeutic applications. Its methanolic fruit extract yielded compounds 1 , 2 and 3 , identified through NMR, UV and MS analyses as olean-12-en-3-O-β-d -glucopyranoside, isoquercitrin (quercetin glucoside) and 5,7,3′,4′-tetrahydroxy-flavonol-3-O-[β-d -glucopyranosyl-(1→6)]-β-d -glucopyranoside (quercetin diglucoside), respectively. Following 48 h exposure, oleanene glucoside was mildly toxic to the HeLa and the MRC5-SV2 cancer cells, isoquercitrin was not toxic except at 100 μg/ml in HeLa, and quercetin diglucoside elicited no toxicity. In a 2′,7′-dichlorofluorescein diacetate (DCFDA) assay of intracellular levels of reactive oxygen species (ROS), hydrogen peroxide increased ROS levels, an effect not affected by oleanene glucoside but protected against by isoquercitrin and quercetin diglucoside, with IC50 values, respectively, of 2.7±0.5 μg/ml and 1.9±0.2 μg/ml (3 h post-treatment) and 2.0±0.8 μg/ml and 1.5±0.4 μg/ml (24 h post-treatment.) This is the first report of this oleanene skeleton triterpenoid in the plant. The work provides some insight into why the plant is included in remedies for cancers, cardiovascular complications and diabetes, and reveals it as a potential source of novel therapeutics.  相似文献   

13.
A new ferulic acid ester derivative, tetracosane‐1,24‐diyl di[(Z)‐ferulate] ( 1 ), and a new ellagic acid derivative, 3,4 : 3′,4′‐bis(O,O‐methylene)ellagic acid ( 2 ), have been isolated from leaves and twigs of Pachycentria formosana, together with eight known compounds. Their structures were determined by in‐depth spectroscopic and mass‐spectrometric analyses. Among the isolated compounds, oleanolic acid ( 6 ), ursolic acid acetate ( 7 ), and 3‐epibetulinic acid ( 9 ) exhibited potent inhibition (IC50 values ≤21.8 μM ) of O2⋅− generation by human neutrophils in response to N‐formyl‐L ‐methionyl‐L ‐leucyl‐L ‐phenylalanine/cytochalasin B (fMLP/CB). In addition, oleanolic acid ( 6 ), 3‐O‐[(E)‐feruloyl]ursolic acid ( 8 ), 3‐epibetulinic acid ( 9 ), and lawsonic acid ( 10 ) also inhibited fMLP/CB‐induced elastase release with IC50 values ≤18.6 μM .  相似文献   

14.
Two new compounds, euphorbinoside (1) and dehydropicrorhiza acid methyl diester (2), along with 24 known compounds (326) were isolated from Euphorbia humifusa Willd. The effects of these compounds on soluble epoxide hydrolase (sEH) inhibitory activity were evaluated. Flavonoid compounds (1021) exhibited high sEH inhibitory activity. Among them, compounds 12, 13, and 19 greatly inhibited sEH enzymatic activity, with IC50 values as low as 18.05 ± 1.17, 18.64 ± 1.83, and 17.23 ± 0.84 μM, respectively. In addition, the effects of these compounds on lipopolysaccharide (LPS)-induced nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) production by RAW 264.7 cells were investigated. Compounds 36, 8, 18, 2023, and 2526 inhibited the production of both NO and TNF-α, with IC50 values ranging from 11.1 ± 0.9 to 45.3 ± 1.6 μM and 14.4 ± 0.5 to 44.5 ± 1.2 μM, respectively.  相似文献   

15.
Phytochemical investigations on the alkaloidal fraction of the whole plant of the Isatis tinctoria led to the isolation of the alkaloids 1-6., 3′-Hydroxyepiglucoisatisin (3), Epiglucoisatisin (2) were found to be potent urease inhibitors in a concentration-dependent manner with IC50 values 25.63 ± 0.74, 37.01 ± 0.41 and 31.72 ± 0.93, 47.33 ± 0.31 μM against Bacillus pasteurii & Jack bean urease, respectively. Compounds 3 and 2 also showed potent inhibitory potential against α-chymotrypsin with IC50 values of 23.40 ± 0.21 and 27.45 ± 0.23 μM, respectively.  相似文献   

16.
New derivatives of 1,4-dideoxy-1,4-imino-d-ribitol have been prepared and evaluated for their cytotoxicity on solid and haematological malignancies. 1,4-Dideoxy-5-O-[(9Z)-octadec-9-en-1-yl]-1,4-imino-d-ribitol (13, IC50 ∼2 μM) and its C18-analogues (IC50 <10 μM) are cytotoxic toward SKBR3 (breast cancer) cells. 13 also inhibits (IC50 ∼8 μM) growth of JURKAT cells.  相似文献   

17.
Chemical investigation of the ethanol extract of the branch and leaves of Illicium majus resulted in the isolation of four new phenylpropanoid glycosides ( 1 – 4 ) and one new phenolic glycoside ( 9 ), along with 13 known ones. Spectroscopic techniques were used to elucidate the structures of the new isolates such as 3-[(2R,3S)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-5-yl]propyl β-D-glucopyranoside ( 1 ), [(2R,3S)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-2,3-dihydro-1-benzofuran-3-yl]methyl 2-O-α-L-rhamnopyranosyl-β-D-glucopyranoside ( 2 ), [(2R,3S)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-2,3-dihydro-1-benzofuran-3-yl]methyl 2-O-α-L-rhamnopyranosyl-β-D-xylopyranoside ( 3 ), 3-[(2R,3S)-3-({[2-O-(4-O-acetyl-α-L-rhamnopyranosyl)-β-D-xylopyranosyl]oxy}methyl)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-2,3-dihydro-1-benzofuran-5-yl]propyl acetate ( 4 ), and 4-(2-hydroxyethyl)phenyl 3-O-β-D-glucopyranosyl-β-D-glucopyranoside ( 9 ). Free radical scavenging activities of the isolates were elucidated through the DPPH assay method. The most active compounds, 1-O-caffeoyl-β-D-glucopyranose ( 17 ) and soulieana acid 1 ( 18 ), exhibited moderate radical scavenging activities (IC50=37.7±4.4 μM and IC50=97.2±3.4 μM, respectively). The antibacterial activities of the isolates against Staphylococcus aureus and Escherichia coli were also assessed, and no activity was shown at the measured concentration (<32 μg/mL).  相似文献   

18.
Two new thymol (=5‐methyl‐2‐(1‐methylethyl)phenol) derivatives, 8,10‐didehydro‐9‐(3‐methylbutanoyl)thymol 3‐O‐tiglate ( 1 ) and 9‐O‐angeloyl‐8‐methoxythymol 3‐O‐isobutyrate ( 2 ), were isolated from the root of Eupatorium cannabinum ssp. asiaticum, together with six known compounds, 3 – 8 . The structures of 1 and 2 were determined through extensive 1D/2D‐NMR and MS analyses. Among the isolates, 9‐acetoxy‐8,10‐epoxythymol 3‐O‐tiglate ( 3 ) was the most cytotoxic, with IC50 values of 0.02±0.01, 1.02±0.07, and 1.36±0.12 μg/ml, respectively, against DLD‐1, CCRF‐CEM, and HL‐60 cell lines. In addition, 10‐acetoxy‐9‐O‐angeloyl‐8‐hydroxythymol ( 4 ) and eupatobenzofuran ( 6 ) exhibited cytotoxicities, with IC50 values of 1.14±0.16 and 2.63±0.22, and 7.63±0.94 and 2.31±0.14 μg/ml, respectively, against DLD‐1 and CCRF‐CEM cell lines.  相似文献   

19.
The CHCl3-soluble fraction of the whole plant of Duranta repens showed anti-plasmodial activity against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum, with IC50 values of 8.5?±?0.9 and 10.2?±?1.5?μg/mL, respectively. From this fraction, two new flavonoid glycosides, 7-O-α-d-glucopyranosyl-3,4′-dihydroxy-3′-(4-hydroxy-3-methylbutyl)-5,6-dimethoxyflavone (1) and 7-O-α-d-glucopyranosyl(6′′′-p-hydroxcinnamoyl)-3,4′-dihydroxy-3′-(4-hydroxy-3-methylbutyl)-5,6-dimethoxyflavone (2), along with five known flavonoids, 3,7,4′-trihydroxy-3′-(4-hydroxy-3-methylbutyl)-5,6-dimethoxyflavone (3), 3,7-dihydroxy-3′-(4-hydroxy-3-methylbutyl)-5,6,4′-trimethoxyflavone (4), 5,7-dihydroxy-3′-(2-hydroxy-3-methyl-3-butenyl)-3,6,4′-trimethoxyflavone (5), 3,7-dihydroxy-3′-(2-hydroxy-3-methyl-3-buten-yl)-5,6,4′-trimethoxyflavone (6), and 7-O-α-d-glucopyranosyl-3,5-dihydroxy-3′-(4′′-acetoxy-3′′-methylbutyl)-6,4′-dimethoxyflavone (7), have been isolated as anti-plasmodial principles. Their structures were deduced by spectroscopic analysis including 1D and 2D NMR techniques. The compounds (1–7) showed potent anti-plasmodial activities against D6 and W2 strains of Plasmodium falciparum, with IC50 values in the range of 5.2–13.5?μM and 5.9–13.1?μM, respectively.  相似文献   

20.
Three new compounds ( 1 – 2 , 14 ), as well as 22 known compounds ( 3 – 13 , 15 – 25 ), were extracted for the first time from the Selaginella effusa Alston (S. effusa). For the unknown compounds, the planar configurations were determined via NMR and by high-resolution mass spectrometry, while their absolute configurations were determined by calculated electronic circular dichroism (ECD), and the configuration of the stereogenic center of biflavones 4 – 5 were established for the first time. The pure compounds ( 1 – 25 ) were tested in vitro to determine the inhibitory activity of the enzyme-catalyzed reactions. Compounds 1 – 9 inhibited α-glucosidase with IC50 values ranging from 0.30±0.02 to 4.65±0.04 μM and kinetic analysis of enzyme inhibition indicated that biflavones 1 – 3 were mixed-type α-glucosidase inhibitors. Compounds 12 – 13 showed excellent inhibitory activity against urease, with compound 12 (IC50=4.38±0.31 μM) showing better inhibitory activity than the positive control drug AHA (IC5013.52±0.61 μM). In addition, molecular docking techniques were used to simulate inhibitor-enzyme binding and to estimate the binding posture of the α-glucosidase and urease catalytic sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号